Asymptotic Helicity Conservation in SUSY (an update). G.J. Gounaris (with J. Layssac and F.M. Renard)

Introduction

For processes $a_{\lambda_1}b_{\lambda_2} \rightarrow c_{\lambda_3}d_{\lambda_4}$, in the limit $s \gg M_{SUSY}^2$ TeV² and s/t= fixed, only the helicity conserving amplitudes, satisfying $\lambda_1 + \lambda_2 = \lambda_3 + \lambda_4$, survive; $(\lambda_j \text{ are the helicities}).$

All others must vanish.

Essentially, Helicity Conservation is a **SUSY limit** property \leftrightarrow A Coleman-Mandula remnant.

Consequences may be visible at LHC, if $M_{SUSY} \sim 1 \text{ TeV}, \dots$

Summary

•The all order proof of Helicity Conservation (HCns) in **MSSM**, neglects all dimensional couplings.

•Detail 1100p EW calculations are needed, to see whether mass-ratios jeopardize HCns, and how the limit is approached.

•In **SM**, HCns is approximately correct, if $F_{Born} \neq 0$.

If $F_{Born}=0$, no general statement exists; 1100p EW examples have been found, where it is either approximately correct or strongly violated.

• Here, I present the 1loop EW amplitudes for $gg \rightarrow \gamma\gamma$, γZ , ZZ, W^+W^-

in MSSM and SM, as well the 1loop amplitudes for

$$gg
ightarrow { ilde{\chi}}^0_i { ilde{\chi}}^0_j$$
 , ${ ilde{\chi}}^+_i { ilde{\chi}}^-_j$

•Asymptotic relations among the cross sections for these processes will be shown, which may be testable at LHC.

Sketch of the general HCns proof

Renard+G: PRL <u>94</u>:131601(2005), PR <u>D73</u>:097301(2006)

- All dimensional parameters are neglected: soft terms and the μ term.
- Proof straightforward for **2-to-2** processes, with external **fermions or scalars only.**
- Since SUSY transformations, projected on the one-particle states, relate gauge ↔ gaugino with helicities of the same sign
 HCns obtains for all 2-to-2 processes.
- •Could mass-ratios jeopardize the proof? What happens in SM? This is where 1loop detail calculations are needed.

HCns at the Born level

If no external gauge bosons appear, the validity of HCns is trivial. $(s, |t|, |u|) \gg$ all masses, s/t=fixed

In the case of external gauge bosons, large gauge cancellations among the diagrams are needed. The couplings must be the standard **renormalizable** ones for **HCns** to be true.

At Born level, HCns is valid, in both SM and MSSM

•In the past we have looked in $\gamma\gamma \rightarrow \gamma\gamma$, γZ , ZZ where HCns is valid exactly in MSSM and approximately in SM (Layssac, Porfyriadis, Renard, Diakonidis)

•Then looked at $ug \rightarrow dW^+$ and $ug \rightarrow \tilde{d}_L \tilde{\chi}_i^+$ where the HC amplitudes were used to construct asymptotic relations among cross sections, which may be at the LHC energy range also.

•Last year I talked about $gg \rightarrow VH$, HH', V=W, Z, γ where examples of strong violation of HCns in SM were identified.

•Now I present $gg \to \gamma\gamma$, γZ , ZZ, W^+W^- and $gg \to \tilde{\chi}_i^0 \tilde{\chi}_j^0$, $\tilde{\chi}_i^+ \tilde{\chi}_j^$ among which asymptotic cross section relations are derived. These may be valid even at LHC type energies....

$g(\mu) + g(\mu') \rightarrow V(\tau) + V'(\tau') \implies F_{\mu\mu'\tau\tau'}, \quad \text{HC} \implies \mu + \mu' = \tau + \tau'$

1 loop EW diagrams for $gg \rightarrow \gamma\gamma, \ \gamma Z, ZZ, W^+W^$ in SM and MSSM.

