

Isabelle Wingerter-Seez - LAPP - Annecy isabelle.wingerter@lapp.in2p3.fr

> Corfu Summer Institute 31 August 2010

Presentation

- I. LHC start & ATLAS Operation
- II. Jets & Limit on Q*
- III. ETmiss & first SUSY search
- IV. W&Z and M_W prospect
- V. Conclusions

What is not presented

Detailed detector commissioning, performance & operation Particle identification (electrons, muons, photons,) Evidence for prompt photon production (cf Louis Fayard's presentation) Soft Physics

Тор

Even more uncovered topics

Credits

- I was inspired by the lectures/presentations prepared by
 - Fabiola Gianotti, Pascal Pralavorio, Tancredi Carli, Jim Virdee, Louis Fayard, Beate Heinemann, Ariel Schwartzman, Laurent Serin,
- Most of results presented today are from ATLAS CONFerence Notes prepared for ICHEP & HCP conferences and available at <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/RESULTS/summer2010.html</u>

pp collisions at $\sqrt{s} = 7$ TeV

- Why a hadron collider when
 - Hadrons are complicated objects
 - the elementary process is then not known (quark, gluons)
 - the kinematics of the interaction not fully constraint
 - pollution by other components (underlying event)
- But
 - Can reach higher energies

Lepton Collider (collision of two point-like particles)

Hadron collider (collision of ~50 point-like particles)

[Karl Jakobs] 14

From cosmic muons to collisions: LHC

	LHC design	LHC 2009-2011	Tevatron
√s	14 TeV	0.9, 2.1, 7 TeV	1.96 TeV
Number of bunches	2808	2-400 (40)	36
Bunch spacing	25 ns	75-150 ns?	396 ns
Energy stored in beam	360 MJ	2 MJ for 40 bunches	1 MJ
Peak Luminosity	10^{33} - 10^{34} cm ⁻² s ⁻¹	10^{28} - 10^{33} cm ⁻² s ⁻¹ (10^{31})	$3 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$
∫ึ£∙dt- one year	10-100 evts/fb	0.1-1 evts/fb (3 evts/pb)	~2 evts/fb

• With nominal parameters: LHC is a factor ~1000 more powerful than Tevatron

- Energy: $E_{LHC} = 7 \cdot E_{Tevatron}$
- Luminosity: L_{LHC} = 3-30 · L_{Tevatron}
- Physics cross sections factor 10-1000 larger
- First collisions at 7 TeV were collected on 30.03.2010
 - Generous harvest since then

Cross-section Measurement

Collider luminosity *L*

• Luminosity is given by the beam optics:

- $N_{\text{events}} = \mathscr{L} \times \sigma$
 - Experiments count the number of events
 - \mathfrak{L} has to be known to be able to measure cross sections
 - Best estimate of ${\ensuremath{\mathfrak L}}$ is given today by the measurement of the LHC beam currents: $\pm 11\%$
 - Dedicated detectors, measuring events from known cross-sections will be used and ultimately provide a measurement of the luminosity to $\pm 2-3\%$
 - ALFA detector to measure elastic p-p scattering at small angle being installed
 - Physics processes with well calculated cross-sections

Luminosity so far with pp collisions at $\sqrt{s} = 7$ TeV

Cross-sections -> Triggering

10

Triggering in pp collisions at $\sqrt{s} = 7$ TeV

Track momentum scale

- Precise measurement of magnetic field (2006)
 - Momentum scale known to a few ‰ in low p_T range

12

Electromagnetic Calorimeter Performance: п⁰

Jets in ATLAS

- Reconstruction in ATLAS
 - 3D calorimeter clusters + anti-k_T algorithm (R=0.4, 0.6)

Jet Energy Scale

16

Relative Jet Energy Scale Systematic Uncertainty

Jets Physics

- Statistics presented at ICHEP conference
 - pT^{jet}>80 GeV (and sub-leading jets pT^{jet}>40 GeV) & |y^{jet}|<2.8
 - Only show statistical errors

Start to probe new phase space

ATLAS-CONF-2010-084

Inclusive Jet Differential cross-section

- contamination), PT^{jet}>60 GeV, |y_{jet}|<2.8
- Correct measured jets to particle level using parton-shower MC (Pythia, Herwig):
 - Compare to NLO pQCD prediction corrected from hadronisation and underlying event
- Theoretical uncertainty on σ (PDF, a_s , scale)
 - 10% over measurable pT range, y~0
 - increase to 30-40% at |y|~2.8
- Experimental uncertainty on σ
 - 30-40% dominated by Jet Energy Scale
 - 11% from luminosity not included

