HEPHY MENNA Institute for High Energy Physics Impact of squark generation mixing on the search for squarks decaying into fermions at LHC

Helmut Eberl

In collaboration with A. Bartl, B. Herrmann, K. Hidaka, W. Majerotto and W. Porod

arXiv:1007.5483 [hep-ph]

Corfu Summer School, workshop, 4<sup>th</sup> September 2010

# Contents

- Introduction
- @ MSSM with Quark Flavor Violation (QFV)
- Constraints on the MSSM
- Quark generation mixing in squark decays
- Quark pair production + signatures with QFV at LHC
- Conclusions + Outlook

### Motivation:

- Oiscovery of SUSY partners and study of their properties are essential for testing the MSSM.
- e Here we focus on squarks super partners of quarks
- @ With the start of the LHC at CERN a new era of particle physics has begun.
- If weak scale SUSY is realized in nature, squarks and gluinos will have high production rates for masses up to O(1) TeV at LHC.
- @ The main decay modes of squarks are usually assumed to be quark-flavor conserving (QFC).
- Of However, the squarks are not necessarily quark-flavor eigenstates. The flavor mixing in the squark sector may be stronger than that in the quark sector. Then quark-flavor violating (QFV) decays of squarks can occur with a significant rate.

### Purpose of this study:

- We study the effect of scharm-stop mixing on production and subsequent decays of squark at LHC in the general MSSM with R<sub>P</sub> conserved.
- We show that due to the mixing effect the branching ratios of QFV squark decays can be very large in a significant region of the QFV parameters despite the very strong experimental constraints on QFV from B meson observables.
- @ This could have an important impact on the search for squarks and the MSSM parameter determination at LHC.

# **Quark Flavour Violation in the MSSM**

In the Standard Model, all quark flavour-violating terms are prop. to CKM-matrix Beyond Standard Model, e.g. Minimal Supersymmetric Standard Model (MSSM)

### Minimal flavour-violation (MFV)

- no new sources of flavour violation
- in super-CKM basis squarks undergo same rotations as quarks
- all flavour-violating entries related to CKM-matrix
- Example:  $\tilde{\chi}_i^{\pm} \tilde{q}_j q_k$  interaction proportional to  $V_{q_j q'_k}$

#### Non-minimal flavour-violation (NMFV)

- new sources of flavour violation can appear within SUSY-GUTs
- e.g. gravity-mediation, messengermatter mixing, flavour symmetries, ...
- corresponding flavour-violating entries not related to CKM-matrix
- considered as free parameters

The flavour-violating terms are incorporated in the 6x6 mass matrices at the electroweak scale, e.g.

$$M_{\tilde{u}}^2 = \begin{pmatrix} M_{\tilde{u}LL}^2 & (M_{\tilde{u}RL}^2)^{\dagger} \\ M_{\tilde{u}RL}^2 & M_{\tilde{u}RR}^2 \end{pmatrix}$$

# **Quark Flavour Violation in the MSSM**

The 3x3 soft-breaking matrices can include off-diagonal, i.e. flavour-violating, entries

$$(M_{\tilde{u}LL}^2)_{\alpha\beta} = M_{Q_u\alpha\beta}^2 + \left[ \left(\frac{1}{2} - \frac{2}{3}\sin^2\theta_W\right)\cos 2\beta \ m_Z^2 + m_{u_\alpha}^2 \right] \delta_{\alpha\beta}$$
$$(M_{\tilde{u}RR}^2)_{\alpha\beta} = M_{U\alpha\beta}^2 + \left[ \frac{2}{3}\sin^2\theta_W\cos 2\beta \ m_Z^2 + m_{u_\alpha}^2 \right] \delta_{\alpha\beta}$$
$$(M_{\tilde{u}RL}^2)_{\alpha\beta} = (v_2/\sqrt{2})T_{U\beta\alpha} - m_{u_\alpha}\mu^* \cot\beta \ \delta_{\alpha\beta}$$

Introduce dimensionless parametrization for flavour-violating entries

$$\delta^{u\{LL,RR\}}_{\alpha\beta} \equiv M^2_{\{Q,U\}\alpha\beta} / \sqrt{M^2_{\{Q,U\}\alpha\alpha}} M^2_{\{Q,U\}\beta\beta}$$
$$\delta^{uRL}_{\alpha\beta} \equiv (v_2/\sqrt{2}) T_{U\beta\alpha} / \sqrt{M^2_{U\alpha\alpha}} M^2_{Q\beta\beta}$$

