Electroweak Constraints on New Particles

Francisco del Águila Jorge de Blas, Manuel Pérez-Victoria

> University of Granada & CAFPE

Corfú 2010

Jorge de Blas' PhD Thesis arXiv:0803.4008 [hep-ph] arXiv:1005.3998 [hep-ph]

- Introduction
- Model Independent Limits
- Constraints on General Extra Leptons
- Constraints on General Extra Vectors
- Implications on the Higgs mass
- Several New Particles
- Conclusions

New Physics @ LHC

- **BSM**: many models + unexpected
- At any rate, new particles !

Present constraints on masses and couplings: Flavour, Tevatron, EW Precision Tests

Restrict parameter space

Electroweak Precision Data

- Z-pole observables: mass, partial decay widths, leftright and forward-backward asymmetries
- W properties: mass, width, leptonic branching ratios
- Muon decay
- Low-energy neutrino scattering: neutrino-nucleon DIS and neutrino-electron scattering
- Parity violation in atoms and in Møller scattering.
- Unitarity constraints on CKM (1st row)
- Fermion pair production off Z-pole at LEP 2

Precision Electroweak Observables:

The Standard Model

vs Experiment

Good ac

int in genera

Effective Description of BSM

Unique		Operator	Notation	Operator	Notation
Operator of		$\rightarrow \overline{l_L^c} \tilde{\phi}^* \tilde{\phi}^\dagger l_L$	\mathcal{O}_5		
dimension 5 (lepton number	LLLL	$ \frac{\frac{1}{2} \left(\overline{l_L} \gamma_{\mu} l_L \right) \left(\overline{l_L} \gamma^{\mu} l_L \right)}{\frac{1}{2} \left(\overline{q_L} \gamma_{\mu} q_L \right) \left(\overline{q_L} \gamma^{\mu} q_L \right)} \left(\overline{l_L} \gamma_{\mu} l_L \right) \left(\overline{q_L} \gamma^{\mu} q_L \right)} \\ \frac{1}{2} \left(\overline{q_L} \gamma_{\mu} \lambda_A q_L \right) \left(\overline{q_L} \gamma^{\mu} \lambda_A q_L \right) $	$\mathcal{O}_{ll}^{(1)} \ \mathcal{O}_{qq}^{(1,1)} \ \mathcal{O}_{lq}^{(1,1)} \ \mathcal{O}_{lq}^{(1)} \ \mathcal{O}_{qq}^{(8,1)}$	$ \frac{\frac{1}{2} \left(\overline{l_L} \gamma_\mu \sigma_a l_L \right) \left(\overline{l_L} \gamma^\mu \sigma_a l_L \right) }{\frac{1}{2} \left(\overline{q_L} \gamma_\mu \sigma_a q_L \right) \left(\overline{q_L} \gamma^\mu \sigma_a q_L \right) } \\ \left(\overline{l_L} \gamma_\mu \sigma_a l_L \right) \left(\overline{q_L} \gamma^\mu \sigma_a q_L \right) \\ \frac{1}{2} \left(\overline{q_L} \gamma_\mu \sigma_a \lambda_A q_L \right) \left(\overline{q_L} \gamma^\mu \sigma_a \lambda_A q_L \right) $	$\mathcal{O}_{ll}^{(3)} \ \mathcal{O}_{qq}^{(1,3)} \ \mathcal{O}_{lq}^{(3)} \ \mathcal{O}_{lq}^{(3)} \ \mathcal{O}_{qq}^{(8,3)}$
violating)	RRR	$ \begin{array}{c} \frac{1}{2} \left(\overline{u_R} \gamma_\mu u_R \right) \left(\overline{u_R} \gamma^\mu u_R \right) \\ \left(\overline{e_R} \gamma_\mu e_R \right) \left(\overline{u_R} \gamma^\mu u_R \right) \\ \left(\overline{u_R} \gamma_\mu u_R \right) \left(\overline{d_R} \gamma^\mu d_R \right) \\ \frac{1}{2} \left(\overline{u_R} \gamma_\mu \lambda_A u_R \right) \left(\overline{u_R} \gamma^\mu \lambda_A u_R \right) \\ \left(\overline{u_R} \gamma_\mu \lambda_A u_R \right) \left(\overline{d_R} \gamma^\mu \lambda_A d_R \right) \end{array} $	$\mathcal{O}_{uu}^{(1)} \ \mathcal{O}_{eu} \ \mathcal{O}_{eu}^{(1)} \ \mathcal{O}_{ud}^{(1)} \ \mathcal{O}_{ud}^{(8)} \ \mathcal{O}_{uu}^{(8)} \ \mathcal{O}_{uu}^{(8)} \ \mathcal{O}_{ud}^{(8)}$	$\frac{\frac{1}{2} \left(\overline{e_R} \gamma_{\mu} e_R\right) \left(\overline{e_R} \gamma^{\mu} e_R\right)}{\frac{1}{2} \left(\overline{d_R} \gamma_{\mu} d_R\right) \left(\overline{d_R} \gamma^{\mu} d_R\right)}{\left(\overline{e_R} \gamma_{\mu} e_R\right) \left(\overline{d_R} \gamma^{\mu} d_R\right)}$ $\frac{1}{2} \left(\overline{d_R} \gamma_{\mu} \lambda_A d_R\right) \left(\overline{d_R} \gamma^{\mu} \lambda_A d_R\right)$	$egin{aligned} \mathcal{O}_{ee} \ \mathcal{O}_{dd}^{(1)} \ \mathcal{O}_{ed} \ \mathcal{O}_{ed} \ \end{aligned}$
