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Motivation

Motivation

@ Supersymmetric models in general not analytically solvable:
Approximation schemes necessary

@ Successful approximations often break supersymmetry
explicitly (e.g. lattice calculations)

@ problem for the investigation of dynamical supersymmetry
breaking

@ Functional renormalization group:

A nonperturbative tool that preserves supersymmetry
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The 4 = 2 WZ Model in 2 dimensions

Field content (on-shell):

@ complex scalar field @, @

@ Dirac fermions (J, (J

on-shell Lagrangian

complex coordinates: Z=X; +iX; and d = % (01—1i02)

—_ 1 _
Zon=2000¢+ W (@) |*+ GMy

fermion matrix: M = ¢ + W’ (@)P, + VT/”((E) P_
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Field content (on-shell):

Wess-Zumino

models
@ complex scalar field @, @

@ Dirac fermions (J, (J

The A =2
Wess-Zumino
Model in 2
dimensions

on-shell Lagrangian

complex coordinates: Z=X; +iX; and d = %(01— i02)
- 1 _
Zon=2000¢+ W (@) |*+ GMy
fermion matrix: M = @ -+ W ()P, +W" (@)P_

superpotential:

1 1
W(ep) = §m¢2+ §9<P3, W (@) = mp-+gg®, W' (@) = m+ 299
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e b —2 The model is obtained by dimensional reduction from four
Wess-zumino dimensional .4 = 1 Wess-Zumino model

Model in 2

dimensions

The superpotential is a holomorphic function

The superpotential obeys a non-renormalization theorem:
bare couplings receive no quantum corrections

Model is UV-finite
Supersymmetry is always unbroken
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e off-shell Lagrangian '

= 1- 1 1=~
Lot = 20909+ PMY — SFF + SFW () + SF W (9)

Mo

The A =2

Wess-Zumino fermion matrix:
Model in 2
dimensions

M = d+W (@)P; + W' (p)P_
equations of motion for auxiliary fields:
F=W(p), F=W(p)
plug these equations in:

__ 1 _
Zon=20909+ W (@) |*+ gMy
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e off-shell Lagrangian '

= - 1., 1== =
Zott =2090¢+ My — SFF + SFWi(¢) + SFWi(@)

Mo

The A =2

Wess-Zumino fermion matrix:
Model in 2
dimensions

aM = @+ W (@)P- + W, (9)P—
equations of motion for auxiliary fields:
F=W(p), F=W(p)
plug these equations in:

__ 1 _
Zon=20909+ W (@) |*+ gMy
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W(p) =u(@, @) +iv(g, @)

is holomorphic, Cauchy-Rieman differential equations hold:

Ju ov Ju ov

Flow equations

in the LPA — %_@’ @__%‘

Nonrenormali-
zation
theorem
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Flow equations in the LPA — Nonrenormalization
theorem

superpotential
W(p) = u(er, @) +iv(¢r, @)
is holomorphic, Cauchy-Rieman differential equations hold:

Ju ov Ju ov

g op dm oo

non-renormalization theorem

W = 0kVT/k =0

non-renormalization theorem in four dimensions:
Sonoda, Ulker Prog.Theor.Phys.(2008)120:197-230
Rosten JHEP(2010)1003:004
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off-shell Lagrangian »

Wess-Zumino

—— _ 11— 1 1-——
Lot = 20000+ YM Y — EFF + EFw’(qo) + EFW’(go)

fermion matrix:
M=+ W (@)P. +W'(p)P_

equations of motion for auxiliary fields:

Flow equations

at NLO F= W/((E)a F= W,((P)

malized

plug these equations in:

__ 1 _
Zon=20909+ W (@) |*+ gMy
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theorem

Flow equations
at NLO

normalized

The 4 = 2 WZ Model in 2 dimensions

off-shell Lagrangian

— = o 1 = —

1 1—— —

fermion matrix:
M = Z(,0)d + W' (@)P+ + W' (@)P-
equations of motion for auxiliary fields:

F=W(p), F=W(p)

plug these equations in:

- 1 _
Zon=2000¢+ W () |*+ gMy
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Flow equations at NLO — wave function
renormalization

@ Flow equations for wave function renormalization with full
momentum dependence

@ Solve the equation numerically with FlowPy, a parallelizable
numerical toolbox (in cooperation with T. Fischbacher)
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@ Flow equations for wave function renormalization with full
momentum dependence

@ Solve the equation numerically with FlowPy, a parallelizable
numerical toolbox (in cooperation with T. Fischbacher)
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Renormalized mass: pole of the propagator in the complex plane

Propagator
1

%dm=y+W+ﬂgm®

Renormalized
mass
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Renormalized mass: pole of the propagator in the complex plane

Propagator
1

T PP+ 2(p,mg)

Gbos(p)

Propagator in NLO

1
" PPZio(pP) + M/ Zko(P?)

Renormalized COrl’e|at0r

mass

d .
Chos(X1) = /Z?[G(pbo)elplxl O exp(—X1 - Myen)




Flow equations

of supersym-
metric
Wess-Zumino
models
15
14.9
14.8
]
= 147
1S
14.6
145
Renormalized
mass
14.4

Renormalized mass — Weak coupling

A
i A
perturbation theory ——
I Lattice Data (twisted Wilson)
Morop 4
0 0.05 0.1 0.15 0.2 0.25 0.3

g/m




Flow equations

gl Renormalized mass — Weak coupling

metric
Wess-Zumino
models
15
149 4
148 4
]
= 147 | B
1S
146 4
perturbation theory ——
Lattice Data (twisted Wilson)
145
FRG
?neazzrmahzed Meorr x
FRG
Mprop
14.4 . . . . . |
0 0.05 0.1 0.15 0.2 0.25 0.3

g/m




Flow equations

prese® Renormalized mass — Intermediate coupling

metric

Wess-Zumino
models

15

14

13 |

11 |

mren

10 |

perturbation theory ——

Renormalized g | Lattice Data (twisted Wilson) b
mass

Lattice Data (SLAC) &~

7 L L L L L
0 0.2 0.4 0.6 0.8 1

g/m




Flow equations

prese® Renormalized mass — Intermediate coupling

metric
Wess-Zumino
models
15 4
14
13
12
5]
= 11
E -
]
10 i J
perturbation theory ——
9 4
Lattice Data (twisted Wilson)
Renormalized gL Lattice Data (SLAC) i-&- l'.;l i
mass ERG -
Mprop ~— #
7 L L L L L
0 0.2 0.4 0.6 0.8 1

g/m




Flow equations

prese® Renormalized mass — Intermediate coupling

metric
Wess-Zumino
models
15
14 +
13
12
g
= 11
1S
t
0r perturbation theory —— L E
Lattice Data (twisted Wilson)
9r i
Lattice Data (SLAC) i--&-
Renormalized gl mEURr? x ? |
mass — L
Mprop~ #
7 . . . . .
0 0.2 0.4 0.6 0.8 1

g/m




Flow equations
of supersym-
metric
Wess-Zumino
models

Renormalized
mass

Summary

@ FRG can be extended to supersymmetric theories in a way
that preserves supersymmetry

@ Provides an approach complementary to lattice calculations

Results for the Wess-Zumino .4 = 2 model in two dimensions:
@ Nonrenormalization theorem is recoverd in a very simple form
@ Wave function renormalization with full momentum
dependence is calculated
@ Comparision to lattice results

@ weak coupling: good agreement between lattice and FRG

@ intermediate coupling: wave function renormalization does not
suffice to capture all quantum effects, higher order operators
are needed
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