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Motivation

• The introduction of the Grosse-Wulkenhaar potential on the
noncommutative Euclidean space was a spectacular success
(φ4 renormalizable to all orders, asymptotically safe).

• Typically, NCQFTs behave quite differently on spaces with
Euclidean and Lorentzian signature.

⇒ What happens if one puts the Grosse-Wulkenhaar potential on
Minkowski space? [Fischer & Szabo 09]
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The noncommutative Minkowski space

• The noncommutative Minkowski space is generated by
coordinates xµ that fulfill the canonical commutation relations

[xµ, xν ] = iσµν .

In the 2d case we have σ = λ2
ncǫ.

• The ⋆-product is defined as

(f ⋆g )̂ (k) = (2π)−d/2

∫

d
d l e−

i
2
kσl f̂ (k − l)ĝ(l).

• One may define the ⋆-product at different points by

(f ⊗⋆ g )̂ (k, k̃) = e−
i
2
kσk̃ f̂ (k)ĝ(k̃).
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Euclidean NCQFT

In a Euclidean setting, modified Feynman rules can be derived
formally in a path integral formalism, i.e. [Filk 96]

k0

k1 k2

= e−
i
2
k1σk2δ(k0 + k1 + k2).

In the planar graph

the phase factors at the vertices cancel. Thus, it is exactly as in the
commutative case and has to be renormalized.
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Euclidean NCQFT

In a Euclidean setting, modified Feynman rules can be derived
formally in a path integral formalism, i.e. [Filk 96]

k0

k1 k2

= e−
i
2
k1σk2δ(k0 + k1 + k2).

In the nonplanar graph

the phase factors add up, yielding the finite (for |σk|−1 < ∞) loop
integral

∫

d
4l ∆̂F (k − l)∆̂F (l)e−ikσl .
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Euclidean NCQFT

• This UV/IR–mixing spoils renormalizability.

⇒ Grosse-Wulkenhaar potential.

The modified Feynman rules are only valid in the Euclidean
setting. In the case of space/time noncommutativity σ0i 6= 0,

• the connection to the Lorentzian metric is unclear,

• their naive application on Minkowski space leads to a violation
of unitarity. [Gomis & Mehen 00]

The reason for the violation of unitarity is an inappropriate
definition of time-ordering. It may be cured by using the
Hamiltonian or the Yang-Feldman formalism. [Bahns et al 02]
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The Grosse-Wulkenhaar potential

• In order to improve the IR behaviour, Grosse and Wulkenhaar
added a quadratic potential to the Lagrangean:

L = ∂µφ∂
µφ +Ω2x̃µφx̃µφ+ µ2φ2 + gφ⋆4.

Here
x̃µ = 2σ−1

µν xν .

• The value Ω = 1 is called the self-dual point, as there the
theory becomes self-dual in the sense of Langmann and Szabo.

• The φ⋆4
4 model is asymptotically safe, the self-dual point

being the UV fixed point. [Grosse & Wulkenhaar 04; Disertori et al 07]

• After a switch to a Lorentzian metric, the quadratic potential
will tend to −∞ in some direction.

⇒ Stability?
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The Yang-Feldman formalism

Idea: Perturbative recursive construction of the interacting
field in terms of the free incoming field.

Example: φ⋆3 model, i.e., Pφ = gφ⋆φ.

Ansatz: φ =
∑∞

n=0 gnφn.

⇒ Pφn =
∑n−1

k=0 φk⋆φn−1−k .

φ0 is the free field. We identify it with the incoming field. Higher
order fields are thus obtained by convolution with ∆ret:

φ1(x) =

∫

d
4y ∆ret(x , y)φ0(y)⋆yφ0(y)

φ2(x) =

∫

d
4yd

4z ∆ret(x , y)
{

φ0(z)⋆zφ0(z)∆ret(y , z)⋆yφ0(y)

+ φ0(y)⋆y∆ret(y , z)φ0(z)⋆zφ0(z)
}
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The Yang-Feldman formalism

The contractions of two of the free fields φ0 in

φ2(x) =

∫

d
4yd

4z ∆ret(x , y)
{

φ0(z)⋆zφ0(z)∆ret(y , z)⋆yφ0(y)

+ φ0(y)⋆y∆ret(y , z)φ0(z)⋆zφ0(z)
}

yield

φ2(x) =

∫

d
4yd

4z ∆ret(x , y)φ0(z)

×
{

∆ret(y , z)⋆y ⋆̄z∆+(z , y) + ∆ret(y , z)⋆y⋆z∆+(z , y)

+ ∆+(y , z)⋆y ⋆̄z∆ret(y , z) + ∆+(y , z)⋆y⋆z∆ret(y , z)
}

plus the uncontracted part. Here ⋆̄ is defined by f ⋆̄g = g⋆f , i.e.,
with σ replaced by −σ.
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The Yang-Feldman formalism

In terms of the planar and the nonplanar product on R
2d ,

(f ⋆plg)(y , z) = f (y , z)⋆y ⋆̄zg(y , z),

(f ⋆npg)(y , z) = f (y , z)⋆y⋆zg(y , z),

we thus find the one-loop self-energy

Σ(y , z) = ∆ret(y , z)⋆pl∆+(z , y) + ∆ret(y , z)⋆np∆+(z , y)

+ ∆+(y , z)⋆pl∆ret(y , z) + ∆+(y , z)⋆np∆ret(y , z).

