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Outline of talk

RG study of Hubbard model: flow of interaction vertex and two
point function

@ Introduction

e 2d Fermionic Hubbard model
o Interaction vertex parametrisation and RG flows

@ Self-energy flow

e Parametrisation of self-energy: Hopping parameter corrections,
Z factor

e Extraction of information from flow equation

o Feedback on interaction vertex flow

@ Conclusions and future work
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Hubbard Model

Spin 1 fermions on torus I = (Z;)? of size L
2

—

.

H:Zaj’s t(x—y) ay,s+Uan7¢nx,¢, U>o0
X,y X

Momentum space representation
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Dispersion relation

e(pxs Py) = — 2t; (cos px + cos Py)
+ 4ty (cospycosp, + 1) —

(sett; =1)

Kay-Uwe Giering (Heidelberg) Self-energy Flow in the Hubbard Model



1Pl one loop RG

e Partition function Zg(h) = Z(Qq, V)(h)
e Flow equation for 1Pl generating functional 'q(%))

o) =Tr Qo (°Ta)*(¥),  Tay(v) =TO()

e formal power series expansion in field 1)

@ 1 loop truncation for U(1) and SU(2) invariant vertex
functions

= T+ o

X9 AY

[Wetterich 1993; Salmhofer 1998; Honerkamp, Salmhofer 2001]

Va(ks ... k)
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Vertex parametrisation via exchange bosons

@ Vertex decomposition in 3 channels: scattering,
superconducting and magnetic channels

@ interacting charge/Cooper pair/spin operators with specific
transfer momenta

il - ha) = = = o (ke + 559) Kinn(ka = ks) Folkz — £5)
vsc(ki - k) =10—C ==, , (5% — ki) Dmn(ki + ko) fo(N95%2 — k3)
vk - ha) = I =+ Y (ks = B1559) Mmoo = k) fo(ko + 115%)

@ distribute vertex flow according to singular momentum
structure to channels

@ obtain flow equation for exchange propagators K, D, M

[Husemann, Salmhofer 2008]
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Choice of Regulator function

o self-energy flow produces Fermi surface flow

@ momentum cutoff around Fermi surface: would need adaptive
scheme

@ use soft frequency regulator: replace propagator

1
C=- — Cq = - XQ(O‘J)?
iw—¢ iw—¢
2
w
=—, Q>0
xa(w) w? + Q2

o effective regularisation for Q > 0
@ initial condition at scale Q = Qg > 0, Qg large

@ cannot enter symmetry broken regime: stop flow at critical
scale Q =Q,, 0<Q.<Q

@ no artificial suppression of small-momentum particle-hole
processes
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Self-energy zero-mode

o flowing Fermi surface results in scale dependent particle
density

@ one possible definition of particle density during flow:

propagator of interacting system during flow is

Ga(p) = (Ca' +Za) " (), p=(w,p)
_ xa(w) w
iw —e(p) + xa(w) Ta(p)’

define particle density

0q = /dp Ga(p)

@ adjust flow such that oqg =0
@ choose pq to be van-Hove-filling of interacting system (at €Q.)
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Parametrisation of self-energy

@ large frequency behaviour (read off flow equation)
1
Y(w,p) = cte. + O(—)
w
e small frequency dependence: we expect

Y (w, p) = Zo(p) + iw L1(p) + O(w? In®w)

@ singularities of propagator play essential rdle,
located at small frequencies (and momenta close to Fermi
surface)

@ capture well singularities in propagator of interacting system:
small frequency expansion as an ansatz for self-energy,
examine Xo(p), X1(p)

@ in a first step: examine Xo(p), £1(p) separately
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Frequency independent self-energy: o(p)

@ Ansatz: sum of corrections to hopping terms g; (ONS)
n
To(p) = > t; gi(p)
i=0

@ Extraction of §t; from flow equation:

Fourier analysis Differentiation
ot; = <g;,io> , vs. (Dj Z'0) (py) =al) - ot,

@ Results compare well if {p;} are not chosen in a small region
of the Brillouin zone, only
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@ small changes in critical scale

@ location of ordering tendencies almost unchanged
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Frequency dependent self-energy: ¥i(p) (T = 0)

@ Small frequency behaviour of self-energy: study Z factor

Zo(p) = 1+ (9 T)(po = 0.p)

