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G(x1 , x2 , x3 , x4)= ‹ 0  | T [φ(x1) φ(x2) φ(x3) φ(x4)] |0 ›c

L(φ)= 1/2 (∂µ φ (x) )2- 1/2 m0
2 φ2 (x) - 1/4! λ0 φ4 (x) 

S(φ)= ∫  d4x L(φ) 

The basic quantities of field
theory: the Green Functions
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S(p1+ p2 → p3 + p4 )
S-matrix element 
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At lowest order in perturbation theory:
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It can be  shown that the Green Functions can be written in terms
of Functional Integrals over classical fields
G(x1 , x2 , x3 , x4)= ‹ φ(x1) φ(x2) φ(x3) φ(x4) ›≡

where Z = ∫   [d φ]  ei S(φ)

The Functional Integral

Z -1 ∫  [d φ]  φ(x1) φ(x2) φ(x3) φ(x4)  ei S(φ)

In perturbation theory 
ei S(φ)= ei So(φ)+ i Si(φ) ~  ei So(φ) (1+iSi(φ)- S2

i(φ)/2 + …) 

Si(φ) ~ O(λ)



‹ xN › = Z -1 ∫  dx  xN  e-S(x)

where   Z(λ) = ∫  dx  e-S(x)     and      S(x)= x2+ λ x4

Z (λ) = ∑n (- λ)n Γ(1/2+2 n)/n! ≈ ∑n (-λ)n(2n)!/n!

• For small values of   λ  the series  expansion  is accurate
• The series is however asymptotic (although Borel
summable) with zero radius of convergence
• Starting from a certain term, which depends on the value of
λ, an  increase of the number of terms can only worsen  the
accuracy

Field theories of interest for physics are not even
Borel summable, a nonperturbative method to
evaluate the FUNCTIONAL INTEGRAL is thus
needed



Z -1 ∫  [d φ]  φ(x1) φ(x2) φ(x3) φ(x4)  ei S(φ)

This integral is only a formal definition because of the infrared and
ultraviolet divergences. These problems can be cured by introducing an
infrared and an ultraviolet  cutoff.

1)  We introduce an ultraviolet cutoff by defining the fields on a
(hypercubic) four dimensional lattice      φ(x) -> φ(a n)
where n=( nx , ny , nz , nt )   and a is the lattice spacing;
       ∂µ φ (x)  -> ∇µ φ (x) = (φ(x+a nµ) - φ(x)) / a   ;
The momentum p is cutoff at the first Brioullin zone,  |p|   ≤    π / a
The cutoff can be in conflict with important symmetries of the theory,
as for example Lorentz invariance or chiral invariance
This problem is common to all regularizations like for example Pauli-
Villars, dimensional regularization etc.



2)  We introduce an infrared  cutoff by working in a finite volume, that is
 ni = 1, 2, … , L        and    pi a = 2π ki / L   with  ki = 0, 1, … , L - 1
At finite volume the Green functions are subject to finite size effects

The physical theory is obtained in the limit
 a → 0       renormalizability
 L → ∞      thermodinamic limit

Non physical quantities like Green Functions may develop divergencies
in this limits; S matrix elements are however finite.
Z φ (a) = 1 + λ log(p a ) + ...

= g2  log(p2 a2)

p p p



Z -1 ∫  [d φ]  φ(x1) φ(x2) φ(x3) φ(x4)  ei S(φ)

On a finite volume (L) and with a finite lattice
spacing (a ) this is now an integral on  L4  real
variables which can be performed with
Important sampling techniques

Z = ∑{σ=±1} eJ ij σ i σ j    Ising Model

2N = 2L3  ≈  10301   for L = 10  !!!



Wick Rotation
Z -1 ∫  [d φ]  φ(x1) φ(x2) φ(x3) φ(x4)  ei S(φ)

->  Z -1 ∫  [d φ]  φ(x1) φ(x2) φ(x3) φ(x4)  e - S(φ)

This is like a statistical Boltzmann system with
                                β H = S
Several important sampling methods can be
used, for example the Metropolis technique,
to extract the fields with weight   e- S(φ)

 < φ φ φ φ > = Z -1 ∑{φ (x)}n     φn(x1)  φn(x2)  φn(x3)  φn(x4)

                     Z = ∑{φ (x)}n 1 = N

t -> i tE



 QCD



The COLOUR

SYMMETRIC IN CONTRAST WITH FERMI STATISTICS

LET US ASSUME:                 

1)  QUARK MODEL 

flavour
spin

colourAlso:

Then  antisymmetric

only colour singlets exist as asymptotic states



2)

