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Motivations:

— The expansion in % is a powerful technique in QFT and
Statistical Physics

— This approach allows to study theory with large coupling

— It has been used in the context of QCD (N = number of
colors), Scalar theory (N = number of fields), etc...

Tasks:

— How this approximation works in the context of the
Functional Renormalisation Group ?

— What results can we get from it ?

(Wetterich and Tetradis 94", Litim and Tetradis 95')



— Precisely we are interested in a scalar theory with an O(N)
symmetry

— Starting point : Flow equation for an average action
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— Ansatz for I, : the Local Potential Approximation
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We introduce dimensionless variables:

p=k"p, ulp) =k Uc(p)

and take the large N limit (we neglect radial mode)
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where y = q2/k?, Ri(q?) = ¢°r(y) (2vgN can be absorbed)



NEW : We interchange momenta and scale integration to
solve the flow equation (P? = y(1 + r))
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We introduce the operator

e A T

M\n.

— Important property : Z[1] =1

— The integrand is local in momenta



Using the method of characteristics we find
- |u/’17d/2 . Qp(u’) — I_—(u/e2t)

with
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— Defined for —1 < 4

— Full solution for d > 2 and arbitrary regulator r(y)
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Effective potential for —oco < t < 0 and d = 3 in dimensionful
units (A = 1). We used the initial conditions
U_o = M(p — ka) with Ay = 0.2 and kp =1
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Solution in 3d: (we imposed initial conditions)
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When t — —o0, for specific initial conditions, there exist a
non gaussian (Wilson-Fisher) fixed point solution
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(we still have a pole at v’ = — )

— This solution separates the symmetric phase (po = 0) and
the phase with a spontaneously broken symmetry (po # 0)

— We can use this solution to compute critical exponent



Expansion in amplitude

For large v’ (f depend on the regulator)

I z / /—1
p(u) = 5 Vi + O(F(u))
For small «/
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with
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— Clear dependence of the convergence on the regulator

— Convergence Radius: rc(sharp) = 3, r.(opt) =1



Expansion in the field

— Implicit solution in p
— Different convergence properties for expansion in p

By inverting the expansion of p(u.), we compute

u(p) =t + > vnlp — o)™

n=1
— Two examples: the sharp and the optimised cutoff
We evaluate numerically the radius of convergence:
Sharp Optimised

p=0 1217845 ... | 3.21630 ...
p=po | 266189 ... | 3.21036 ...




About p = +00 — similar behavior for both cutoff

ai > dp
u(p) = a0’ + 24D
n=2

— Can be anticipated form large v’
— The first coefficient is regulator independent

— ai, a3 and as vanished with the sharp cutoff
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Solution in 4d:
u
p = /\_/\ + g + u' ( gp(ul) — gp(u’ezt) )

But when t — —o0, the asymptotic behavior of Gp leads to
the gaussian (trivial) fixed point solution v, = 0.

— We can still choose to be slightly way form criticality and
find a vanishing quartic coupling (as A > U,_,)
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Summary:

— Use large N technique in the context of FRG

— Full analytical solution without specifying the cutoff by
interchanging momenta and scale integration

— Detailed study of the fixed point solution in 3d by means of
local expansion

— Next step : finite N (inclusion of radial mode)



The operator 7

— Measure :
d ! d d d

4y _dr
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— Link with threshold function :

du(y) =

U(w) = I{P’:w} (2)
with o) - 1/00 o O¢r(y) (3)
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Behavior at t — —o0 in 4d

— Expression for G,(z) about z = 0:
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— Then the solution becomes
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