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1. A climbing scalar in D dimensions.

We study low-energy effective actions of the type

S =
1

2κ2

∫
dDx

√−g

[
R − 1

2
(∂φ)2 − V (φ) + . . .

]
,

One study cosmological solutions with the ansatz

ds2 = − e2B(t) dt2 + e2A(t) dx · dx φ = φ(t) .

A very convenient gauge choice is

V e2B = M2 .

M is the mass scale of potential V , allows to find exact

solutions of the field equations in a “parametric” time



t, related to the cosmological time η by dη = eB dt. Let

β =

√
D − 1

D − 2
, τ = M β t , ϕ =

β φ√
2

, a = (D−1)A .

Denote all τ derivatives by “dots”.

The independent eqs take the convenient form

ȧ2 − ϕ̇2 = 1

ϕ̈ + ȧ ϕ̇ +
(
1 + ϕ̇2

) 1

2V

∂V

∂ϕ
= 0 .

For an expanding phase ( ȧ > 0) and exponential po-

tentials V = M2 e2 γ ϕ field eqs. combine to

ϕ̈ + ϕ̇
√

1 + ϕ̇2 − γ
(
1 + ϕ̇2

)
= 0 .



Claim :

• For γ < 1, the scalar ϕ can descend or climb the

potential after the big-bang .

• For γ ≥ 1, the scalar ϕ is forced to climb immediately

after the big-bang .

We begin by considering the “critical” case, γ = 1 ;

one can solve simply field eqs. by letting

ȧ = cosh f , ϕ̇ = sinh f .



One gets

ḟ + e f = 0 .

The general solution is

ϕ̇ =
1

2(τ − τ0)
− 1

2
(τ − τ0) ,

ȧ =
1

2(τ − τ0)
+

1

2
(τ − τ0) .

The complete solution (τ0 = 0) is

ds2 = e
2a0
D−1 |τ | 1

D−1 e
τ2

2(D−1) dx · dx − e−2ϕ0 |τ |−1 e
τ2
2

(
dτ

Mβ

)2

,

eϕ = eϕ0 |τ |12 e−
τ2
4 .

(E.D. and J. Mourad, 2000).



Upshot: τ0 defines the Big Bang, other integration con-

stants fix ϕ and a at a later reference time.

→ ϕ can only emerge from the Big Bang climbing up

the potential !

- The motion will revert at a time τ∗ (τ∗−τ0 = 1), then

ϕ will begin to slide down the potential.

• However for small γ, the dilaton should be able to

also emerge from the Big Bang by going down (almost

flat potential).

Indeed for γ < 1 the system does admit both kinds of

solutions.



The first describes again a climbing scalar

ϕ̇ =
1

2

[√
1− γ

1 + γ
coth

(
τ

2

√
1− γ2

)
−

√
1 + γ

1− γ
tanh

(
τ

2

√
1− γ2

)]

ȧ =
1

2

[√
1− γ

1 + γ
coth

(
τ

2

√
1− γ2

)
+

√
1 + γ

1− γ
tanh

(
τ

2

√
1− γ2

)]

This motion reverts at a time τ? such that

tanh
(

τ?

2

√
1− γ2

)
=

√
1− γ

1 + γ
.

In contrast with the “critical” case γ = 1 now the dila-

ton approaches, again in the “parametric” time τ , the

limiting speed

ϕ̇lim = − γ√
1− γ 2

.



This limiting speed diverges when γ approaches one,

the critical value. The second type of solution, that

becomes singular and thus disappears altogether in the

critical case, for γ < 1 reads

ϕ̇ =
1

2

[√
1− γ

1 + γ
tanh

(
τ

2

√
1− γ2

)
−

√
1 + γ

1− γ
coth

(
τ

2

√
1− γ2

)]

ȧ =
1

2

[√
1− γ

1 + γ
tanh

(
τ

2

√
1− γ2

)
+

√
1 + γ

1− γ
coth

(
τ

2

√
1− γ2

)]
.

The dilaton now emerges from the Big Bang while go-

ing down the potential, at a speed larger than the lim-

iting value, but decreases as a result of cosmological

friction.