The COLOUR

quarks,
summed 
over colour

number of quarks in the loop

assuming Qu = 2/3 and Qd = - 1/3

measured from

Nc  =3.06 ± 0.10



3)  gauge anomaly

The COLOUR

Aµ ,Vµ
coupled to
gauge
bosons

Renormalizability requires

Vν

Vρ

Aµ



4)

The COLOUR

Aµ ,Vµ
coupled to
gauge
bosons

Vν

Vρ

octect mesons

In the quark model

Aµ



K0 K+

K- K0

π- π0
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In the chiral limit

u

d

u,d,s

gluonsAµ Aµ Aµ

Aµ

anomalyabsent in the case of π,K and η8



THE QCD LAGRANGIAN

Let us start with 
a simple example:

This  Lagrangian is invariant
under the global  symmetry
transformation where

are the generators of the tranformation

 in the representation to which φ belongs

For a global transformation

This is not true for a local transformation α = α(x)



THE QCD LAGRANGIAN

We look for a ``covariant” derivative such that 

The trasformation rules are

By defining

( )

By writing
For an infinitesimal
transf. we have

Invariant under
a gauge transf.



THE QCD LAGRANGIAN



Gluons and quarks
(vector fields and spinors)

The QCD Lagrangian :
L(φ)  =   -1/4   GA

µνGA
µν                        GLUONS

                               + ∑f=flavour qf (i γµ Dµ - mf) qf

       QUARKS ( & GLUONS)

GA
µν = ∂µGA

ν  - ∂ ν GA
µ  - g0  fABC GB

µ GC
ν 

qf  ≡ qf
a
α(x)    γµ ≡ (γµ )αβ     Dµ ≡  ∂µ I + i g0 tA 

ab GA
µ 



ab

A, µ

SU(2)         tA 
ab =   1/2    σA

ab 
SU(3)         tA 

ab =   1/2    λA
ab

[tA , tB] =  i fABC tC

B, µ, q

A, λ, pC, ν, r

Feynman Rules

ghost-gluon

quark-gluon

4-gluons

3-gluons



Re+e-(S)

hadrons



The COLOUR



Re+e-(S)

The data clearly
support the
existence of colour



Large Momenta and Energies

The QCD Lagrangian depends only on the quark masses and on the
dimensionless couplig g0

At large scales                  the theory can be studied as in the massless

 case -> Any dimensionless quantity as

which depends only on             is naively expected to become a constant

at the quantum level
this expectation is 
wrong



Asymptotic Freedom from Re+e-(S)

Let us compute Re+e- in perturbation theory:

hadrons



Asymptotic Freedom from Re+e-(S)

+

2

+

+

dσ =

dΩ2



Asymptotic Freedom from Re+e-(S)

+

2

+

+
The sum of the diagrams in the 
dashed boxes is ultraviolet
finite because of the electromagnetic
 current conservation



Asymptotic Freedom from Re+e-(S)

2

+ dΩ3

The sum of the virtual and real emission
diagrams  is infrared finite because it
corresponds to the physical inclusive
cross-section

VIRTUAL + REAL
CONTRIBUTIONS



Asymptotic Freedom from Re+e-(S)

… +

2

+

+
The sum of these diagrams is ultraviolet
divergent and renormalizes the
strong coupling constant, similarly for 
the real emission diagrams



This is true also for 
the vertices of emission
Of real gluons in



Asymptotic Freedom from Re+e-(S)
WE HAVE TO INTRODUCE A CUTOFF OVER THE MOMENTA IN THE
 LOOPS IN ORDER TO REGULARIZE THE ULTRAVIOLET DIVERGENCES

WE THEN DEFINE THE ``RENORMALIZED COUPLING”  αS   AT THE SCALE S

We choose αS(S) in such 
a way that at the scale S0

We cannot predict Re+e-(S0), which is used to define αS(S0), as much as
in QED αem  is fixed from g-2 or Thomson scattering 



Asymptotic Freedom from Re+e-(S)
With the previous definition of  αS(S0)

is also independent of the ultraviolet cutoff 

is only expressed in terms of measurable
 quantities 

or: where



Asymptotic Freedom from Re+e-(S)

is a non-perturbative constant, independent of S, 
like the  proton mass (it depends however on the 
renormalization scheme and on the order computed 
in perturbation theory)



Renormalization Group Equations

IN GENERAL 

NOTE THAT  β0 > 0 UNLIKE IN QED  (also β1 > 0 ) 



depends on the scale only because of 

Renormalization Group Equations

scheme dependence



SMALL SCALES =
LARGE NON 
PERTURBATIVE
EFFECTS
(MASS TERMS,
HIGHER TWISTS,
ETC.)

LARGE
SCALES=
SMALL
SENSITIVITY
TO ΛQCD



Bethke hep-ex/0606035



The QCD Beta Function (B. Webber)