Operators of dimension 6	LRRL	$ \begin{array}{c} \left(\overline{l_L}e_R\right)\left(\overline{e_R}l_L\right) \\ \left(\overline{l_L}u_R\right)\left(\overline{u_R}l_L\right) \\ \left(\overline{q_L}u_R\right)\left(\overline{u_R}q_L\right) \\ \left(\overline{l_L}e_R\right)\left(\overline{d_R}q_L\right) \\ \left(\overline{q_L}\lambda_Au_R\right)\left(\overline{u_R}\lambda_Aq_L\right) \\ \epsilon_{ABC}\left(\overline{l_L}i\sigma_2q_L^{c\ A}\right)\left(\overline{d_R^B}u_R^{c\ C}\right) \\ \epsilon_{ABC}\left(\overline{u_R^A}u_R^{c\ B}\right)\left(\overline{d_R^C}e_R^{c}\right) \end{array} $	$egin{aligned} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{qu} & & \ \mathcal{O}_{qu} & & \ \mathcal{O}_{qde} & & \ \mathcal{O}_{qu}^{(8)} & & \ \mathcal{O}_{lqdu} & & \ \mathcal{O}_{lqdu} & & \ \mathcal{O}_{lqdu} & & \ \mathcal{O}_{uude} & & \ \end{array}$	$ \begin{array}{c} \left(\overline{q_L}e_R\right)\left(\overline{e_R}q_L\right)\\ \left(\overline{l_L}d_R\right)\left(\overline{d_R}l_L\right)\\ \left(\overline{q_L}d_R\right)\left(\overline{d_R}q_L\right) \end{array} \\ \left(\overline{q_L}\lambda_A d_R\right)\left(\overline{d_R}\lambda_A q_L\right)\\ \epsilon_{ABC}\left(\overline{q_L^B}i\sigma_2 q_L^{c\ C}\right)\left(\overline{e_R}u_R^{c\ A}\right) \end{array} $	$egin{aligned} \mathcal{O}_{qe} \ \mathcal{O}_{ld} \ \mathcal{O}_{qd}^{(1)} \ \mathcal{O}_{qd}^{(8)} \ \mathcal{O}_{qd} \ \mathcal{O}_{qqeu} \end{aligned}$
	LRLR	$ \begin{array}{c} \left(\overline{q_L} u_R \right) i \sigma_2 \left(\overline{q_L} d_R \right) \\ \left(\overline{l_L} e_R \right) i \sigma_2 \left(\overline{q_L} u_R \right) \\ \epsilon_{ABC} \left(\overline{l_L} i \sigma_2 q_L^{c \ A} \right) \left(\overline{q_L^B} i \sigma_2 q_L^{c \ C} \right) \end{array} $	$egin{array}{lll} \mathcal{O}_{qq}^{(1)} \ \mathcal{O}_{lq} \ \mathcal{O}_{qqql} \end{array}$	$ \begin{array}{c} \left(\overline{q_L} \lambda_A u_R \right) i \sigma_2 \left(\overline{q_L} \lambda_A d_R \right) \\ \left(\overline{l_L} u_R \right) i \sigma_2 \left(\overline{q_L} e_R \right) \\ \epsilon_{ABC} \left(\overline{u_R^{c \ A}} d_R^B \right) \left(\overline{u_R^{c \ C}} e_R \right) \end{array} $	$egin{array}{lll} \mathcal{O}_{qq}^{(8)} \ \mathcal{O}_{lq'} \ \mathcal{O}_{udue} \end{array}$
		$\left(\phi^{\dagger}\phi ight)^{2}$	$\mathcal{O}_{\phi 4}$	$rac{1}{3}\left(\phi^{\dagger}\phi ight)^{3}$	$\mathcal{O}_{\phi 6}$
	SVF	$ \begin{pmatrix} \phi^{\dagger}iD_{\mu}\phi \end{pmatrix} \left(\overline{l_{L}}\gamma^{\mu}l_{L}\right) \\ \left(\phi^{\dagger}iD_{\mu}\phi \right) \left(\overline{e_{R}}\gamma^{\mu}e_{R}\right) \\ \left(\phi^{\dagger}iD_{\mu}\phi \right) \left(\overline{q_{L}}\gamma^{\mu}q_{L}\right) \\ \left(\phi^{\dagger}iD_{\mu}\phi \right) \left(\overline{u_{R}}\gamma^{\mu}u_{R}\right) \\ \left(\phi^{T}i\sigma_{2}iD_{\mu}\phi \right) \left(\overline{u_{R}}\gamma^{\mu}d_{R}\right) $	$\mathcal{O}_{\phi l}^{(1)} \ \mathcal{O}_{\phi e}^{(1)} \ \mathcal{O}_{\phi e}^{(1)} \ \mathcal{O}_{\phi q}^{(1)} \ \mathcal{O}_{\phi u}^{(1)} \ \mathcal{O}_{\phi u d}^{(1)}$	$ \begin{pmatrix} \phi^{\dagger} \sigma_{a} i D_{\mu} \phi \end{pmatrix} \left(\overline{l_{L}} \gamma^{\mu} \sigma_{a} l_{L} \right) \\ \begin{pmatrix} \phi^{\dagger} \sigma_{a} i D_{\mu} \phi \end{pmatrix} \left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} q_{L} \right) \\ \begin{pmatrix} \phi^{\dagger} i D_{\mu} \phi \end{pmatrix} \left(\overline{d_{R}} \gamma^{\mu} d_{R} \right) $	$egin{aligned} \mathcal{O}^{(3)}_{\phi l} \ \mathcal{O}^{(3)}_{\phi q} \ \mathcal{O}^{(1)}_{\phi d} \end{aligned}$
	${ m SF}$	$egin{aligned} &\left(\phi^{\dagger}\phi ight)\left(\overline{l_{L}}\phie_{R} ight) \ &\left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}}\widetilde{\phi}u_{R} ight) \end{aligned}$	$egin{split} \mathcal{O}_{e\phi} \ \mathcal{O}_{u\phi} \end{split}$	$\left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}}\phid_{R} ight)$	${\cal O}_{d\phi}$
	Oblique	$ \begin{array}{c} \phi^{\dagger}\phi\left(D^{\mu}\phi\right)^{\dagger}D_{\mu}\phi \\ \phi^{\dagger}\sigma_{a}\phi \ W^{a}_{\mu\nu}B^{\mu\nu} \end{array} \end{array} $	$\mathcal{O}_{\phi}^{(1)} \ \mathcal{O}_{WB}$	$\left(\phi^{\dagger}D_{\mu}\phi\right)\left(\left(D^{\mu}\phi\right)^{\dagger}\phi ight)$	${\cal O}_{\phi}^{(3)}$