Mechanical analogy

- non-relativistic particle moving in a viscous medium

under a constant force f .

m v̇ + b v = f

The solution is

v(t) = (v0 − vl) e−bt/m + vl ,

where limt→∞ v(t) = vl = f/b.

There are two branches of initial conditions :

v0 > vl and v0 < vl .



The string coupling is

eφ =
[
sh

(
τ

2

√
1− γ2

)]β
√

2
1+γ

[
ch

(
τ

2

√
1− γ2

)]− β
√

2
1−γ

for the climbing scalar and

eφ =
[
ch

(
τ

2

√
1− γ2

)]β
√

2
1+γ

∣∣∣∣sh
(

τ

2

√
1− γ2

)∣∣∣∣
− β

√
2

1−γ

for the descending scalar.

• The climbing solutions are perturbative near the big-

bang, gs = eΦ → 0 for τ → 0.

• Large-τ behaviors of these solutions correspond to the

attractor solution (Lucchin, Matarrese), which shows

that for γ < 1/
√

D − 1 we get power-like inflation.



• At the “critical” value γ = 1 the attractor disappears.

In the supercritical regime γ > 1 the solutions are

ϕ̇ =
1

2

[√
γ − 1

γ + 1
cot

(
τ

2

√
γ2 − 1

)
−

√
γ + 1

γ − 1
tan

(
τ

2

√
γ2 − 1

)]

ȧ =
1

2

[√
γ − 1

γ + 1
cot

(
τ

2

√
γ2 − 1

)
+

√
γ + 1

γ − 1
tan

(
τ

2

√
γ2 − 1

)]

where τ ∈ (0, π√
γ2−1

). At the same time, the descending

solution ceases to exist. Therefore, for γ ≥ 1, close to

the Big Bang singularity at τ = 0 the dilaton is forced

to climb up the potential.



The turning point τ? is determined by the equation

tan

(
τ?

2

√
γ2 − 1

)
=

√
γ − 1

γ + 1
,

then the scalar goes down the potential, approaching

asymptotically an infinite speed in τ . The string cou-

pling for γ > 1 is

eφ =
[
sin

(
τ

2

√
γ2 − 1

)]β
√

2
1+γ

[
cos

(
τ

2

√
γ2 − 1

)] β
√

2
γ−1

.



2. Connection to String Theory.

The climbing appears in various contexts :

• “Brane supersymmetry breaking” (Antoniadis,E.D.,Sagnotti,99)

in the 10d model (Sugimoto, 99):

- gravitational (closed-string) sector is SUSY

- charged (open string) spectrum is non-SUSY (non-

linear SUSY) (E.D.,J.Mourad,2000).

The scalar potential is induced at open string tree-level

(disc). The 10d model corresponds precisely to the

“critical” case γ = 1.

• KKLT moduli stabilisation : critical behavior in 4d.



3. Moduli stabilization, climbing and trapping.

Moduli stabilization: recent progress from string com-

pactifications with fluxes.

Classical toy model : KKLT. Anticipate main results :

- the KKLT system has also the critical behavior with

climbing scalar: instrumental for moduli trapping.

Starting point: 4d effective action described by

W = W0 + a e−bT , K = −3 ln(T + T̄ ) .



They determine the scalar potential

VF = eK
[
|DTW |2 − 3|W |2

]
=

b

(T + T̄ )2

{
2Re(a W̄0e−bT ) +

|a|2
3

[6 + b(T + T̄ )] e−b(T+T̄ )
}

.

The KKLT potentials contain an ”uplift” term,

V = VF +
c

(T + T̄ )n
,

Its (logarithmic) slope corresponds precisely to the crit-

ical value for a climbing behavior in four dimensions for

n = 3. This comes from an F -term uplift of the vac-

uum energy. In the asymptotic region Re T → ∞, the

potential is dominated by the uplift.
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The complex field T defines the dilaton ΦT - axion θ

KKLT system

T = e
ΦT√

3 + i
θ√
3

,

where ΦT is a canonically-normalized field.



The effective action is

S =
1

2k2
4

∫
d4x

√
g

[
R− 1

2
(∂ΦT )2 − 1

2
e
− 2√

3
ΦT (∂θ)2 − V (ΦT , θ)

]
.