Asymptotic results depend **only** on gauge couplings. Benchmark independent in MSSM

Strong HCns violation in SM: all asym HV amplitudes $\neq 0$.

But in MSSM all asym HV amplitudes vanish → sqarks = -quarks

Asymptotic HC $gg \rightarrow VV'$ amplitudes in MSSM (all HV vanish!)

$$\begin{split} F(gg \to ZZ)_{+-00}^{\rm as} &= F(gg \to ZZ)_{-+00}^{\rm as} = \alpha \alpha_s \frac{(m_t^2 + m_b^2)}{16s_W^2 m_W^2} \Big\{ \frac{\delta^t (1 - \cos\theta)}{1 + \cos\theta} + \frac{\delta^u (1 + \cos\theta)}{1 - \cos\theta} \Big\} \\ F(gg \to W^+ W^-)_{+-00}^{\rm as} &= \frac{\alpha \alpha_s}{8s_W^2 m_W^2} \Big\{ \frac{m_b^2 \delta^t (1 - \cos\theta)}{1 + \cos\theta} + \frac{m_t^2 \delta^u (1 + \cos\theta)}{1 - \cos\theta} \Big\} \\ F(gg \to W^+ W^-)_{-+00}^{\rm as} &= \frac{\alpha \alpha_s}{8s_W^2 m_W^2} \Big\{ \frac{m_b^2 \delta^u (1 + \cos\theta)}{1 - \cos\theta} + \frac{m_t^2 \delta^t (1 - \cos\theta)}{1 + \cos\theta} \Big\} \\ \end{split}$$

$$\begin{split} \delta^{t} &= \delta_{+-+-} = \delta_{-+-+} = \tilde{\delta} \left(\frac{t+i\epsilon}{s+i\epsilon} \right) \\ &= -4 \left[\ln^{2} \left(\frac{2}{1-\cos\theta} \right) - i2\pi \ln \left(\frac{2}{1-\cos\theta} \right) \right] \quad , \\ \delta^{u} &= \delta_{+--+} = \delta_{-++-} = \tilde{\delta} \left(\frac{u+i\epsilon}{s+i\epsilon} \right) \\ &= -4 \left[\ln^{2} \left(\frac{2}{1+\cos\theta} \right) - i2\pi \ln \left(\frac{2}{1+\cos\theta} \right) \right] \quad , \\ \delta_{++++} &= \delta_{----} = \tilde{\delta} \left(\frac{t+i\epsilon}{u+i\epsilon} \right) = -4 \left[\ln^{2} \left(\frac{1+\cos\theta}{1-\cos\theta} \right) + \pi^{2} \right] \quad , \\ \tilde{\delta}(x/y) &= -4 \left[\ln^{2} \left(\frac{x}{y} \right) + \pi^{2} \right] \quad , \\ \tilde{\delta}(x/y) &= -4 \left[\ln^{2} \left(\frac{x}{y} \right) + \pi^{2} \right] \quad , \\ \tilde{\sigma}^{as} &= \frac{\sum_{\mu t' \tau t'} \left| F_{\mu \mu' \tau t'} \right|^{2}}{\alpha^{2} \alpha_{s}^{2}} \\ \tilde{\sigma} &= \frac{\sum_{\mu t' \tau t'} \left| F_{\mu \mu' \tau t'} \right|^{2}}{\alpha^{2} \alpha_{s}^{2}} \end{split}$$
G.J. Gounaris, Corfu Sep. 2010