O co	perator efficient	Z pole	W data 95%	Low Energy % C.L. limits [Te	$\begin{array}{c} \text{LEP } 2\\ \text{V}^{-2} \end{array}$	Global fit
TLL	$\frac{\alpha_{ll}^{(1)}}{\Lambda^2}$ $\frac{\alpha_{ll}^{(3)}}{\alpha_{ll}^{(3)}}$	-	- $[-0.007, 0.009]$	[-0.033, 0.245] $[-0.088, -0.007]$	[-0.089, 0.024] [-0.046, 0.041]	[-0.065, 0.040] [-0.007, 0.006]
П	$\frac{\alpha_{lq}^{(1)}}{\Lambda^2} \\ \frac{\alpha_{lq}^{(3)}}{\Lambda^2}$	-	- $[-0.007, 0.009]$	[-0.027, 0.020] [-0.003, 0.090]	[-0.007, 0.433] $[-6.10^{-4}, 0.056]$	[-0.024, 0.022] [-0.003, 0.012]
RRRR	$\frac{\frac{\alpha_{ee}}{\Lambda^2}}{\frac{\alpha_{eu}}{\Lambda^2}}$ $\frac{\frac{\alpha_{ed}}{\Lambda^2}}{\frac{\alpha_{ed}}{\Lambda^2}}$	- - - -	- - -	$\begin{matrix} [-0.257, 0.031] \\ [-0.040, 0.057] \\ [-0.041, 0.048] \end{matrix}$	$\begin{matrix} [-0.057, 0.011] \\ [-0.195, 0.001] \\ [-0.002, 0.260] \end{matrix}$	$\begin{matrix} [-0.060, 0.006] \\ [-0.057, 0.030] \\ [-0.025, 0.059] \end{matrix}$
LRRL	$\frac{\frac{\alpha_{le}}{\Lambda^2}}{\frac{\alpha_{lu}}{\Lambda^2}} \\ \frac{\frac{\alpha_{lu}}{\Lambda^2}}{\frac{\alpha_{ld}}{\Lambda^2}} \\ \frac{\alpha_{qe}}{\Lambda^2}$	- - - -	- - -	$\begin{bmatrix} -1.146, 1.132 \\ [-0.090, 0.100] \\ [-0.078, 0.098] \\ [-0.052, 0.041] \end{bmatrix}$	$\begin{array}{l} [-0.059, 0.101] \\ [-0.005, 0.947] \\ [-1.263, 0.007] \\ [-0.006, 0.561] \end{array}$	$\begin{matrix} [-0.059, 0.101] \\ [-0.070, 0.116] \\ [-0.089, 0.085] \\ [-0.044, 0.048] \end{matrix}$
SVF	$\frac{\alpha_{\phi l}^{(1)}}{\Lambda^2}$ $\frac{\alpha_{\phi q}^{(1)}}{\Lambda^2}$ $\frac{\alpha_{\phi q}}{\Lambda^2}$ $\frac{\alpha_{\phi e}}{\Lambda^2}$ $\frac{\alpha_{\phi u}}{\Lambda^2}$ $\frac{\alpha_{\phi d}}{\Lambda^2}$ $\frac{\alpha_{\phi l}}{\Lambda^2}$ $\frac{\alpha_{\phi q}}{\Lambda^2}$ $\frac{\alpha_{\phi q d}}{\Lambda^2}$ $\frac{\alpha_{\phi u d}}{\Lambda^2}$	$ \begin{bmatrix} -0.004, 0.009 \\ [-0.021, 0.033] \\ [-0.011, 0.006] \\ [-0.054, 0.066] \\ [-0.130, 0.032] \\ [-0.007, 0.006] \\ [-0.008, 0.011] \\ - \end{bmatrix} $	- $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	$\begin{bmatrix} -0.023, 0.072 \end{bmatrix}$ $\begin{bmatrix} -0.025, 0.023 \end{bmatrix}$ $\begin{bmatrix} -0.147, 0.053 \end{bmatrix}$ $\begin{bmatrix} -0.035, 0.060 \end{bmatrix}$ $\begin{bmatrix} -0.060, 0.046 \end{bmatrix}$ $\begin{bmatrix} 0.010, 0.068 \end{bmatrix}$ $\begin{bmatrix} -0.090, -0.003 \end{bmatrix}$ $\begin{bmatrix} -0.090, -0.003 \end{bmatrix}$	$\begin{bmatrix} -0.037, 0.170 \end{bmatrix}$ $\begin{bmatrix} -0.014, 1.149 \end{bmatrix}$ $\begin{bmatrix} -0.233, 0.103 \end{bmatrix}$ $\begin{bmatrix} -0.076, 2.796 \end{bmatrix}$ $\begin{bmatrix} -3.727, 0.101 \end{bmatrix}$ $\begin{bmatrix} -0.151, 0.008 \end{bmatrix}$ $\begin{bmatrix} -0.002, 0.305 \end{bmatrix}$	$\begin{bmatrix} -0.003, 0.010 \end{bmatrix}$ $\begin{bmatrix} -0.013, 0.022 \end{bmatrix}$ $\begin{bmatrix} -0.012, 0.006 \end{bmatrix}$ $\begin{bmatrix} -0.026, 0.048 \end{bmatrix}$ $\begin{bmatrix} -0.049, 0.028 \end{bmatrix}$ $\begin{bmatrix} -0.005, 0.004 \end{bmatrix}$ $\begin{bmatrix} -0.007, 0.006 \end{bmatrix}$ $\begin{bmatrix} -0.012, 0.020 \end{bmatrix}$
Oblique	$\frac{\frac{\alpha_{\phi}^{(3)}}{\Lambda^2}}{\frac{\alpha_{WB}}{\Lambda^2}}$	$\left \begin{array}{c} [-0.031, 0.019] \\ [-0.006, 0.006] \end{array}\right $	$\begin{bmatrix} -0.041, 0.003 \end{bmatrix}$ $\begin{bmatrix} -0.019, 0.001 \end{bmatrix}$	[0.024, 0.174] [0.007, 0.068]	$\left[-0.344, 0.033 ight] \left[-0.155, 0.017 ight]$	[-0.031, 0.008] [-0.006, 0.004]