Perform the field redefinitions

ΦT =
2√
3

x , θ =
2√
3

y , τ = M

√
3

2
t .

The scalar potential becomes

V =
c

8
e−2x +

b

2
e−

4x
3 −b e

2x
3

[
Re( aW0 e

−2iby
3 )

+
|a|2
3

(
3 + b e

2x
3

)
e−b e

2x
3

]
.

The uplift term corresponds precisely to the critical

value γ = 1.



Further field redefinition (µ = 4/3 for KKLT) :

dx

dτ
= r w , e−µx dy

dτ
= r

√
1− w2 ,

with w ∈ [−1,1]. By keeping only the uplift in the scalar

potential, one finally gets the field eqs.

dr

dτ
+ r

√
1 + r2 − γ

(
1 + r2

)
w = 0 ,

dw

dτ
+ (1− w2)

(
µ

2
r − γ

r

)
= 0 .

The first eq. is strikingly similar to the one-field case

but now the parameter γ is now the dynamical quantity

γ e(u) = γ w

that can take up any value in the interval (−γ, γ).



In addition to the LM attractor

r0 = ± γ

1− γ2
, w0 = ±1 ,

there are other attractors. Interesting one:

r0 =

√
2 γ

µ
, w0 =

1√
γ

(
γ + µ

2

) ,

which exists provided

γ ≥ γ0 =

√
1 +

µ2

16
− µ

4
,

γ0 = 0.7207592197 for µ = 4/3. Hence, this attractor

is available in the KKLT system, where

r0 =

√
3

2
, w0 =

√
3

5
.



Modulus ΦT is trapped in the minimum even if it starts

on the runaway tail close to big-bang.

Trapped solution in a KKLT potential, due to climbing.



4. Climbing and inflation ?

Accelerating universe in our gauge is obtained if

I =
d2A

dt2
+

dA

dt

(
dA

dt
− dB

dt

)
> 0

One-field case: using field eqs. we find

I =
(

Mβ

D − 1

)2 [
1 − (D − 2) ϕ̇2

]

so the “slow-roll” condition is

ϕ̇2 <
1

D − 2
.

KKLT case: manipulating field eqs. we find

I =
1

3

[
1 − 6 Ȧ2

]



Inflation asks then for

Ȧ <
1√
6

.

The corresponding bound for the speed

r =
√

ẋ2 + e−µx ẏ2 <

√
1

2

lies below the values accessible to the exact KKLT at-

tractor, since for the actual KKLT system, with γ = 1

and µ = 4
3, r0 =

√
3
2 .

Slow-roll inflation only occurs for µ > 4.



The simplest realistic possibility is to have two expo-

nential potentials

V = α1 e2γ1ϕ + α2 e2γ2ϕ ,

with γ1 ≥ 1 (climbing) and γ2 < 1/
√

D − 1 (slow-roll).

This is realized in the 10d Sugimoto model, which has

a stable non-BPS D3 brane (E.D.,J. Mourad,99). The

effective action contains the D3 tension term

SD3 = −α2

∫
d4x

√−g e−φ → −α2

∫
d4x

√−g (Einstein)

where α2 =
√

2T3 is the tension of the non-BPS D3-

brane. We compactify the theory to 4d while keeping



track only of the overall breathing mode

g
(10)
IJ = eσδIJ , g

(10)
µν = e−3σg

(4)
µν

Defining the two real fields

s = e3σe
φ
2 = eφS , t = eσe−

φ
2 = e

1√
3

ΦT ,

the resulting scalar potential takes the form

V = α1 e−
√

3ΦT + α2 e−
3φs
2 −

√
3ΦT
2 .

Assume S is stabilized by fluxes. First term (D9 tad-

pole) gives the critical exponent γ1 = 1. Second term

(D3 brane) has γ2 = 1/2 : it is a slow-roll potential.



Conclusions

• Climbing near big-bang with critical exponent seems

generic in string theory.

• The phenomenon plays probably an important role in

KKLT moduli trapping .

• Rich set of attractor solutions in KKLT model, com-

bined with climbing.

• Climbing can be followed by inflation.

• Central question: are there possible imprints leftover

in the sky in the spectrum of cosmological perturba-

tions ?