Diagonalization through 6x6 rotation matrix leads to mass eigenstates

$$\tilde{u}_i = R^{\tilde{u}}_{i\alpha} \tilde{u}_{0\alpha}$$
 and  $R^{\tilde{u}} M^2_{\tilde{u}} R^{\tilde{u}\dagger} = \operatorname{diag}(m^2_{\tilde{u}_1}, \dots, m^2_{\tilde{u}_6})$ , where  $m_{\tilde{u}_i} < m_{\tilde{u}_j}$  for  $i < j$ 

# **Constraints on the MSSM parameter space**

Mass limits from collider searches [PDG 2008-2010]

- only mixing between second and third generation squarks considered
- Electroweak precision and low-energy measurements [PDG 2008-2010; HFAG 2008-2010]



The branching ratios of the squark decays

$$\tilde{u}_{1,2} \to c \ \tilde{\chi}_1^0$$
 and  $\tilde{u}_{1,2} \to t \ \tilde{\chi}_1^0$ 

are calculated by

e taking also into account

$$\tilde{u}_i \to u_k \tilde{g}, u_k \tilde{\chi}_n^0, d_k \tilde{\chi}_m^+, \tilde{u}_j Z^0, \tilde{d}_j W^+, \tilde{u}_j h^0$$
  
where  $u_k = (u, c, t)$  and  $d_k = (d, s, b)$ 

Analytic formulas see G. Bozzi et al (2007), A. Bartl et al. (2004), M. Bruhnke, B. Herrrmann, W. Porod (2010)

# **Squark Pair Production at Hadron Colliders**

#### QCD factorization theorem

$$\sigma = \int_{t_{-}}^{t_{+}} \mathrm{d}t \, \int_{\frac{4m^{2}}{s}}^{1} \mathrm{d}\tau \, \int_{-\frac{1}{2}\ln\tau}^{-\frac{1}{2}\ln\tau} \mathrm{d}y \, f_{a/A}(x_{a}, M_{a}^{2}) \, f_{b/B}(x_{b}, M_{b}^{2}) \, \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}t}$$
$$x_{a,b} = \sqrt{\tau} e^{\pm y}$$

#### Flavour-conserving channels



Flavour-violating channels



Analytical expressions for squark production cross-sections and decays published in earlier works

Bozzi, Fuks, Herrmann, Klasen (2007); Fuks, Herrmann, Klasen (2008)

# **Production and Decays of Squarks at LHC**

Interesting production signature due to potentially large squark branching ratios

$$pp \to \tilde{u}_{1,2}\bar{\tilde{u}}_{1,2} \to c\bar{t}\,\tilde{\chi}_1^0\tilde{\chi}_1^0$$

Calculation of the corresponding cross-sections

$$\sigma_{ct}^{ij} \equiv \sigma(pp \to \tilde{u}_i \bar{\tilde{u}}_j X) \times \left( B(\tilde{u}_i \to c\tilde{\chi}_1^0) B(\bar{\tilde{u}}_j \to \bar{t}\tilde{\chi}_1^0) + B(\tilde{u}_i \to t\tilde{\chi}_1^0) B(\bar{\tilde{u}}_j \to \bar{c}\tilde{\chi}_1^0) \right)$$

#### Numerical calculation

- SPheno3 for mass spectrum, constraints, and branching ratios [Porod 2003-2010]
- Whizard/O'Mega for production cross-sections [Kilian, Ohl, Reuter 2001-2010] (MSSM with QFV implemented!) [Herrmann 2009]
- Verification using FeynArts/FormCalc [Hahn 2001-2010]
- CTEQ6L parton distribution functions [Pumplin et al. (CTEQ)]

### Input parameters:

 $\tan\beta, m_{A^0}, M_1, M_2, M_3, \mu, M_{Q\alpha\beta}^2, M_{U\alpha\beta}^2, M_{D\alpha\beta}^2, T_{U\alpha\beta} \text{ and } T_{D\alpha\beta}$ (at the weak scale and real)

### **QFV** parameters:

 $M_{Q\alpha\beta}^2, M_{U\alpha\beta}^2, M_{D\alpha\beta}^2, T_{U\alpha\beta} \text{ and } T_{D\alpha\beta} \text{ with } \alpha \neq \beta$ 

