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The basic quantities of field
theory: the Green Functions
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The Functional Integral

It can be shown that the Green Functions can be written in terms
of Functional Integrals over classical fields

G(x )X ,X3,Xg)= < O(Xy) O(X;) P(X3) P(x,) >=

Z] [d¢] (X)) P(X,) P(X3) P(X4) e! 5@

where Z = [ [d ¢] elS@

In perturbation theory

el SO)= i SO+ 5(0) ~ i Su® (145 ()- SE(O)2 + ...)

]

Si(@) ~ O(\)




«xN>=Z7"1[dx xN e3®
where Z(MN) =/ dx e3® and  S(x)=x*+ A x*
ZN) =2 (-M"T242n)/n! =3 (-\)"(2n)!/n!

» For small values of A the series expansion is accurate

* The series 1s however asymptotic (although Borel
summable) with zero radius of convergence
e Starting from a certain term, which depends on the value of

A\, an increase of the number of terms can only worsen the

accuracy

Field theories of interest for physics are not even
Borel summable, a nonperturbative method to
evaluate the FUNCTIONAL INTEGRAL 1is thus

needed




Z] [d¢] (X)) P(X,) P(X3) P(X4) e! 5@

This integral is only a formal definition because of the infrared and
ultraviolet divergences. These problems can be cured by introducing an
infrared and an ultraviolet cutoft.

e
1) We introduce an ultraviolet cutoftf by defining the fields on a
(hypercubic) four dimensional lattice  ¢(X) -> ¢p(a n)
where n=( n, , n,,n,, n,) and a 1s the lattice spacing;

0,0 (0 >V, ¢ ()= (@(x+an,) - o)/ a ;
The momentum p is cutoff at the first Brioullin zone, Ipl = m/a
The cutoff can be in conflict with important symmetries of the theory,
as for example Lorentz invariance or chiral invariance
This problem 1s common to all regularizations like for example Pauli-

Villars, dimensional regularization etc.




2) We introduce an infrared cutoff by working in a finite volume, that 1s
n=1,2,... L and pa=2rk/L with k;=0,1,... L-1

At finite Volume the Green functions are subject to ﬁnlte size effects

The physical theory is obtained in the limit
a — 0  renormalizability
L—=0  thermodinamic limit

Non physical quantities like Green Functions may develop divergencies
1n this limits; S matrix elements are however finite.

Zq)(a):lnt?»[og(pa)nt...

= g* log(p* a?)



Z1 [ [d¢] (X)) O(X,) O(X3) O(X,4) e! 5@

On a finite volume (L) and with a finite lattice
spacing (a_ ) this is now an integral on L* real

variables which can be performed with
Important sampling techniques

!

7= (G==1) eJ ijOi0j Ising Model

IN 213 ~ 10301 for L =10 !!!



Wick Rotation t->1tg

Z [ [d o] d(x)) d(xy) P(x3) Pp(x,) €@

> 77 [ [d o] o(x)) 9(xy) d(x3) P(x,) €@

This 1s like a statistical Boltzmann system with
BH=S

Several important sampling methods can be

used, for example the Metropolis technique,

to extract the fields with weight e 5(¢)

<Ooop>=7" 2t (X)) 04(X0) 9,(X3) ¢,(Xy)

L=240p, =N






The COLOUR

1) QUARK MODEL AT T =3/2) = [utid u®)

SYMMETRIC IN CONTRAST WITH FERMI STATISTICS
Ol <:II spin ‘
flavour > L{l

Also: d;',si, ... ‘ colour \

Then —» |A++j‘]z - 3/2> — Lgijk|u'+uj+uk+> antisymmetric

Ve
only colour singlets exist as asymptotic states

. O
=3 Zq,q,._ — \/681../1\'(/1611611\'

LET US ASSUME:




The COLOUR

0
2) T —YY
AVaVAUANY Y
o quarks,
T <4 summed
over colour
A(n” — 2y) « number of quarks in the loop N Y

|
assuming Q, = 2/3 and Q4 =-1/3

N, =3.06 + 0.10

3 > 2
m: a\ < [ N.
D —2y) = 2% (<) (_>
32nfs \m 3 measured from

()2 l /
h— '~ 132Me + 4
he 137, I 132MeV = UV




The COLOUR

V‘V
3) gauge anomaly
ALV,
coupled to
gauge
Au bosons
Renormalizability requires v,