EN linits on coefficients on

O co	perator efficient	Z pole	W data 95%	Low Energy % C.L. limits [Te	LEP 2 V^{-2}]	Global fit
Ţ	$\begin{array}{c} \begin{array}{c} \frac{\alpha_{ll}^{(1)}}{\Lambda^2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	-	-	[-0.033, 0.245]	[-0.089, 0.024]	[-0.065, 0.040]
LLI		[-0.010, 0.012]	[-0.007, 0.009]	[-0.088, -0.007] [-0.027, 0.020]	[-0.046, 0.041] [-0.007, 0.433]	[-0.007, 0.006] [-0.024, 0.022]
	$\frac{\alpha_{lq}^{(3)}}{\Lambda^2}$	-	[-0.007, 0.009]	[-0.003, 0.090]	$\left[-6.10^{-4}, 0.056\right]$	$\left[-0.003, 0.012 ight]$
RR	$\frac{\alpha_{ee}}{\Lambda^2}$	_	-	[-0.257, 0.031]	[-0.057, 0.011]	[-0.060, 0.006]
RR	$\frac{\frac{\alpha_{ed}}{\Lambda^2}}{\frac{\alpha_{ed}}{\Lambda^2}}$		-	[-0.040, 0.057] [-0.041, 0.048]	[-0.195, 0.001] [-0.002, 0.260]	[-0.057, 0.030] [-0.025, 0.059]
Ĺ	$\frac{\alpha_{le}}{\Lambda^2}$	-	-	[-1.146, 1.132]	[-0.059, 0.101]	[-0.059, 0.101]
LRR	$\frac{\frac{\alpha_{ld}}{\Lambda^2}}{\frac{\alpha_{ld}}{\Lambda^2}}$	-	-	[-0.090, 0.100] [-0.078, 0.098]	[-0.005, 0.947] [-1.263, 0.007]	[-0.070, 0.116] [-0.089, 0.085]
	$rac{\dot{lpha}_{qe}}{\Lambda^2}$	_	-	[-0.052, 0.041]	[-0.006, 0.561]	[-0.044, 0.048]
	$\frac{\alpha_{\phi l}^{(1)}}{\Lambda_{(1)}^2}$	[-0.004, 0.009]	-	$\left[-0.023, 0.072 ight]$	$\left[-0.037, 0.170 ight]$	$\left[-0.003, 0.010 ight]$
	$\frac{\alpha_{\phi q}^{(1)}}{\Lambda^2}$	[-0.021, 0.033]	-	$\left[-0.025, 0.023\right]$	[-0.014, 1.149]	[-0.013, 0.022]
_	$\frac{\alpha_{\phi e}^{(1)}}{\Lambda^2}$	[-0.011, 0.006]	-	[-0.147, 0.053]	$\left[-0.233, 0.103 ight]$	[-0.012, 0.006]
SVF	$\frac{\alpha_{\phi u}^{(1)}}{\Lambda_{(1)}^2}$	[-0.054, 0.066]	-	$\left[-0.035, 0.060 ight]$	$\left[-0.076, 2.796\right]$	$\left[-0.026, 0.048 ight]$
	$\frac{\alpha_{\phi d}^{(1)}}{\Lambda_{(3)}^2}$	[-0.130, 0.032]	-	[-0.060, 0.046]	[-3.727, 0.101]	[-0.049, 0.028]
	$\frac{\alpha_{\phi l}^{(3)}}{\Lambda_{(3)}^2}$	[-0.007, 0.006]	[-0.009, 0.006]	[0.010, 0.068]	$\left[-0.151, 0.008 ight]$	$\left[-0.005, 0.004 ight]$
	$\frac{\frac{\alpha_{\phi q}^{(3)}}{\Lambda^2}}{\frac{\alpha_{\phi ud}}{\Lambda^2}}$	[-0.008, 0.011]	[-0.009, 0.007] [-0.015, 0.018]	$\begin{matrix} [-0.090, -0.003] \\ [-0.006, 0.208] \end{matrix}$	[-0.002, 0.305]	[-0.007, 0.006] [-0.012, 0.020]
Oblique	$\frac{\frac{\alpha_{\phi}^{(3)}}{\Lambda^2}}{\frac{\alpha_{WB}}{\Lambda^2}}$	$\begin{bmatrix} -0.031, 0.019 \\ [-0.006, 0.006] \end{bmatrix}$	$[-0.041, 0.003] \\ [-0.019, 0.001]$	[0.024, 0.174] [0.007, 0.068]	[-0.344, 0.033] [-0.155, 0.017]	[-0.031, 0.008] [-0.006, 0.004]