 $gg \rightarrow \gamma Z$ $gg \rightarrow \gamma \gamma$ SM SMMSSM MSSM -37.-19. $F_{++++}(\theta)$ -26. $F_{++++}(\theta)$ -13.5-6.4 + i29-3.4 + i20 $F_{+-+-}(\theta)$ -3.3 + i15. $F_{+-+-}(\theta)$ -1.7 + i10.3 $F_{+--+}(\theta)$ -0.28 + i6.0-0.14 + i4.0 $F_{+--+}(\theta)$ -0.14 + i3.1-0.07 + i2.1 $F_{++--}(\theta)$ 6.7 $F_{++--}(\theta)$ 3.40 0 $F_{+++-}(\theta)$ 0 6.7 $F_{+++-}(\theta)$ 0 3.4 $F_{++-+}(\theta)$ 0 3.4 $F_{+-++}(\theta)$ 0 3.445672654 $\tilde{\sigma}(gg \to \gamma Z)$ 1220709 $\tilde{\sigma}(gg \to \gamma\gamma)$ $gg \to W^+ W^$ $qq \rightarrow ZZ$ MSSM SMMSSM SM-61-43 $F_{++++}(\theta)$ -72.-51. $F_{++++}(\theta)$ $F_{+-+-}(\theta)$ -10.6 + i48.1-5.6 + i33. $F_{+-+-}(\theta)$ -12. + i56.-6.5 + i39 $F_{+--+}(\theta)$ -0.46 + i10.-0.23 + i6.7 $F_{+--+}(\theta)$ -0.5 + i12. -0.27 + i7.8 $F_{++--}(\theta)$ 11. $F_{++--}(\theta)$ 0 12.90 $F_{+++-}(\theta)$ 0 $F_{+++-}(\theta)$ 11. 0 12.9 $F_{+-++}(\theta)$ 0 12.911. $F_{+-++}(\theta)$ 0 $F_{+-00}(\theta)$ -4.6 + i43.-4.6 + i43. $F_{+-00}(\theta)$ -2.6 + i56.-2.6 + i56. $F_{++00}(\theta)$ $F_{++00}(\theta)$ 0 -20.50 -20.5 $\tilde{\sigma}(qq \rightarrow ZZ)$ 1622611820 $\tilde{\sigma}(gg \rightarrow W^+W^-)$ 2123214873

Table 1: Asymptotic TT and LL Helicity Amplitudes divided by $\alpha \alpha_s$, and asymptotic $\tilde{\sigma}(gg \to VV')$, in MSSM and SM, at $\theta = 60^{\circ}$.

In all SUSY applications we use SPS1a'

The lloop EW MSSM and SM HC amplitudes for $gg \rightarrow W^+W^-$

In SPS1a' asym values reached at $s^{1/2} \gtrsim 4 \text{ TeV}$ for θ =60°

Similar but smaller in SM

G.J. Gounaris, Corfi

The 1loop EW MSSM 24 20 and SM HV_{TT}, HV_{LL} 16 16 12 amplitudes for 8 F_{µµ}++,(gg->₩'₩')/(αα_#) ^{,,,,,,}(gg−>*****⁺#[−])/(αα_{*}) SM, *Ф*=60° Нул, Нуц 8 0 $gg \rightarrow W^+W^-$ 4 SPS1a', v=60' HVTT, HVL -8 0 -16 ooooo ReF..... ReF____ scoos ImF--ssoos [mF,.... ooooo ReFaaaaa ReF -24 soose ImF+++ecces ImF For $s^{1/2} \gtrsim 4 \text{ TeV}$ ReF ---- ReF++++ and InF and Infun -32 ***** ReF ***** ReF -12 ***** ImF +++++ [m] ***** ReF -40 ***** ReF++00 -16In SM ***** ImF++m ***** ImF++0 -48-20 $|\text{HC}| \gtrsim |\text{HV}_{LL}| \sim |\text{HV}_{TT}|$ -56^L -240 9 6 8 v (rad) v (rad) 12 16 $\substack{ SPSia', \ s^{1/2}=10 \ TeV \\ HV_{T7}, \ HV_{1L} }$ 12 In MSSM (SPS1a') 10 SM, $s^{1/2}=10$ TeV HV π , HV μ occoo ReF___ _{wither}(gg−>₩⁺₩⁻)/(αα_s) F_{un}v_{**}(gg->₩ ₩)/(αα,) eeeee ImF++-ooooo ReF++-8 000-00 ImF+++- $|\text{HC}| \gg |\text{HV}_{\text{TT}}| \sim |\text{HV}_{\text{LL}}|$ ReF+++ AAAAA ImF **** ReF 00000 ImF ooooo ReF..... soose ImF ***** ReF++00 seese ReF+++-***** ImF++00 ecose ImF+++ Anna Ref aaaaa ImF++-+ ***** ReF. +++++ ImF+++ Overall picture \rightarrow ***** ReF++00 ***** ImF+00 -16 $|HV_{SM}| \gg |HV_{MSSM}|$ -20-24.0 -8.0 0.5 1.0 1.5 2.0 2.53.0 0.51.0 2.0 2.53.0 1.5 ϑ (rad) v (rad)