> 0t > 0,=0

leptons quarks

(Qe-+ Ov.)+N: X (Qu +  Qa)
(=1 + 0)+3 x(2/3+(-=1/3))=0

(Qu + Oy, )+N. x (Qc+,0,) =0
(O + Oy, )+N.x(Q;+,0p) =0



The COLOUR

V'V
/ -
n mas.s AV
u'tu
coupled to
octect mesons gauge
. S Au bosons
M =¥ Gk d,
; Vp

g =u,gp=d.q3 =35,
i =colour, (f,g)= flavour.
);';g, = Gell — Mann matrices

{ j’\ ,’ _1' [' ” 1_1175”1 (11\;’5(1[
' =dysu T =iuysd W =

V2

In the quark model My < \/gmn



¢ Wysu+dvysd —25yss

Y 1 ' = Y
N uysu + J“(_sd + 858
+1 | % _ \/3
']/‘I|
0 | _ a0
T o
~.
-1 - K- |_<O
| | | | R
-1 -1/2 +1/2



AN = iy, ysu+ dy,ysd + 5,58

’
/ )‘- ~ /
AT 8 Y N M
0 A}l = 3 GwG" +2my P

PV = itysu+dysd + 5yss G = €"P9G,,

In the chiral limit  m; — 0

A A, A

u d u u QIUONS E

absent in the case of 7t,K and n8 /

anomaly




THE QCD LAGRANGIAN

Let us start with it n :
a simple example: L=3d¢ db—m'¢p— V(o')

This Lagrangian is invariant
under the global symmetry 4 ,
transformation where A A=1,. Ng —1

o are the generators of the tranformation
[}'.A . }\.B] — l./.AB( }uc
| 4B in the representation to which ¢ belongs
Tr I:}&A }\.B] = ?
¢'(x) = e™*9(x) = U(a)p(x), ¢'(x) = ¢' (U ()

For a global transformation 6"'4)’ =U(a) 3¢

This is not true for a local transformation o = ou(x)




THE QCD LAGRANGIAN

We look for a “*covariant” derivative such that  [D*¢] = U (o) D"
(D,=0d,—igG, )

The trasformation rules are

l
» G,=U(a)G,U'(a) —=9,U(a) U'(ax)
By writing g
For an infinitesimal

| |
Gll - 2 GA . transf. we have G;} = G;} T gaA 1A% BGB

By defining ~ ! s GA ). GA+g0fABCGBGC
Hov

uv

{ Invariant under 1 _N
G,.N — U ((I)G;NU ((1) a gauge transf. _iT" G G




THE QCD LAGRANGIAN

1 T
L=—Tr([Gn G+ ;w(ﬁ ~my)ay

+0Tr[GnG"]



Gluons and quarks

(vector fields and spinors)

The QCD Lagrangian. :
Lp) = -1/4 G, G, <4mmm GLUONS

r + 2fzﬂavour Qf (1 Yu Du - mf) ¢

QUARKS ( & GLUONS)

— C
G*,,=8,G*, -9 ,GA, - g, fABCGB, GC,

Vv

Jf = qfa(x(X) Yu, = (Yu )(1[3 DM = auI +1 20 tA ab GAM



Feynman Rules GA, = 0,61 — 0,61+ g0 A GBGE

uv

A, u B,u,q

3-gluons

. A
—180 tab Y;l

C,v,r A, N\, D

b a
quark-gluon

SN SUQR) = 12 oty
’ \
a \OISUB) A= 12 My

4-gluons ghost-gluon| | [t*,tP]= 1fABCC

g0 S [(P—a@)v&ut+ (@— )8+ (r—p)ugn]




Rete ()
e e —qq
P
hadrons
\

o(e"e” — hadrons)

Rt o-(S) =
&= otere — w0




The COLOUR

5 1o 29 50 190 200 S»  (9ov

S (GeV)




The data clearly

support the
existence of colour

1 & ﬁu*
* Nw' .mpt 18)  yas)
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Large Momenta and Energies

The QCD Lagrangian depends only on the quark masses and on the
dimensionless couplig g

At large scales /5, ,, the theory can be studied as in the massless

_case -> Any dimensionless quantity as  p (s)
e'e \*

which depends only on /s is naively expected to become a constant

/

at the quantum level
5 my this expectation is
Rete-=No Z Oy +0 (ﬁ) wrong




Asymptotic Freedom from R_,_ (S)

e+e—(

Let us compute Re+e- in perturbation theory: Lo :
e’ e —qq

hadrons

_+_ \

O(a?)