### • Two reference scenarios:

- Scen I: QFV signals at LHC maximized: can serve as a benchmark scenario for further studies
- Scen2: mSUGRA scenario SPSIa': has already served for several exp. studies

## Scenl

|                      |             |             |             | SaLI                                                              | . (2             | $(24)^2$       | 0.000                       |             |           |
|----------------------|-------------|-------------|-------------|-------------------------------------------------------------------|------------------|----------------|-----------------------------|-------------|-----------|
| $M^2_{Q\alpha\beta}$ | $\beta = 1$ | $\beta = 2$ | $\beta = 3$ | $\delta_{23}^{aaaa} \equiv \frac{1}{880 \times 840} \equiv 0.008$ |                  |                |                             |             |           |
| $\alpha = 1$         | $(920)^2$   | 0           | 0           | $M_1$                                                             | $M_2$            | $M_3$          | $\mu$                       | $\tan\beta$ | $m_{A^0}$ |
| $\alpha = 2$         | 0           | $(880)^2$   | $(224)^2$   | 139                                                               | 264              | 800            | 1000                        | 10          | 800       |
| $\alpha = 3$         | 0           | $(224)^2$   | $(840)^2$   | All o                                                             | of $T_{U\alpha}$ | $_{\beta}$ and | $T_{D\alpha\beta} \epsilon$ | are set t   | o zero    |

| $M_{D\alpha\beta}^2$ | $\beta = 1$ | $\beta = 2$ | $\beta = 3$ |  |  |
|----------------------|-------------|-------------|-------------|--|--|
| $\alpha = 1$         | $(830)^2$   | 0           | 0           |  |  |
| $\alpha = 2$         | 0           | $(820)^2$   | 0           |  |  |
| $\alpha = 3$         | 0           | 0           | $(810)^2$   |  |  |

| $M_{U\alpha\beta}^2$ | $\beta = 1$ | $\beta = 2$ | $\beta = 3$ |  |  |
|----------------------|-------------|-------------|-------------|--|--|
| $\alpha = 1$         | $(820)^2$   | 0           | 0           |  |  |
| $\alpha = 2$         | 0           | $(600)^2$   | $(373)^2$   |  |  |
| $\alpha = 3$         | 0           | $(373)^2$   | $(580)^2$   |  |  |

(all numbers in GeV,

except  $tan\beta$ )

| $\tilde{u}_1$ | $\tilde{u}_2$ | $	ilde{u}_3$ | $	ilde{u}_4$ | $\tilde{u}_5$ | $\tilde{u}_6$ | $\tilde{d}_1$ | $\tilde{d}_2$ | $\tilde{d}_3$ | $	ilde{d}_4$ | $\widetilde{d}_5$ | $\tilde{d}_6$ |
|---------------|---------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|--------------|-------------------|---------------|
| 472           | 708           | 819          | 837          | 897           | 918           | 800           | 820           | 830           | 835          | 897               | 922           |

| $\tilde{g}$ | $\tilde{\chi}_1^0$ | $	ilde{\chi}_2^0$ | $	ilde{\chi}^0_3$ | $	ilde{\chi}^0_4$ | $\tilde{\chi}_1^{\pm}$ | $\tilde{\chi}_2^{\pm}$ | $h^0$ | $H^0$ | $A^0$ | $H^{\pm}$ |
|-------------|--------------------|-------------------|-------------------|-------------------|------------------------|------------------------|-------|-------|-------|-----------|
| 800         | 138                | 261               | 1003              | 1007              | 261                    | 1007                   | 122   | 800   | 800   | 804       |

 $\delta_{23}^{uRR} = \frac{(373)^2}{600 \times 580} = 0.4$ 

## Scenl

| $\boxed{ R_{i\alpha}^{\tilde{u}} }$ | $	ilde{u}_L$ | $\tilde{c}_L$ | $	ilde{t}_L$ | $\tilde{u}_R$ | $\tilde{c}_R$ | $\tilde{t}_R$ |
|-------------------------------------|--------------|---------------|--------------|---------------|---------------|---------------|
| $\tilde{u}_1$                       | 0.001        | 0.004         | 0.024        | 0             | 0.715         | 0.699         |
| $\tilde{u}_2$                       | 0.003        | 0.014         | 0.055        | 0             | 0.699         | 0.713         |
| $	ilde{u}_3$                        | 0            | 0             | 0            | 1.0           | 0             | 0             |
| $	ilde{u}_4$                        | 0.128        | 0.584         | 0.800        | 0             | 0.021         | 0.053         |
| $\tilde{u}_5$                       | 0.181        | 0.781         | 0.598        | 0             | 0.008         | 0.024         |
| $\tilde{u}_6$                       | 0.975        | 0.221         | 0.005        | 0             | 0             | 0             |