EN linits on coefficients on

O: co	perator efficient	Z pole	W data $95%$	Low Energy % C.L. limits [Te	LEP 2 V^{-2}]	Global fit
LL	$\begin{array}{c} & \frac{\alpha_{ll}^{(1)}}{\Lambda^2} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $			[-0.033, 0.245]	[-0.089, 0.024]	[-0.065, 0.040]
LL			-	[-0.033, -0.007] [-0.027, 0.020]	[-0.040, 0.041] [-0.007, 0.433]	[-0.007, 0.000] [-0.024, 0.022]
	$rac{lpha_{lq}}{\Lambda^2}$	-	[-0.007, 0.009]	[-0.003, 0.090]	$\left[-6 \cdot 10^{-4}, 0.056\right]$	$\left[-0.003, 0.012 ight]$
R	$\frac{\alpha_{ee}}{\Lambda^2}$	-	-	$\left[-0.257, 0.031 ight]$	$\left[-0.057, 0.011 ight]$	$\left[-0.060, 0.006 ight]$
RRI	$\begin{array}{c} \displaystyle \operatorname{All} & $		-	$\left[-0.040, 0.057 ight]$ $\left[-0.041, 0.048 ight]$	$\left[-0.195, 0.001 ight] \\ \left[-0.002, 0.260 ight]$	$\left[-0.057, 0.030 ight] \ \left[-0.025, 0.059 ight]$
. 1	$\frac{\alpha_{le}}{\Lambda^2}$	_	-	[-1.146, 1.132]	$\left[-0.059, 0.101 ight]$	[-0.059, 0.101]
RRI	$\frac{\alpha_{lu}}{\Lambda^2}$	-	-	[-0.090, 0.100]	[-0.005, 0.947]	[-0.070, 0.116]
<u> </u>	$\Pi \qquad \frac{\alpha_{ld}}{\Lambda^2} \\ \frac{\alpha_{qe}}{\Lambda^2}$	-	-	[-0.078, 0.098] [-0.052, 0.041]	[-1.263, 0.007] [-0.006, 0.561]	[-0.089, 0.085] [-0.044, 0.048]
	$\frac{\alpha_{\phi l}^{(1)}}{\Lambda^2}$	[-0.004, 0.009]	-	$\left[-0.023, 0.072 ight]$	$\left[-0.037, 0.170 ight]$	$\left[-0.003, 0.010 ight]$
	$\frac{\alpha_{\phi q}^{(1)}}{\Lambda_{1}^{2}}$	[-0.021, 0.033]	-	$\left[-0.025, 0.023 ight]$	$\left[-0.014, 1.149 ight]$	$\left[-0.013, 0.022 ight]$
r	$\frac{\alpha_{\phi e}^{(1)}}{\Lambda_{(1)}^2}$	[-0.011, 0.006]	-	$\left[-0.147, 0.053 ight]$	$\left[-0.233, 0.103\right]$	$\left[-0.012, 0.006 ight]$
SVF	$\frac{\alpha_{\phi u}^{(2)}}{\Lambda_{1}^{2}}$	[-0.054, 0.066]	-	$\left[-0.035, 0.060 ight]$	$\left[-0.076, 2.796 ight]$	$\left[-0.026, 0.048 ight]$
•1	$\frac{\alpha_{\phi d}^{(1)}}{\Lambda_{(3)}^2}$	[-0.130, 0.032]	-	[-0.060, 0.046]	$\left[-3.727, 0.101 ight]$	$\left[-0.049, 0.028 ight]$
	$\frac{\alpha_{\phi l}}{\Lambda_{2}^{2}}$	$\left[-0.007, 0.006 ight]$	[-0.009, 0.006]	[0.010, 0.068]	$\left[-0.151, 0.008 ight]$	$\left[-0.005, 0.004 ight]$
	$\frac{\frac{\alpha_{\phi q}^{(3)}}{\Lambda^2}}{\frac{\alpha_{\phi ud}}{\Lambda^2}}$	[-0.008, 0.011]	$\begin{bmatrix} -0.009, 0.007 \\ [-0.015, 0.018 \end{bmatrix}$	$\begin{matrix} [-0.090, -0.003] \\ [-0.006, 0.208] \end{matrix}$	[-0.002, 0.305]	[-0.007, 0.006] [-0.012, 0.020]
Oblique	$\frac{\frac{\alpha_{\phi}^{(3)}}{\Lambda^2}}{\frac{\alpha_{WB}}{\Lambda^2}}$	$ \begin{bmatrix} -0.031, 0.019 \\ [-0.006, 0.006] \end{bmatrix} $	$[-0.041, 0.003] \\ [-0.019, 0.001]$	[0.024, 0.174] [0.007, 0.068]	[-0.344, 0.033] [-0.155, 0.017]	$[-0.031, 0.008] \\ [-0.006, 0.004]$

EN limits coefficients on

Problems

- Ignores relations among coefficients
- No clear lessons about New Physics or direct relation with Specific Models
- No direct connection to Collider Searches

We would like to be more specific but retain, as far as possible, model independence

"Particle" approach

Explore all possible extensions of the SM with new particles (fields) that can give observable contributions

- Need to be systematic
- Need sensible assumptions
- Direct connection to particle searches
- Simple relation to Models

General Extensions of the SM

Condition: Sizable effects

symmetries

• New Physics enters at Tree Level

(Theories with R-, T-, KK-... parity not studied here)

Renormalizable Interactions

It is possible to write a general Lagrangian

General Extra Leptons

- Spin $\frac{1}{2}$ uncoloured particles
- Vectorlike

flavour structure flavour structure

- GUT, Xdims, seesaw
- Contribute to EWPT via mixing with SM leptons, induced by Yukawa couplings

$$\mathcal{L} \supset \sum_{L} \left\{ \eta_L \left(\overline{L} \not D L - M_L \overline{L}L \right) - y_{Le} \overline{L_L} \Phi_{Le} e - y_{Ll} \overline{L_R} \Phi_{Ll} l \right\} + \text{h.c.}$$

All Types of Extra Leptons

Leptons Notation	N	E	$\left(\begin{array}{c}N\\E^{-}\end{array}\right)$ Δ_{1}	$ \begin{pmatrix} E^{-} \\ E^{} \end{pmatrix} $ $ \Delta_3 $	$ \left(\begin{array}{c} E^+\\ N\\ E^-\\ \Sigma_0 \end{array}\right) $	$ \left(\begin{array}{c} N\\ E^{-}\\ E^{}\\ \Sigma_{1} \end{array}\right) $
$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$	$(1,1)_0$	$(1,1)_{-1}$	$(1,2)_{-\frac{1}{2}}$	$(1,2)_{-\frac{3}{2}}$	$(1,3)_0$	$(1,3)_{-1}$
Spinor	Dirac or Majorana	Dirac	Dirac	Dirac	Dirac or Majorana	Dirac