Ls‘

S
. .. 475(1", ,
o(e" e — hadrons) = =N, E Q5

. o(e"e — hadrons)
R,:.-(S)=
€' ¢ ( ) ()’((" e —*[l EQ,‘
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Asymptotic Freedom tfrom R, _ (S)

& q

+ e e —qgq

The sum of the diagrams in the
dashed boxes is ultraviolet

finite because of the electromagnetic
current conservation




Asymptotic Freedom tfrom R, _ (S)

The sum of the virtual and real emission
diagrams is infrared finite because it |
corresponds to the physical inclusive e’ e —qqg

cross-section
O(as) 2
e e
L, T\ dQ,
et 7 e’ 7]

, ) Ol
i (S) =N. S 02 (1 s ) VIRTUAL + REAL
Rere-(5) EL-’ T CONTRIBUTIONS



Asymptotic Freedom tfrom R, _ (S)

(?((xf)

ete” — g

The sum of these diagrams is ultraviolet
divergent and renormalizes the

strong coupling constant, similarly for
the real emission diagrams




This is true also for
the vertices of emission
Of real gluons in

" +e —qg+0+9




Asymptotic Freedom tfrom R, _ (S)

WE HAVE TO INTRODUCE A CUTOFF OVER THE MOMENTA IN THE
LOOPS IN ORDER TO REGULARIZE THE ULTRAVIOLET DIVERGENCES

(l“ o S (on -
R, o (S) =N, )[ -——;( )1 : o(—)
] 2(. o) In ( e ) + .

uv

WE THEN DEFINE THE ~“RENORMALIZED COUPLING” O AT THE SCALE S
o(S) o o\ 2 S a\
AL —bC—)l —N,
g T x) ( 2 ZQJ

We choose O,4(S) in such
a way that at the scale S,

('l‘\ (5‘“ ) ]

T

R;Y, (S0) = Re* - (So) = Ne Y, O] {l +
4

We cannot predict Re+e-(Sy), which is used to define O4(S,), as much as
in QED Q.,,, is fixed from g-2 or Thomson scattering




Asymptotic Freedom from R_,_ (S)

e+e-(

With the previous definition of 0(S,)

, , o (So) a(S)\" /S
Rero-(S) =N. ) O7 {l +— - b( — | In| — | +...
' Z / | | So

- R. . (S) is also independent of the ultraviolet cutoff A,,

- R. . (S) is only expressed in ferms of measurable
quantities

S, So, 0s(So). RZ”Z' (S(’)

- where
) . oL (S) 4
Re+e-(S) = Ne 2 Oy [l i ] at(S)

JU Ol ( So) os(So) : S
b ‘ In| =
T TC | So




Asymptotic Freedom from R_,_ (S)

os(S)  as(So) ats(So) ) S
- =20 - In  —
U TU ] 8 S()

as(So) /T - l
I+ b(as(So)/mt)In(S/Sp))  bIn(S/A

.. g_)( 'D ) )
when ln( : ) >
.Sl' )

e+e-(

AzQCD — Se—ﬂf/b(lg(S)

IS a non-perturbative constant, independent of S,
like the proton mass (it depends however on the

renormalization scheme and on the order computed
In perturbation theory)




Renormalization Group Equations

1 doy(S) .

a5(5) = > , — —Boo(S
¥ Boln (S/A%cp) dInS Poct;(5)
IN GENERAL
lotg(S | . |
;Lm( s) =B (0s(S)) = —Poos () —Pra(S) + ...

NOTE THAT B > 0 UNLIKE IN QED (also ff; > 0)

“ﬂ{:}vxw@w

/

1 /11 2
ﬁ() - 4—31: <?N( - gll/‘)



Renormalization Group Equations

R. . (S) depends on the scale only because of «

Re o (8)=N.3 0 [l P e (““'(S))- Wo) (““'(S))' + ]
7 ’ JU T T

[(Z — h's] =T"[Z — W's| Rocp

— I[Z — I's] [1 RCIY (“"(S))- 12.8 (“-"(5)) | ]
] / ] / ] /

Rocp ~ 1.04 oI ~70MeV

scheme dependence ——y 106y ¢ (S)+k202(S) + ...




0.5
\\\ (— Theory | o S E\
O'S(Q) \ Dam\\\h_. S Z F
| DcL:p lnc‘lugic. Scattering &
P e EAM B
\ Heavy Quarkonia " B LARGE
SMALL SCALES = W s A% aMy) | SCALES=
LARGE NON o3l [\ ocp |25 MeV ----o0.210] | SMALL
PERTURBATIVE S\ O(af) | 21 MeV— 0IB3 | SENSTTIVITY
EFFECTS \ \\\ _ 181 MeV — —0.1156 TO AQCD
(MASS TERMS, N
HIGHER TWISTS, | o2, /
ETC.) o
0.1}




DIS [pol. stret. fewn.]