G.J. Gounaris, Corfu Sep. 2010

Overall picture for 1100p EW for $gg \rightarrow \gamma\gamma$, γZ , ZZ, W^+W^- in SM and MSSM.

- Mass-ratios never jeopardize HCns
- •For MSSM(SPS1a') or SM, at $\theta = 60^{\circ}$, the limiting values are reached at

s^{1/2} \gtrsim 4 TeV

- •Limits \rightarrow benchmark independent
- •In SM $|HC| \gtrsim |HV_{LL}| \sim |HV_{TT}|$

•In MSSM (SPS1a') $|\text{HC}| \gg |\text{HV}_{\text{TT}}| \sim |\text{HV}_{\text{LL}}|$

 $g(\mu) + g(\mu') \rightarrow \tilde{\chi}_i(\tau) + \tilde{\chi}_i(\tau') \Rightarrow F_{\mu\mu'\tau\tau'}, \quad \text{HC} \Rightarrow \mu + \mu' = \tau + \tau' = 0$

Charginos or neutralinos.

Asym results respect HCNs and depend on

 $\alpha,\,\alpha_{_{\! S}},\,\beta$, $Z^{\scriptscriptstyle +},\,Z^{\scriptscriptstyle -}\,$, Z^N

Asymptotic HC amplitudes in MSSM(SPS1a') (all HV vanish!)

$$\begin{split} F(gg \to \tilde{\chi}_{i}^{+} \tilde{\chi}_{j}^{-})_{-+-+}^{as} &= \frac{\alpha \alpha_{s} \delta^{t} (1 - \cos \theta)}{8s_{W}^{2} \sin \theta} \left\{ 3Z_{1i}^{+} Z_{1j}^{+*} + Z_{2i}^{+} Z_{2j}^{+*} \frac{m_{t}^{2}}{m_{W}^{2} \sin^{2} \beta} \right\} ,\\ F(gg \to \tilde{\chi}_{i}^{+} \tilde{\chi}_{j}^{-})_{+-+-}^{as} &= -\frac{\alpha \alpha_{s} \delta^{t} (1 - \cos \theta)}{8s_{W}^{2} \sin \theta} \left\{ 3Z_{1i}^{-} Z_{1j}^{-*} + Z_{2i}^{-} Z_{2j}^{-*} \frac{m_{b}^{2}}{m_{W}^{2} \cos^{2} \beta} \right\} ,\\ F(gg \to \tilde{\chi}_{i}^{+} \tilde{\chi}_{j}^{-})_{+--+}^{as} &= -\frac{\alpha \alpha_{s} \delta^{u} (1 + \cos \theta)}{8s_{W}^{2} \sin \theta} \left\{ 3Z_{1i}^{+} Z_{1j}^{+*} + Z_{2i}^{+} Z_{2j}^{+*} \frac{m_{t}^{2}}{m_{W}^{2} \sin^{2} \beta} \right\} ,\\ F(gg \to \tilde{\chi}_{i}^{+} \tilde{\chi}_{j}^{-})_{-++-}^{as} &= -\frac{\alpha \alpha_{s} \delta^{u} (1 + \cos \theta)}{8s_{W}^{2} \sin \theta} \left\{ 3Z_{1i}^{-} Z_{1j}^{-*} + Z_{2i}^{-} Z_{2j}^{-*} \frac{m_{b}^{2}}{m_{W}^{2} \sin^{2} \beta} \right\} ,\\ F(gg \to \tilde{\chi}_{i}^{+} \tilde{\chi}_{j}^{-})_{-++-}^{as} &= \frac{\alpha \alpha_{s} \delta^{u} (1 + \cos \theta)}{8s_{W}^{2} \sin \theta} \left\{ 3Z_{1i}^{-} Z_{1j}^{-*} + Z_{2i}^{-} Z_{2j}^{-*} \frac{m_{b}^{2}}{m_{W}^{2} \cos^{2} \beta} \right\} ,\\ \end{split}$$