**@**Two main channels for  $\tilde{u}_1$  and  $\tilde{u}_2$ :

 $B(\tilde{u}_1 \to c\tilde{\chi}_1^0) = 0.59, \ B(\tilde{u}_1 \to t\tilde{\chi}_1^0) = 0.39$  $B(\tilde{u}_2 \to c\tilde{\chi}_1^0) = 0.44, \ B(\tilde{u}_2 \to t\tilde{\chi}_1^0) = 0.40$ 

## **Squark decays**



# Scen I

Other Charm-top associated production – interesting signature



## Scen I



# Scenii – SPSia'

| $M^2_{Q\alpha\beta}$ | $\beta = 1$ | $\beta = 2$ | $\beta = 3$ |  |  |
|----------------------|-------------|-------------|-------------|--|--|
| $\alpha = 1$         | $(526)^2$   | 0           | 0           |  |  |
| $\alpha = 2$         | 0           | $(526)^2$   | 0           |  |  |
| $\alpha = 3$         | 0           | 0           | $(471)^2$   |  |  |

| $M_1$     | $M_2$     | $M_3$     | $\mu$     | aneta     | $m_{A^0}$ |
|-----------|-----------|-----------|-----------|-----------|-----------|
| 103       | 193       | 572       | 398       | 10        | 373       |
| $T_{U11}$ | $T_{U22}$ | $T_{U33}$ | $T_{D11}$ | $T_{D22}$ | $T_{D33}$ |
| -0.007    | -2.68     | -488      | -0.19     | -3.26     | -128      |

| $\boxed{M_{D\alpha\beta}^2}$ | $\beta = 1$ | $\beta = 2$ | $\beta = 3$ |  |  |
|------------------------------|-------------|-------------|-------------|--|--|
| $\alpha = 1$                 | $(505)^2$   | 0           | 0           |  |  |
| $\alpha = 2$                 | 0           | $(505)^2$   | 0           |  |  |
| $\alpha = 3$                 | 0           | 0           | $(501)^2$   |  |  |

| $\boxed{M_{U\alpha\beta}^2}$ | $\beta = 1$ | $\beta = 2$ | $\beta = 3$ |  |  |
|------------------------------|-------------|-------------|-------------|--|--|
| $\alpha = 1$                 | $(508)^2$   | 0           | 0           |  |  |
| $\alpha = 2$                 | 0           | $(508)^2$   | $(280)^2$   |  |  |
| $\alpha = 3$                 | 0           | $(280)^2$   | $(387)^2$   |  |  |

(all numbers in GeV,

except  $tan\beta$ )

| $\tilde{u}_1$ | $\tilde{u}_2$ | $	ilde{u}_3$ | $\tilde{u}_4$ | $\tilde{u}_5$ | $\tilde{u}_6$ | $\tilde{d}_1$ | $\tilde{d}_2$ | $\widetilde{d}_3$ | $\widetilde{d}_4$ | $\widetilde{d}_5$ | $\tilde{d}_6$ |
|---------------|---------------|--------------|---------------|---------------|---------------|---------------|---------------|-------------------|-------------------|-------------------|---------------|
| 332           | 541           | 548          | 565           | 565           | 612           | 506           | 547           | 547               | 547               | 571               | 571           |

| $\tilde{g}$ | $\tilde{\chi}_1^0$ | $	ilde{\chi}_2^0$ | $	ilde{\chi}^0_3$ | $	ilde{\chi}_4^0$ | $\tilde{\chi}_1^{\pm}$ | $\tilde{\chi}_2^{\pm}$ | $h^0$ | $H^0$ | $A^0$ | $H^{\pm}$ |
|-------------|--------------------|-------------------|-------------------|-------------------|------------------------|------------------------|-------|-------|-------|-----------|
| 608         | 98                 | 184               | 402               | 415               | 184                    | 417                    | 112   | 426   | 426   | 434       |