The planar and nonplanar products may also be defined at
different points (with k, k̃ ∈ R

2d):

(f ⊗⋆pl
g )̂ (k; k̃) = e−

i
2
kσpl k̃ f̂ (k)ĝ(k̃)
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The retarded propagator

We consider the massless case and use light cone coordinates

u = x0 − x1, v = x0 + x1.

The retarded propagator solves (λ = Ω− 1
2λnc)

(

4∂u1∂v1 + 4λ4u1v1

)

∆ret(u1, v1; u2, v2) = 2δ(u1 − u2)δ(v1 − v2).

Proposition

The retarded propagator is given by

∆ret(u1, v1; u2, v2) = 1
2H(u1 − u2)H(v1 − v2)

×
∞

∑

n=0

(−1)n
(

u2
1 − u2

2

)n

2nλ2nn!

(

v2
1 − v2

2

)n

2nλ2nn!
.
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The retarded propagator

In terms of the coordinates

us = u1 + u2, ut = u1 − u2,

vs = v1 + v2, vt = v1 − v2,

we obtain

∆ret(us , vs , ut , vt) = 1
2H(ut)H(vt)J0(λ

−2√utusvtvs).

Remark

In a massive theory (without quadratic potential), we have

∆ret(us , vs , ut , vt) = 1
2H(ut)H(vt)J0(µ

√
utvt).

Thus, we deal with a position dependent mass µ = λ−2√usvs .
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The retarded propagator

In terms of the coordinates

us = u1 + u2, ut = u1 − u2,

vs = v1 + v2, vt = v1 − v2,

we obtain

∆ret(us , vs , ut , vt) = 1
2H(ut)H(vt)J0(λ

−2√utusvtvs).

For ut , vt > 0 and usvs < 0 this diverges as

eλ−2
√
−utusvtvs ≤ e

1
4λ2 (u2

t +u2
s +v2

t +v2
s )
.

Thus, the retarded propagator is no tempered distribution.
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Gelfand-Shilov spaces

Definition

The Gelfand-Shilov space Sα,A(R4) is the space of Schwartz

functions that fulfill the bound (with ai < αie
−1A

−1/αi

i )

|∂β f (z)| ≤ Cβe−
P4

i=1 ai |zi |1/αi
.

We interpret the retarded propagator as a distribution on
Sα,A(R4), with α = 1

2 and A =
√

2e−1(λ− ε). The Fourier
transforms of such test functions are entire function which fulfill,
for arbitrary δ > 0,

|f̂ (k + ip)| ≤ Ce((λ−ε)2+δ)|p|2.
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⋆-products of distributions

Given two distributions F ,G ∈ S ′
α,A(R4), we want to define their

(planar) ⋆-product at different points via duality, i.e.,

〈F ⊗⋆pl
G , f ⊗ g〉 = 〈F ⊗ G , f ⊗⋆pl

g〉.

In momentum space, we have

(f ⊗⋆pl
g )̂ (k; k̃) = e−2iλ2

nckσpl k̃ f̂ (k)ĝ(k̃) (1)

with
kσplk̃ = kus k̃vt + kut k̃vs − kvs k̃ut − kvt k̃us .

Proposition

For λnc ≥ λ, α = 1
2 and A =

√
2e−1(λ− ε), there are no nontrivial

f , g ∈ Sα,A(R4), s.t. (1) is the F.T. of an element of Sα,A(R8).
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Proof

It suffices to show that the bounds (with b = (λ− ǫ)2 + δ)

|f̂ (k + ip)| ≤ ceb|p|2 , |ĝ(k + ip)| ≤ c ′eb|p|2 , (2)

|(f ⊗⋆pl
g )̂ (k + ip; k̃ + i p̃)| ≤ Ceb(|p|2+|p̃|2), (3)

can not be fulfilled simultaneously for λ2
nc ≥ λ2 > b. With

l = k + ip we obtain from (3)

|f̂ (l)ĝ(iσ−1
pl l)| ≤ Ce−(2λ2

nc−b)|k|2+(2λ2
nc+b)|p|2 .

But (2),

|f̂ (l)ĝ(iσ−1
pl l)| ≤ C ′eb(|k|2+|p|2).

Thus, for λ2
nc > b, the entire function F (l) = ebl2 f̂ (l)ĝ(iσ−1

pl l) is
bounded on the real and imaginary axis and grows with order 2 in
between. By the Phragmén-Lindelöf principle, it vanishes.
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Discussion

• We have shown that at and above the self-dual point the
(planar) ⋆-product at different points can not be defined via
duality on elements of S ′

α,A(R4).

• As ∆ret lies in that distribution space, we expect ∆+ to also
lie (in a subset of) that space.