$$\begin{split} F(gg \to \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0})_{-+-+}^{as} &= -F(gg \to \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0})_{+-+-}^{as} = \alpha \alpha_{s} \frac{\delta^{t}(1 - \cos\theta)}{\sin\theta} \Big\{ Z_{1i}^{N} Z_{1j}^{N*} \frac{11}{24c_{W}^{2}} \\ &+ Z_{2i}^{N} Z_{2j}^{N*} \frac{3}{8s_{W}^{2}} + Z_{3i}^{N} Z_{3j}^{N*} \frac{m_{b}^{2}}{8s_{W}^{2} m_{W}^{2} \cos^{2}\beta} + Z_{4i}^{N} Z_{4j}^{N*} \frac{m_{t}^{2}}{8s_{W}^{2} m_{W}^{2} \sin^{2}\beta} \Big\} , \\ F(gg \to \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0})_{-++-}^{as} &= -F(gg \to \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0})_{+--+}^{as} = \alpha \alpha_{s} \frac{\delta^{u}(1 + \cos\theta)}{\sin\theta} \Big\{ Z_{1i}^{N} Z_{1j}^{N*} \frac{11}{24c_{W}^{2}} \\ &+ Z_{2i}^{N} Z_{2j}^{N*} \frac{3}{8s_{W}^{2}} + Z_{3i}^{N} Z_{3j}^{N*} \frac{m_{b}^{2}}{8s_{W}^{2} m_{W}^{2} \cos^{2}\beta} + Z_{4i}^{N} Z_{4j}^{N*} \frac{m_{t}^{2}}{8s_{W}^{2} m_{W}^{2} \sin^{2}\beta} \Big\} , \end{split}$$

G.J. Gounaris, Corfu Sep. 2010

 $gg \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$
amplitudes

For MSSM(SPS1a') at $\theta=60^{\circ}$, and i=1, j=2

The benchmark dependent limits are reached at $s^{1/2} \gtrsim 10$ TeV where

 $|\text{HC}| \gg |\text{HV}|$

 $gg \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^$ amplitudes

For MSSM(SPS1a') at $\theta=60^{\circ}$, and i=1, j=2

The benchmark dependent limits are reached at $s^{1/2}\gtrsim 20~TeV$ where

 $|\mathrm{HC}| \gg |\mathrm{HV}|$

Picture somewhat cluttered because of the large number of amplitudes.

$$\begin{array}{c} \hline \widetilde{\sigma}(gg \to W^+W^-)^{as} &, \quad \hline \widetilde{\sigma}(gg \to ZZ)^{as} &, \quad \hline \widetilde{\sigma}(gg \to \gamma Z)^{as} &, \quad \hline \widetilde{\sigma}(gg \to \gamma \gamma)^{as} &, \quad \hline \sum_{ij} \widetilde{\sigma}(gg \to \widetilde{\chi}_i^0 \widetilde{\chi}_j^0) &, \quad \hline \sum_{ij} \widetilde{\sigma}(gg \to \widetilde{\chi}_i^0 \widetilde{\chi}_j^0)^{as} &, \quad \hline \end{array}$$

•In the numerators we hope to use data. At present just the exact 1loop results.