@ start by neglecting frequency-independent self-energy

Za(p) = 0p R(p)

o frequency dependence of interaction vertex is important

@ Flow equation:

@ here: discretisation of this frequency dependence rather than
some standard ansatz
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Scale dependence of Z(0, )
(curved Fermi surface and present van-Hove-singularity)

@ perturbation 1

theory: 1

Z$(0,7) ~[InQ|
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Feedback Z factor on interaction vertex ( t, = 0.1, U =3 )

AF susceptibility in parameter region of dominant AFM

AF susceptibility
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Flow with (solid) and without (dashed) Z factor

@ verify if strong suppression of critical scale is inherent property
or artefact of small frequency expansion
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Conclusions

@ RG study of Hubbard model: trace flow of interaction vertex
and two point function

@ singular structure of propagator: especially examine small
frequency behaviour of two point function

@ frequency-independent self-energy: minor feedback on
interaction vertex flow

@ in progress: RG flow with frequency-dependent self-energy
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Frequency independent self-energy: o(p)

@ ansatz for Xo(p): sum of corrections to hopping terms
n
To(p) = > t; &i(p)
i=0

@ conveniently choose {g;} as ONS,
first elements p=(xy)

8o(x, )

g1(x,y) = cosx + cosy
g2(x,y) =2cosxcosy
83(x, y)

= c0s 2x + cos 2y

Kay-Uwe Giering (Heidelberg) Self-energy Flow in the Hubbard Model



Extracting information from flow equation

Several possibilities for extracting hopping corrections §t; out of

flow ) no
So(p) = > dt; &i(p)
i=0

@ Global determination (Fourier analysis)

ot = <g,-, z'o> P Q\"
@ Local determination \ ,
(=92 +3) %o) (0.m) =a® -5t
(02 +02) %o) (0,m) = a® -
30(0,0) — %0(0,7) = a® . 6t :@:(O, )
Yo(m,m) — Lo(0,7) = a® - 5t
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Compare extraction methods (U = 3,t, = 0.1)
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red: Fourier projection, blue: local examination

o results compare well if a®),a(*) are included

@ similar results in other parameter ranges,
bigger discrepance in d-SC/FM transition region
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Results: Fermi surface shift (U =3, T =0)

Interacting vs. non-interacting system at van Hove filling:
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Matsubara summation

@ evaluation of rhs of flow equations: compute Matsubara sums
of propagators

@ perform Matsubara sums by residues

@ propagator of interacting system during flow

Ga(p) = (C3* +Xa) " (p), p=(w,p)

w2

(iw —£(p)) (w2 +Q2) +w? Ta(p)

involves polynomial of 3" degree in w
@ intricate dependence of location of pdles on parameters

@ intricate dependence of summation result on parameters
(unlike ¥ = 0)
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Flow equations

3IM—-K

D =+§ [ o tpip) 720 5N pn), (m=1.2)
=5 [ap Lot p) (M == o)
;/dpr,wp)ﬁ( A Y

where

L(p1,p2) = 0a ( G(p1)G(p2) )
s(p) single scale propagator,
Fm convolution with form factors

fi(x,y) =1, fa(x,y) = cosx — cosy

Kay-Uwe Giering (Heidelberg) Self-energy Flow in the Hubbard Model



Flow equations Il

INABXA0:U+MKO+/&MhﬂI+m,)

u u
+ [du B3+ oow) (o~ 3) B(po+1- )

Fo(A, B)(p, 1) =Axn(!) L(p + %)
+/du fg(p+1—U) (Bll(l + po, u)

+ B+ po,u) Blp— 3) p 1 )

form factors: fi(x,y) =1, fa(x,y) = cosx — cosy
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Flow equations IlI

(k) :%(—U + K11(0)) /dP s(p)

_ 212/dp s(p+ k) (Ku(p) +3M11(p))

0=0
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Perturbation theory: Bubble frequency dependence

Particle-hole bubble B(/) = U? [ dp Ca(p)Ca(l +p), = (lo,l)
e(—p)=¢(p) = BT () eRVI

12/11=0.1, Omega={10,0.01}

Parametrisations: ]

+ _ 1
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2 2
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Existence of independent intermediate frequency regime
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