⇒ We have shown that the products of distributions appearing in
the Yang-Feldman series do not exist, not even at different
points.

• It is thus no UV-divergence.

• Also a formal direct calculation of these products fails at and
above the self-dual point. One finds (as the coefficient of the
n = 0 term) the geometric series

∞
∑

m=0

Ω4m.



Introduction The Yang-Feldman formalism The retarded propagator The planar divergence Conclusion

Planar vs. nonplanar

• The above argument is also valid for nonplanar graphs.

• A formal calculation shows no problems in nonplanar graphs.

• Reason: The choice of Sα,A(R4) as test function space is too
restrictive. It suffices to restrict to test functions that fall off
stronger than

e−
1

4λ2 x2

in the two directions

(us , vs , ut , vt) = xe1 = x
2 (1,−1, 1, 1) and xe2 = x

2 (−1, 1, 1, 1).

However, for these directions we have

[e1, e2]pl = 4iλ2
nc, [e1, e2]np = 0.

⇒ In the planar case, the joint localization is impossible for
λnc ≥ λ.
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Summary

• We found a peculiar kind of divergence in planar graphs in the
Grosse Wulkenhaar model on the 2d noncommutative
Minkowski space.

• The divergence is present at and above the self-dual point and
is not UV.

• The same problems seem to present in the 4d case.

• Also in terms of a suitable eigenfunction basis one finds a
divergence at the self-dual point. Reason: Continuous set of
generalized eigenfunctions.
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Outlook

• Use larger class of test functions.

• Look at 4d.

• Renormalization?

• Different potential?



Eigenfunction basis

• At the self-dual point, we may write

(−� + x̃2 + µ2)φ = H⋆φ+ φ⋆H + µ2φ

with
H = 1

2 x̃µx̃µ.

• If we find a set of orthonormal eigenvectors |ks〉,

H|ks〉 = k|ks〉,

with degeneracy index s, then, for χst
kl the Weyl symbol of

|ks〉〈lt|, we have

(−� + x̃2 + µ2)χst
kl = (k + l + µ2)χst

kl .



Eigenfunctions

• In the case of the 2d Euclidean space, we have

H = 2λ−4
nc

(

x2
0 + x2

1

)

.

In the canonical representation, this is the Hamiltonian of the
harmonic oscillator. Thus, there is no degeneracy, and

k = 4λ−2
nc (n + 1

2 ).

• For the propagator, we assume

m

n

m′

n′

= δmm′δnn′
−λ2

nc
4(m+n+1)+λ2

ncµ
2

• The vertex is given by

m

n′

m′
l

n
l ′

= gδmm′δnn′δll ′ .



A planar graph

For the planar fish graph

m

n

m′

n′

i ′

i

one obtains the expression

ig2λ4
ncδmm′δnn′

∑

i ,i ′

1
4(m+i+1)+λ2

ncµ
2

1
4(i ′+n+1)+λ2

ncµ
2 [δii ′]

2 .



The eigenfunctions

• In the Minkowski case, the Hamiltonian

H = 2λ−4
nc

(

x2
0 − x2

1

)

corresponds to an inverted harmonic oscillator. It has
spectrum R with two-fold degeneracy (s, t = ±).

• For the propagator, we assume

ks

lt

k′s′

l ′t′

= δss
′

δtt
′

δ(k − k ′)δ(l − l ′) −λ2
nc

k+l−λ2
ncµ

2+iǫ

• The vertex is given by

ks

l ′t′

k′s′
ju

lt
j ′u′

= gδss
′

δtt
′

δuu′

δ(k − k ′)δ(l − l ′)δ(j − j ′).



The planar divergence

For the planar fish graph

ks

lt

k′s′

l ′t′

j ′u

ju

one obtains the expression

ig2λ4
ncδ(k − k ′)δ(l − l ′)δss

′

δtt
′

×
∑

u

∫

djdj ′ 1
k+j−λ2

ncµ
2+iǫ

1
j ′+l−λ2

ncµ
2+iǫ

[

δ(j − j ′)
]2
.

This diverges even before evaluating the loop integral.



The planar divergence

In a certain sense, this result is generic:

• It only relies on the conservation of the generalized
momentum k by the propagator and at the vertices, and will
thus also appear in the Yang-Feldman formalism.

• The choice of a φ3 vertex was only a matter of convenience.

However, the discussion in terms of the eigenfunctions has several
shortcomings

• It is limited to the self-dual point.

• It uses a basis that is not well understood (e.g. in terms of
localization).

• The propagator is not completely specified.

To overcome these, we switch to position space. There, we
construct the retarded propagator, which is uniquely defined.



The eigenfunctions

In light cone coordinates, the Hamiltonian is a multiple of

2i(u∂u + ∂uu) = 4iu∂u + 2i .

Normalised generalised eigenfunctions are

ψ±
k

(u) = 1
2
√

2π
u
−i k

4
− 1

2
± =

{

1
2
√

2π
|u|−i k

4
− 1

2 for u ≷ 0

0 otherwise

with k ∈ R.
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