- •In the denominators, only the asymptotic HC amplitudes are used.
- •At sufficient energies all these σ -ratios $\rightarrow 1$. How this is realized in SPS1a' ?

If M_{SUSY}~1 TeV:

•The asymptotic limits of the gauge boson cross sections are benchmark independent, and the approach to them very fast.

•When summing over all charginos (neutralinos), the dependence on $Z^{+,} Z^{-}(Z^{N})$ disappears, in

$$\sum_{ij} \tilde{\sigma}(gg \to \tilde{\chi}_i \tilde{\chi}_j)^a$$

and they only depend on β , α , α_s , m_t and m_b .

The chargino cross sections approaches their asymptotic values quickly.

•In case **no i, j summation** is done, in

$$\frac{\tilde{\sigma}(gg \to \tilde{\chi}_i^+ \tilde{\chi}_j^-)}{\tilde{\sigma}(gg \to \tilde{\chi}_i^+ \tilde{\chi}_j^-)^{as}} \ , \ \frac{\tilde{\sigma}(gg \to \tilde{\chi}_i^0 \tilde{\chi}_j^0)}{\tilde{\sigma}(gg \to \tilde{\chi}_i^0 \tilde{\chi}_j^0)^{as}} \ ,$$

then the benchmark dependence of asymptotic cross sections becomes strong, (due to the Z-matrices) and the approach to asymptopia is **slow**.

 $\sum_{ij} \tilde{\sigma}(gg \to \tilde{\chi}_i^+ \tilde{\chi}_j^-) \gg \tilde{\sigma}(gg \to \tilde{\chi}_1^+ \tilde{\chi}_2^-)$

Similarly for neutralinos

Relations like

$$\begin{split} &\frac{\tilde{\sigma}(gg \to W^+W^-)}{\tilde{\sigma}(gg \to W^+W^-)^{as}} \simeq \frac{\tilde{\sigma}(gg \to ZZ)}{\tilde{\sigma}(gg \to ZZ)^{as}} \simeq \frac{\tilde{\sigma}(gg \to \gamma Z)}{\tilde{\sigma}(gg \to \gamma Z)^{as}} \simeq \frac{\tilde{\sigma}(gg \to \gamma \gamma)}{\tilde{\sigma}(gg \to \gamma \gamma)^{as}} \\ &\simeq \frac{\sum_{ij} \tilde{\sigma}(gg \to \tilde{\chi}_i^+ \tilde{\chi}_j^-)}{\sum_{ij} \tilde{\sigma}(gg \to \tilde{\chi}_i^+ \tilde{\chi}_j^-)^{as}} \simeq \frac{\sum_{ij} \tilde{\sigma}(gg \to \tilde{\chi}_i^0 \tilde{\chi}_j^0)}{\sum_{ij} \tilde{\sigma}(gg \to \tilde{\chi}_i^+ \tilde{\chi}_j^-)^{as}} \simeq \frac{\sum_{ij} \tilde{\sigma}(gg \to \tilde{\chi}_i^0 \tilde{\chi}_j^0)}{\sum_{ij} \tilde{\sigma}(gg \to \tilde{\chi}_i^0 \tilde{\chi}_j^0)^{as}} \simeq 1 \quad , \end{split}$$

require $s^{1/2}\gtrsim 5~\text{TeV}$ in SPS1a' and may be visible at LHC

Conclusions

• Many or most of the 2-to-2 amplitudes vanish in the SUSY symmetric limit. Only the helicity conserving ones can survive. This limit is reached by $s \gg M_{SUSY}^2$, t/s=fixed.

•HCns provides many asymptotic relations among various process cross sections. If the SUSY scale is not too high, these may be useful for LHC, or a future higher energy machine.

•HCns is a SUSY property, as basic as the gauge coupling unification

• Fortran codes for all 1loop EW amplitudes we have calculated are released in http://users.auth.gr/gounaris/FORTRANcodes