Jets: Theory vs Data vs pT

ATLAS-CONF-2010-050

Jet-Jet mass

Search for new resonances

- Search for excited quarks $(q^* \rightarrow jj)$ over 315 nb⁻¹
 - Signal is searched as a deviation from a smooth monotonic function
 - Systematics considered: luminosity, JES, background fit
- To enhance S/ \sqrt{B} : p_T^{j1} >80 GeV, P_T^{j2} >30 GeV, $|y^j|$ <2.5 & $|\Delta y|$ <1.3

0.4<M(q*)<1.26 TeV excluded at 95% CL (CDF latest result 0.26<M(q*)<0.87 TeV

Submitted to PRL - arXiv:1008.2461v1 [hep-ex] 14 Aug 2010

Missing Transverse Energy

Missing Transverse Energy

24

Electroweak Physics

- Current Electroweak theory thoroughly tested (and never "broken") until now (LEP, Hera, TeVatron, μ & neutron magnetic moments,...)
 - Better than ‰
- Aim at LHC:
 - Finally break it!
 - Deeper understanding to:
 - tighten indirect constraints
 - find deviations
 - Detector calibration

Z & W productions

- Z production
 - $15 \cdot 10^6$ evts in one year at $d\ell/dt = 10^{33}$ evts/cm²/s
 - qq annihilation
 - $x_q \cdot x_{\overline{q}} \sim 4 \cdot 10^{-5}$
 - $p_L = 0.5 \cdot \sqrt{s} \cdot (x_{q-}x_{q-})$
- Z decay
 - To 2 energetic fermions of opposite charge
 - 70% are quark pairs
 - jet-jet distributions are dominated by QCD background
 - Study lepton pairs: cleaner
 - electrons
 - muons
 - taus

- W production
 - $\sigma_Z \sim 10 \cdot \sigma_W$
 - σ_W⁺ > σ_W⁻ (quark content of the proton)
 - W⁺ peaked at high rapidity; W⁻ in central rapidity
- W decay
 - 32% to one energetic fermion & one neutrino
 - 68% to two quarks

W→ev

- Good agreement data/MC (shape)
- 815 $W \rightarrow e_V$ events (mT>40 GeV) with a high S/B

M_T with $\int Ldt = 1.01 pb^{-1}$ with E_T^{miss} cut

W→µv

- Good agreement data/MC (shape)
- 1111 W $\rightarrow \mu v$ events (mT>40 GeV) with a high S/B

M_T with $\int Ldt = 0.991 \text{ pb}^{-1}$ with E_T^{miss} cut

W cross-section - 17 nb⁻¹

46(72) W→ev (µv)

- MC geometrical and kinematic acceptance: $A_W \sim 47 \pm 1.5\%$
- Systematics on reconstruction efficiency (C_W):

Uncertainty	Electron	Muon
Trigger	<0.5%	4%
Material effect	4%	
Identification	6%	4%
E Scale+Resolution	2%	4%
E _T ^{miss} Scale+Resolution	2%	2%
Total	8%	7%
C _w	(65.6±5.3)%	(81.4±5.6)%

 $\sigma(W \rightarrow lv) = 9.3 \pm 0.9(stat) \pm 0.6(syst) \pm 1.0$ (lumi) nb $\sigma_{SM} (W \rightarrow lv) = 10.5 \pm 0.4$ nb Dominated by luminosity systematics

W transverse momentum

Good agreement data/MC (shape) for the **1926** W \rightarrow Iv events

W asymmetry

Asymmetry (A): Difference in W⁺/W⁻ production $A = \frac{\sigma(W \to \ell^+ \nu) - \sigma(W \to \ell^- \nu)}{\sigma(W \to \ell^+ \nu) + \sigma(W \to \ell^- \nu)} \neq 0$

- Most systematics cancel in the ratio
- Sensitive to valence quarks distributions (x~10⁻³-10⁻¹)

L=16.9 nb⁻¹

2

A vs n to distinguish between PDF

 $A(W \rightarrow ev) = 0.21 \pm 0.18 \text{ (stat)} \pm 0.01 \text{ (syst)}$ $A(W \rightarrow \mu v) = 0.33 \pm 0.12 \text{ (stat)} \pm 0.01 \text{ (syst)}$

Asymmetry

0.8

0.6

0.4

0.2

0

-0.2^L

0.5

Statistically limited up to a few pb^{-1}

1.5

W Mass Measurement

DØ Note 5893-CONF

0.3‰ World average: $M_w = 80399 \pm 25$ MeV

ATLAS aims at a measurement of Mw with a precision of ~ 10 MeV.

