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Introduction - Recent Results

Are there gravity corrections to the beta function of the Yang-Mills
(YM) coupling constant?

I perturbative calculations by several authors:

[Robinson and Wilczek (2006), Pietrykowski (2007), Toms (2007),
Ebert, Plefka, Rodigast (2008)]

I only the former find a non-trivial result
I problematic either due to dimensional or cutoff

regularization
I Tang and Wu (“loop regularization”) find a non-zero

correction [Tang and Wu (2008)]
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Introduction - The ERG Approach

We analyzed the running of the gauge coupling constant in the
Asymptotic Safety scenario for quantum gravity.

Main tools:
I FRGE for the effective average action
I the background field method

Advantages:
I sensitive to quadratic divergences
I background field method preserves gauge invariance

Nevertheless:
I resulting beta-function may still be gauge fixing dependent
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Truncation of the Effective Average Action

The Truncation

Γk = ΓEH
k + ΓYM

k + Γgf
k + Sgh = Γ̆k + Sgh

with

ΓEH
k [g] = ZN (k)

16πĜ

∫
d4x √g

(
−R(g) + 2λ̄(k)

)
ΓYM

k [g,A] = ZF (k)
4 ĝ2

YM

∫
d4x √g gµρgνσFa

µνFa
ρσ

Γgf
k [h̄, ā; ḡ, Ā] =

∫
d4x

√
ḡ
(ZN (k)

2αD
ḡµνFµFν + ZF (k)

2αYM
GaGa

)
Motivation:

I ΓEH
k contains the all essential features of gravity close to the

non-Gaussian fixed point (NGFP)
I in pure YM theory ΓYM

k approximates the perturbative 2-loop
result within a few percent
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Truncation of the Effective Average Action

Gauge Fixing and Ghost Action

Gauge conditions:

Fµ(h̄; ḡ) = 1√
16πĜ

(
δβµ ḡαγD̄γ −

1
2 ḡαβD̄µ

)
h̄αβ

Ga(ā; ḡ, Ā) = ĝ−1
YM ḡµνD̄µāa

ν

Sgh is then obtained by the Faddeev-Popov method

Further simplifications:
I neglect renormalization effects in the ghost sector
→ fluctuations in Sgh are set to zero

I gauge parameters chosen to αD = 1 = αYM
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Functional Renormalization Group Equation

Functional Renormalization Group Equation

∂tΓk = 1
2STr

[(
Γ(2)

k +Rk
(
∆
))−1

∂tRk
(
∆
)]

Inserting the truncation we have

∂tΓk = 1
2 Tr

 ∂tRk
(
∆̆
)

Γ̆(2)
k +Rk

(
∆̆
)
− Tr

 ∂tRgh
k
(
∆gh

)
S (2)

gh +Rgh
k
(
∆gh

)


where

Rk(x) = Zkk2R(0)(x/k2), Rgh
k (x) = Zgh

k k2R(0)(x/k2)

I shape function R(0)(y) with R(0)(0) = 1 and lim
y→∞

R(0)(y) = 0

I Zk and Zgh
k constant matrices in field space, chosen such that

modes of Γ(2)
k → Γ(2)

k +Rk get shifted ζkp2 → ζk(p2+k2R(0))
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Functional Renormalization Group Equation

Spectrally Adjusted Cutoff Operator

As cutoff operator we choose

∆̆ = Z−1
k Γ̆(2)

k ∆gh = Z−1
gh S (2)

gh

This has been called “spectrally adjusted” or “type III” cutoff in
the literature.

I conceptually not as clear as the covariant Laplacian �
↔ additional terms on RHS due ∂t acting on ∆̆

I admits a simple spectral representation of the RHS →
simplifies evaluation of the traces (no operator inversion
necessary)
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Yang-Mills Beta Function

Calculation and RG Improvement
Calculational steps:

I compute the Hessian Γ(2)
k and S (2)

gh
I equate background and full classical fields

(ḡµν = gµν , Āa
µ = Aa

µ)
I expand RHS in Aa

µ to second order to extract the (Fa
µν)2-term

(we may set gµν = δµν)
I all terms combine to an F2-contribution due to the built-in

gauge invariance
Different degrees of RG improvement:

I ∂t acts only on explicit k-dependence ↔ 1-loop calculation
I ∂t acts in addition on Zk-factors
I ∂t acts also on Γ̆(2)

k in ∆̆
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Yang-Mills Beta Function

1-Loop Result
Switching to dimensionless couplings

g2
YM(k) ≡ ĝ2

YM
ZF (k) , g(k) ≡ k2 Ĝ

ZN (k) , λ(k) ≡ k−2λ̄(k)

we obtain the 1-loop result

∂tg2
YM = −6 Φ1

1(0)
π

g g2
YM −

11 N
24π2 g4

YM

[Daum, U.H., Reuter (2009)]

where
Φ1

1(w) =
∫ ∞

0
dz R(0)(z)− zR(0)′(z)

z + R(0)(z) + w
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Discussion of the Result

Classical Regime
Newton’s constant

G(k) ≈ G0 = const, g(k) = G0k2

For an Abelian field (N = 0) we obtain

∂tg2
YM = −6 Φ1

1(0)
π

G0 k2 g2
YM

with solution

g2
YM(k) = g2

YM(0) · exp
(
−ωYM(k/mPl)2

)
= g2

YM(0) ·
[
1− ωYM(k/mPl)2 + O(k4/m4

Pl)
]

where mPl = G−1/2
0 and ωYM = 3Φ1

1(0)/π.
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Discussion of the Result

Asymptotic Safety
Free Maxwell field does not destroy NGFP of the EH truncation.
Therefore in the UV

g(k)→ g∗ =⇒ G(k) = g∗/k2 → 0 as k →∞

which implies

∂tg2
YM = −6 Φ1

1(0)
π

g∗ g2
YM

with solution

g2
YM(k) ∝ k−ΘYM , ΘYM = 6 Φ1

1(0)
π

g∗

I total system has a NGFP with (g∗YM = 0, g∗ > 0, λ∗ > 0)
I gravity speeds up approach of asymptotic freedom in the YM

sector (power law instead of logarithmic)
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Summary

I we obtain a gravitational correction to the Yang-Mills beta
function in a setting which both preserves gauge invariance
and retains quadratic divergences

I the coefficient of the correction is scheme and gauge fixing
dependent, but gYM(k) is not an observable quantity

I the form of the correction corresponds to the result of [Tang
and Wu (2008)]

I the result is consistent with the Asymptotic Safety scenario
for QEG, with vanishing gauge coupling at the NGFP

I RG improvements do not change the picture substantially
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