SeesawType I
$$\rightarrow$$
 singlet NMessengersType III \rightarrow triplet Σ_0

Global Fits

Quality of the fit (compared to SM)

Coupling	$n_{ m par}^{ m new}$	N	E	$-\Delta \chi^2_{\rm min} \\ \Delta_1$	$(\chi^2_{ m min}/{ m d.o.f.})$ Δ_3	Σ_0	Σ_1
General Universal Only with e Only with μ Only with τ	3 1 1 1 1	$1.2 (1.11) \\0.2 (0.94) \\0.4 (1.07) \\0.1 (1.08) \\1 (1.06)$	$\begin{array}{c} 0.2(1.13)\\ 0 (0.94)\\ 0 (1.08)\\ 0.2(1.08)\\ 0 (1.08)\end{array}$	$\begin{array}{c} 1.7(1.09)\\ 0 (0.94)\\ 0 (1.08)\\ 1.7(1.04)\\ 0 (1.08)\end{array}$	$\begin{array}{c} 1.7(1.09)\\ 0.4(0.93)\\ 0.9(1.06)\\ 0(1.08)\\ 0.5(1.07)\end{array}$	$\begin{array}{c} 1.1(1.11)\\ 0.5(0.93)\\ 0.8(1.06)\\ 0(1.08)\\ 0.4(1.07)\end{array}$	$\begin{array}{ccc} 0 & (1.14) \\ 0 & (0.94) \\ 0 & (1.08) \\ 0 & (1.08) \\ 0 & (1.08) \end{array}$

Marginal improvement at best

Constraints on Mixings $U \sim \frac{yv}{M}$

Coupling		N	E	Δ_1	Δ_3	Σ_0	Σ_1
Only with e	U <	0.051	0.020	0.020	0.028	0.020	0.016
	$ U_{\min} =$	0.023	0	0	0.019	0.012	0
Only with μ	U <	0.031	0.029	0.048	0.028	0.018	0.024
	$ U_{\min} =$	0.012	0.014	0.033	0	0	0.005
Only with $ au$	U <	0.087	0.033	0.035	0.045	0.030	0.029
	$ U_{\min} =$	0.056	0	0	0.027	0.016	0
Universal	U <	0.028	0.019	0.020	0.025	0.017	0.013
	$ U_{\min} =$	0.013	0	0	0.014	0.010	0

Constraints on Mixings $U \sim \frac{yv}{M}$

Coupling		N	E	Δ_1	Δ_3	Σ_0	Σ_1
Only with e	$ U < U_{\min} =$	$0.051 \\ 0.023$	0.020 0	0.020 0	$0.028 \\ 0.019$	$0.020 \\ 0.012$	0.016 0
Only with μ	$ U < U_{\min} =$	$0.031 \\ 0.012$	$0.029 \\ 0.014$	$0.048 \\ 0.033$	0.028	0.018 0	$0.024 \\ 0.005$
Only with $ au$	$ U < U_{\min} =$	$0.087 \\ 0.056$	$\begin{array}{c} 0.033 \\ 0 \end{array}$	$\begin{array}{c} 0.035\\ 0\end{array}$	$0.045 \\ 0.027$	$0.030 \\ 0.016$	$\begin{array}{c} 0.029 \\ 0 \end{array}$
Universal	$ U < U_{\min} =$	0.028 0.013	$\begin{array}{c} 0.019 \\ 0 \end{array}$	0.020	$0.025 \\ 0.014$	$0.017 \\ 0.010$	$\begin{array}{c} 0.013 \\ 0 \end{array}$

Constraints on Mixings $U \sim \frac{yv}{M}$										
$M \ge 340 \text{GeV} - 3.4 \text{TeV}$ for $y = 0.1 - 1$										
Coupling		N	E	Δ_1	Δ_3	Σ_0	Σ_1			
Only with e	$ U < U_{\min} =$	0.051 0.023	$\begin{array}{c} 0.020\\ 0\end{array}$	$\begin{array}{c} 0.020\\ 0\end{array}$	$0.028 \\ 0.019$	$0.020 \\ 0.012$	$\begin{array}{c} 0.016 \\ 0 \end{array}$			
Only with μ	$ U < U_{\min} =$	$0.031 \\ 0.012$	$0.029 \\ 0.014$	0.048 0.033	0.028	0.018 0	$0.024 \\ 0.005$			
Only with $ au$	$ U < U_{\min} =$	0.087 0.056	0.033 0	$\begin{array}{c} 0.035\\ 0\end{array}$	$0.045 \\ 0.027$	$0.030 \\ 0.016$	$\begin{array}{c} 0.029 \\ 0 \end{array}$			
Universal	$ U < U_{\min} =$	0.028 0.013	$\begin{array}{c} 0.019 \\ 0 \end{array}$	0.020	$\begin{array}{c} 0.025\\ 0.014\end{array}$	$0.017 \\ 0.010$	$\begin{array}{c} 0.013 \\ 0 \end{array}$			

General Extra Vectors

- Spin 1 particles
- GUT, Xdims, Technicolor, Little Higgs, ...
- Candidates for early discovery at LHC
- Contribute to EWPT via mixing with SM gauge bosons and four fermion operators