Measuring Mw

- Aim at $2 \cdot 10^{-4}$ precision on the energy scale (going from M_Z to M_W) i.e. 10 MeV at 50 GeV:
 - Electronics noise in strips compartment of LAr calorimeter
 - ~2 ADC counts in the middle compartment
 - A change of 0.01 degree of LAr temperature
 - Effect of empty Bunch Crossings ?
 - The protons packets are not uniformly distributed inside the LHC
 - Effect of pile-up is different depending on the packet
 - Careful treatment of this effect is necessary
- Many (careful) steps have to be taken to reach the goal
 - Z^0 to fix the energy scale at ~ M_Z/M_W
 - Detector acceptance
 - Description of variables by MC (templates)

•

W Mass Measurement

15 pb⁻¹

Method	р _т (е) [MeV]	p _T (μ) [MeV]	m _T (e) [MeV]	m _τ (μ) [MeV]
δ M _w (stat.)	120	106	61	57
$\delta \; M_W (\text{scale})$	110	110	110	110
$\delta \; M_W (\text{resol})$	5	5	5	5
$\delta \; M_W (\text{tails})$	28	<28	28	<28
$\delta \; M_W \; (\text{eff.})$	14	-	14	
$\delta \; M_W \; (\text{recoil})$		-	200	200
δM_W (bkg)	3	3	3	3
$\delta M_W (PDF)$	25	25	25	25

p_T leptons $\delta M_W = 110 \text{ (stat)} \oplus 114 \text{ (exp.)} \oplus 25 \text{ (PDF) MeV}$

Transverse mass $M_T \delta M_W = 60 \text{ (stat)} \oplus 230 \text{ (exp.)} \oplus 25 \text{ (PDF) MeV}$

High Statistic Measurement of Mw

- With 1fb⁻¹ : expect to reach ~10 MeV
 - 45 10⁶ W boson per leptonic channel
 - 4.5 10⁶ Z boson per leptonic channel
- Examples of systematic studies:
 - Experimental
 - Lepton energy scale, linearity, resolution
 - Reconstruction efficiency
 - Theory
 - W distribution, y^W , p_T^W
 - FSR
 - Environment
 - Underlying event
 - Pile-up
 - Background

W Mass: Ultimate Measurement

source	effect	δm _w (MeV)
Theoretical model	Γ_{W}	0.5
	Уw	1
	p _{tW}	3
	QED radiation	<1
Lepton measurement	linearity and scale	4
	resolution	1
	efficiency	3 (e); <1 (μ)
Backgrounds	$W\to\tau\nu$	0.4
	$Z \rightarrow I(I)$	0.2
	$Z \rightarrow \tau \tau$	0.1
	Jet events	0.5
Pile-up and UE		<1 (e); ~0 (µ)
Beam crossing angle		<0.1
total		~7

One channel (e) and one study (p_T)

Z cross-section measurement

Z→II Physics

${\sim}300~\text{pb}^{\text{-1}}$ of data - MC normalized to data

- From 2 opp. sign leptons (p_T>20 GeV, lηl<2.4)</p>
- Similar lepton identification as for W (somewhat relaxed)

Recently Updated M_{II} Plots - ~1pb⁻¹

Z cross-section - 225 nb⁻¹

46(79) Z→ee (µµ)

- MC geometrical and kinematic acceptance: $A_Z \sim 46.5 \pm 1.4\%$
- Systematics on reconstruction efficiency (C_Z):

Uncertainty	Electron	Muon
Trigger	<0.5%	2%
Identification	10%	7%
Material effect	8%	
E Scale+Resolution	2%	1%
Pile-up	2%	
Total	14%	7%
Cz	(64.5±9.0)%	(79.7±5.3)%

 $\sigma(Z/\gamma^* \rightarrow II) = 0.83 \pm 0.07(\text{stat}) \pm 0.06(\text{syst}) \pm .09 (\text{lumi}) \text{ nb}$ $\sigma_{SM} (Z \rightarrow II) = 0.99 \pm 0.04 \text{ nb}$ Combined measurement dominated by luminosity systematics at 225nb⁻¹

Conclusions

- LHC has been operating for 5 months at $\sqrt{s} = 7$ TeV
 - As of Monday 30.08.2010, 3.4 pb⁻¹ of p-p collisions have been collected by ATLAS, with a data taking efficiency of ~95%
 - 10³¹cm⁻²s⁻¹ was reached during August
- Plan is to reach 10³²cm⁻²s⁻¹ before LHC switches to heavy ions in October
- The detector is functioning well
 - One decade of testbeam analysis
 - Detailed commissioning while awaiting for beam
 - MC description is already at the ~10% level
- The first results give a good taste of the physics potential ahead of us