DIS [Bj-SR]

DIS [GLS-SR]
t-decays |LEP]
xF3 [v -DIS]

F, [e-. n-DIS]
DIS [ep —> jets]
DIS & pp —> jets
QQ + lattice QCD
Y decays

*e F)

c C 2

+ .
cc [“hud]
ete [jets & shapes 14 GeV]
ete [jets & shapes 22 GeV]
ete [jets & shapes 35 GeV]
A+ o ;
e [.“lmd]
ete [jets & shapes 44 GeV)
ete [jets & shapes 58 GeV]

pp -->bb X
pp.pp >y X
o(pp --> jets)
['(Z"--> had.) [LEP]
ete [scaling. viol.]
et e [4-jet rate]

jets & shapes 91.2 GeV
jets & shapes 133 GeV
jets & shapes 161 GeV
jets & shapes 172 GeV
jets & shapes 183 GeV
jets & shapes 189 GeV
jets & shapes 195 GeV
jets & shapes 201 GeV
jets & shapes 206 GeV

0.10

0.12

0.14
as(Mz)

as(M.) = 0.1194+0.003

as(My) = 0.1189 4 0.0010
Bethke hep-ex/0606035




® Running of of the QCD coupling e« is determined by the 3 function, which has the
expansion

Blas) = —bag(l + bas) + O(as)
(11C, — 2ny) " (17C3 — 5Cany — 3CEny)

127w ' 27(11C 4 — 2ny) ’

where ny is number of "active” light flavours. Terms up to ﬁ}{&g) are known.

® Roughly speaking, quark loop “vacuum polarisation” diagram (a) contributes negative n
term in b, while gluon loop (b) gives positive C'4 contribution, which makes 3 function

negative overall.
a) b)

1
Boep(a) = Eaz + ...

Thus b coefficients in QED and QCD have opposite signs.

® QED /3 function is



® From previous section,

deavs( Q)

T

= —ba2(Q)[1+ Vas(Q)] + O(ad).

Neglecting b' and higher coefficients gives

as(p)
1 4+ as(p)br’

as(Q) =

® As () becomes large, as((Q) decreases to zero: this is asymptotic freedom. Notice that
sign of b is crucial. In QED, b <C 0 and coupling increases at large ).
Including next coefficient b’ gives implicit equation for cvs(Q):




1954
1965

1969

1971

History of Asymptotic Freedom

Yang & Mills study vector field theory with non-Abelian gauge invariance.

Vanyashin & Terentyev compute vacuum polarization due to a massive charged vector field.
In our notation, they found
1 21 1
127 2 2

The % comes from longitudinal polarization states (absent for massless gluons)

% They concluded that this result ". . . seems extremely undesirable”

Khriplovich correctly computes the one-loop [3-function in SU(2) Yang-Mills theory using
the Coulomb (V - A = 0) gauge

Ca .
b= —(12—-1=11)
12
In Coulomb gauge the anti-screening (12) is due to an instantaneous Coulomb interaction
% He did not make a connection with strong interactions

't Hooft computes the one-loop [3-function for SU(3) gauge theory but does not publish it.

% He wrote it on the blackboard at a conference

% His supervisor (Veltman) told him it wasn't interesting

“ 't Hooft & Veltman received the 1999 MNobel Prize for proving the renormalizability of QCD
(and the whole Standard Model).




1972

1973

1974
1980
1997

Fritzsch & Gell-Mann propose that the strong interaction is an SU(3) gauge theory, later
named QQCD by Gell-Mann

Gross & Wilczek, and independently Politzer, compute and publish the 1-loop @-function
for QCD:

1
b= —(11C"4 — 2ny
127 ':” 4 2
—2004 Nobel Prize (now that 't Hooft has one anyway . . . )
Caswellt and Jones compute the 2-loop G-function for QCD.
Tarasov, Vladimirov & Zharkov compute the 3-loop S-function for QCD.

van Ritbergen, Vermaseren & Larin compute the 4-loop 3-function for QCD

(~ 50,000 Feynman diagrams):

“... We obtained in this way the following result for the 4-loop beta function in the
MS-scheme:

20a, o 2 a .3 a i a G i
= —[ya, — ha, — Fra, — Gza, + Ola,)

dg?
where a, = s /47 and . . .
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Here ( is the Riemann zeta-function ({3 = 1.202 - .-) and the colour factors for SU(N)
are

1 ﬂTE 1 dri-'..lrdd-r:br'ri P\TE h,—'j 6
Tp==, Cys=N, Cp= Cdady | NN +36)
2 2N Na 24
d;z}.lf'-rfdf‘lbr'rf B ﬂr{hrﬁ + f}} di%,.;-u'd:;_!';r-ri B h;-'-l o trihrﬁ 4+ 18

Ni 48 ’ Ni 96 N2

@ Substitution of these colour factors for N = 3 vyields the following numerical results for
QCD:
GBo o~ 11 — 0.66667n
By = 102 — 12.6667Tn;

L

Gz = 1428.50 — 279.611ny + 6.01852n

e |

f

=]

4z o~ 202430 — 6946.30n; 4+ 405.089n7 + 1.4!7]‘.131311*1}:.

® Expansion parameter a, = «g/4m 22 0.01 = good convergence,