All Types of Extra Vectors

Vector	${\cal B}_{\mu}$	${\cal B}^1_\mu$	\mathcal{W}_{μ}	${\cal W}^1_\mu$	${\cal G}_{\mu}$	${\cal G}^1_\mu$	${\cal H}_{\mu}$	${\cal L}_{\mu}$
Irrep	$(1, 1)_{0}$	$(1, 1)_1$	(1, Adj) ₀	$(1, \mathrm{Adj})_1$	$(\mathrm{Adj},1)_0$	$(\mathrm{Adj},1)_1$	(Adj, Adj) ₀	$(1,2)_{-rac{3}{2}}$
Vector	${\cal U}_{\mu}^2$	${\cal U}^5_\mu$	\mathcal{Q}^1_μ	${\cal Q}^{\sf 5}_{\mu}$	\mathcal{X}_{μ}	${\cal Y}^1_\mu$	${\cal Y}^5_\mu$	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{\frac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, \mathrm{Adj})_{rac{2}{3}}$	$\left(\overline{6},2\right)_{rac{1}{\overline{6}}}$	$\left(\overline{6},2 ight)_{-rac{5}{6}}$	

Quantum numbers determine possible couplings. For instance, $\mathcal{L} \supset \mathcal{B}^{1}_{\mu} \left[\left(g_{\mathcal{B}^{1}}^{du} \right)_{ij} \overline{d_{R}^{i}} \gamma^{\mu} u_{R}^{j} + g_{\mathcal{B}^{1}}^{\phi} i D^{\mu} \phi^{T} i \sigma_{2} \phi \right]$

 $\mathcal{B}^1 \implies$ Pair of Charged vectors

Electroweak breaking:

 $\mathcal{W} \implies \begin{cases} \text{One neutral vector +} \\ \text{Pair of Charged vectors} \end{cases}$

Examples of Symmetry Breaking Patterns

Vector	Model
\mathcal{B}_{μ}	U(1)', Extra Dimensions
\mathcal{B}^1_μ	$SU(2)_R \otimes U(1)_X \to U(1)_Y$
\mathcal{W}_{μ}	$SU(2)_1 \otimes SU(2)_2 \to SU(2)_D \equiv SU(2)_L$, Extra Dimensions
\mathcal{W}^1_μ	$SU(4) \rightarrow U(1) \otimes (SU(3) \rightarrow SU(2))$
\mathcal{G}_{μ}	$SU(3)_1 \otimes SU(3)_2 \to SU(3)_D \equiv SU(3)_c$, Extra Dimensions
\mathcal{G}^1_μ	$SO(12) \to (SO(8) \to SU(3)) \otimes (SU(2) \otimes SU(2) \to SU(2)_D \to U(1)_Y)$
\mathcal{H}_{μ}	$SU(6) ightarrow SU(3) \otimes SU(2)$
\mathcal{L}_{μ}	$G_2 \to SU(2) \otimes (SU(2) \to U(1)_Y)$
$\mathcal{U}^2_\mu, \; \mathcal{U}^5_\mu$	$SU(4) \to SU(3) \otimes U(1)$
$\mathcal{Q}^1_\mu, \mathcal{Q}^5_\mu$	$SU(5) \to SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
\mathcal{X}_{μ}	$SU(6) \rightarrow U(1) \otimes SU(3) \otimes (SU(3) \rightarrow SU(2))$
$\mathcal{Y}^1_\mu, \; \mathcal{Y}^5_\mu$	$F_4 \to SU(3) \otimes (SU(3) \to SU(2) \otimes U(1))$

Limits on General Extra Vectors $G \sim \frac{g}{M}$

Vector V_{μ}	$\begin{array}{c} -\Delta\chi^2_{\rm min} \\ (\chi^2_{\rm min}/{\rm d.o.f.}) \end{array}$	Parameter $G_V^k \equiv g_V^k / M_V$	Best Fit $[\text{TeV}^{-1}]$	Bounds $[\text{TeV}^{-1}]$	C.L.
\mathcal{B}_{μ}	7.35	$G^{\phi}_{\mathcal{B}}$	-0.045	[-0.098, 0.098]	95%
	(0.77)	$G^{\overline{l}}_{\mathcal{B}}$	0.021	[-0.210, 0.210]	95%
		$G^q_{\mathcal{B}}$	-0.89	-	-
		$G^e_{\mathcal{B}}$	0.048	[-0.300, 0.300]	95%
		$G^u_{\mathcal{B}}$	-2.6	-	-
		$G^d_{\mathcal{B}}$	-6.0	-	-
\mathcal{W}_{μ}	1.51	$G^{\phi}_{\mathcal{W}}$	0.002	[-0.12, 0.12]	1σ
·	(0.79)	$G^{l}_{\mathcal{W}}$	0.004	[-0.26, 0.26]	95%
		$G^{q}_{\mathcal{W}}$	-9.6	_	-
\mathcal{B}^1_μ	0.16	$G^{\phi}_{\mathcal{B}^1}$	$6 \cdot 10^{-4}$	[-0.11, 0.11]	95%
	(0.79)	$G^{du}_{\mathcal{B}^1}$	6.6	_	-
\mathcal{W}^1_μ	0.65	$ G^{\phi}_{\mathcal{W}^{1}} $	0.18	< 0.50	95%
P~	(0.78)				
\mathcal{L}_{μ}	$0 \\ (0.79)$	$ G^{el}_{\mathcal{L}} $	0	$< \left(\begin{array}{rrrr} 0.29 & 0.33 & 0.39 \\ 0.34 & - & - \\ 0.39 & - & - \end{array}\right)$	95%