September 2010

 $\delta_{23}^{uRR} = \frac{(280)^2}{508 \times 387} = 0.4$ 

# Scenll

| $ R^{	ilde{u}}_{ilpha} $ | $\tilde{u}_L$ | $	ilde{c}_L$ | ${	ilde t}_L$ | $\tilde{u}_R$ | $	ilde{c}_R$ | $	ilde{t}_R$ |
|--------------------------|---------------|--------------|---------------|---------------|--------------|--------------|
| $\tilde{u}_1$            | 0.010         | 0.032        | 0.457         | 0             | 0.369        | 0.809        |
| $\tilde{u}_2$            | 0.014         | 0.015        | 0.691         | 0             | 0.720        | 0.062        |
| $	ilde{u}_3$             | 0             | 0            | 0             | 1.0           | 0            | 0            |
| $	ilde{u}_4$             | 0.896         | 0.444        | 0.011         | 0             | 0.003        | 0.001        |
| $\tilde{u}_5$            | 0.443         | 0.893        | 0.036         | 0             | 0.062        | 0.008        |
| $	ilde{u}_6$             | 0.021         | 0.058        | 0.559         | 0             | 0.585        | 0.585        |

 $\bigcirc$  We get for  $\tilde{u}_1$  and  $\tilde{u}_2$ :



 $B(\tilde{u}_1 \to c\tilde{\chi}_1^0) = 0.10, \ B(\tilde{u}_1 \to t\tilde{\chi}_1^0) = 0.23$  $B(\tilde{u}_2 \to c\tilde{\chi}_1^0) = 0.15, \ B(\tilde{u}_2 \to t\tilde{\chi}_1^0) = 0.004$ 

## Scen II



Again, expect up to  $O(10^4)$  events for "jet + top +  $E_T^{miss}$ " production at 100 fb<sup>-1</sup> integrated luminosity

# **Signal and Background**

$$\tilde{u}_{1,2}\bar{\tilde{u}}_{1,2} \to c\bar{t} (t\bar{c}) \,\tilde{\chi}_1^0 \tilde{\chi}_1^0 \quad ? \quad pp \to \tilde{u}_{1,2}\bar{\tilde{u}}_{1,2} \to t\bar{t} \,\tilde{\chi}_1^0 \tilde{\chi}_1^0$$

Main SUSY background

Identification of top-quark crucial:  $t \to b W^+ \to b q \bar{q}$ 

Efficient charm-tagging useful, otherwise search for  $pp \to \tilde{u}_{1,2}\bar{\tilde{u}}_{1,2} \to q\bar{t}(t\bar{q})\,\tilde{\chi}_1^0\tilde{\chi}_1^0$ 

$$pp \to \tilde{u}_{1,2}\bar{\tilde{u}}_{1,2} \to c\bar{t} (t\bar{c}) \tilde{\chi}_1^0 \tilde{\chi}_1^0$$

$$pp \to \tilde{g}\tilde{\chi}_1^0 \to c\bar{t} (t\bar{c}) \,\tilde{\chi}_1^0 \tilde{\chi}_1^0$$

Xsection very small in our scenarios

SM background: 
$$pp \to t\bar{t}Z^0X \to t\bar{t}\nu\bar{\nu}X$$
  
 $pp \to W^{+*}Z^0X \to t\bar{b}\nu\bar{\nu}X$ 

However, these Xsections are very small because they involve weak processes.

### Conclusions:

- @ effects of squark mixing of 2<sup>nd</sup> and 3<sup>rd</sup> generation  $\tilde{c}_{L/R}$   $\tilde{t}_{L/R}$  on squark production and decays at LHC in the MSSM studied
- @ branching ratios  ${
  m B}({ ilde u}_{1,2}
  ightarrow c/t{ ilde \chi}_1^0)$  can be up to 50% simultaneously
- @ QFV signal events ' $pp \rightarrow c\bar{t} \ (t\bar{c}) + E_T^{mis}$  + beam-jets' with a significant rate at LHC with rather low background
- Next step: detailed Monte Carlo study

### Outlook:

- Study of further squark and gluino decays ...
- Inclusion of higher order corrections in production and decays ...
- Q Study of lepton flavour violating processes and signatures ...