Li	mits on	General	Extra V	/ectors $G \sim \frac{g}{M}$
\mathcal{U}_{μ}^{2}	0 (0.79)	$ G^{ed}_{\mathcal{U}^2} $	0	$< \begin{pmatrix} 0.21 & 0.49 & 0.49 \\ - & - & - \\ - & - & - \end{pmatrix}$ 95%
		$ G^{lq}_{\mathcal{U}^2} $	0	$< \left(\begin{array}{cccc} 0.12 & 0.29 & 0.29 \\ 0.56 & 0.65 & - \\ - & - & - \end{array}\right) 95\%$
\mathcal{U}^5_μ	$\leq 2.77 \\ (0.77)$	$ G^{eu}_{\mathcal{U}^5} $	$0.43 \\ [1,2]$	$< \begin{pmatrix} 0.25 & 0.62 & - \\ - & - & - \\ - & - & - \end{pmatrix}$ 95%
\mathcal{Q}^1_μ	$\leq 0.45 \\ (0.79)$	$ G^{ul}_{\mathcal{Q}^1} $	$\begin{array}{c} 0.27 \ [1,2] \end{array}$	$< \left(\begin{array}{cccc} 0.22 & 0.54 & -\\ 0.57 & - & -\\ - & - & - \end{array}\right) \qquad 95\%$
\mathcal{Q}^5_μ	$\leq 3.36 \\ (0.78)$	$ G^{dl}_{\mathcal{Q}^5} $	$0.87 \\ [1,1]$	$< \left(\begin{array}{rrrr} 1.06 & 0.58 & - \\ 1.07 & - & - \\ 1.07 & - & - \end{array}\right) \qquad 95\%$
		$ G^{eq}_{\mathcal{Q}^5} $	$0.64 \\ [1,1]$	$< \left(\begin{array}{cccc} 0.78 & 1.0 & 1.2 \\ - & - & - \\ - & - & - \end{array}\right) 95\%$
\mathcal{X}_{μ}	≤ 2.86 (0.77)	$ G^{lq}_{\mathcal{X}} $	$0.65 \ [1,2]$	$< \left(\begin{array}{ccc} 0.27 & 0.93 & 0.57 \\ 1.04 & 1.40 & - \\ - & - & - \end{array}\right) 95\%$

Z' Bosons: New Singlets \mathcal{B}

Lepton and Higgs couplings

Popular Z' Models

	95% C.L. Electroweak Limits on								
	$\frac{\sin\theta_{ZZ'}\left[\times 10^{-4}\right]}{2}$				$M_{Z'}$ [TeV]				
Model	EWPD	LEP 2	All Data		EWPD	LEP 2	All Data		
	(no LEP 2)				(no LEP 2)				
Z'_{χ}	[-10, 7]	[-80, 118]	[-11, 7]		1.123	0.772	1.022		
Z'_ψ	$[-19, \ 7]$	[-196, 262]	[-19, 7]		0.151	0.455	0.476		
Z'_η	[-22, 25]	[-150, 164]	[-23, 27]		0.422	0.460	0.488		
Z'_I	$[-\hspace{0.15cm}5,\hspace{0.15cm}9]$	[-144, 96]	[-5, 10]		1.207	0.652	1.105		
Z'_N	$[-14, \ 6]$	[-165, 223]	[-14, 6]		0.635	0.421	0.699		
Z_S'	$[-\hspace{0.15cm}9,\hspace{0.15cm}5]$	[-85, 129]	[-10, 5]		1.249	0.728	1.130		
Z'_R	$\begin{bmatrix} -17, & 7 \end{bmatrix}$	[-166, 177]	[-15, 5]		0.439	0.724	1.130		
Z_{LR}^{\prime}	$\begin{bmatrix} -13, 5 \end{bmatrix}$	[-147, 189]	[-12, 4]		0.999	0.667	1.162		

Popular Z' Models

New Particles and the Higgs Mass

New Particles and the Higgs Mass

Vector singlet and fermiophobic vector triplet

Positive T parameter

Interplay of several new particles

Solving the A_{FB}^{b} anomaly with Extra Vectors

SM with $M_H = 115 \text{ GeV} \rightarrow \text{Pull}[A_{\text{FB}}^b] = -2.6$

SM with extra neutral (and charged) singlet vector bosons coupling to 3rd family:

	\mathcal{B}				$\mathcal{B}+\mathcal{B}^1$	
	Free	${\it G}_{{\cal B}}^b\equiv 1$	$M_H\!=\!200{\rm GeV}$	$M_H = 500 \mathrm{GeV}$	Free	${\it G}_{{\cal B}}^b\equiv 1$
$-\Delta\chi^2_{ m min}$	8.2	2.7	14.1	47.7	8.2	8.2
$Pull[A^b_{FB}]$	-0.5	-2.5	-0.4	-0.4	-0.5	-0.5
$G^b_{\mathcal{B}}$ [TeV $^{-1}$]	6.4	1	3.8	2.4	3.2	1
$G^{\phi}_{\mathcal{B}}$ [TeV $^{-1}$]	0.082	0.078	0.13	0.19	0.16	0.53
${}^{G^{\phi}_{\mathcal{B}^1}}$ [TeV $^{-1}$]	-	-	-	-	0.20	0.73

Solving the A^b_{FB} anomaly with Extra Vectors

Corfú 2010

"Custodial" protection of $Z \rightarrow bb$

Cancel singlet against triplet contributions:

Conclusions

New particles can be classified into irreps of SM *full* gauge symmetry

With mild assumptions, explicit general Lagrangians can be written

Direct contact with models and with collider physics

Conclusions

Constraints from Precision Electroweak Data

- EWPT place limits on *couplings/masses* Different dependence at hadron colliders !
- Mixings of extra leptons and SM leptons constrained enough to make difficult to observe heavy neutrino singlets at LHC
- Leptonic couplings of new vectors small (LEP 2), or large masses
- Hadronic couplings can be large
- Cancellations of the effects of different new particles can open new regions in parameter space
- Correlations with the Higgs mass value

Conclusions

LHC searches

Drell-Yan dilepton resonance $V \rightarrow II$ (neutral vectors)

- Only for \mathcal{B} and \mathcal{W}
- Requires large enough couplings
- EWPT + Tevatron → Little space for discovery at 7 TeV and I fb⁻¹ (better at I4 TeV and 30 fb⁻¹)
 V → N (charged vectors)
- Only for \mathcal{W} (or \mathcal{B}^{1} if light RH neutrinos)
- Similar considerations but larger backgrounds $V \rightarrow jj, V \rightarrow tt, V \rightarrow tb, ...$
- Main signals for leptophobic vector bosons
- Less stringent mass limits

Corfú 2010