The large *N* limit and the Functional Renormalisation Group

Edouard Marchais

University of Sussex

(ロ)、(型)、(E)、(E)、 E) の(の)

Motivations:

 \rightarrow The expansion in $\frac{1}{N}$ is a powerful technique in QFT and Statistical Physics

ightarrow This approach allows to study theory with large coupling

 \rightarrow It has been used in the context of QCD (N = number of colors), Scalar theory (N = number of fields), etc... Tasks:

 \rightarrow How this approximation works in the context of the Functional Renormalisation Group ?

 \rightarrow What results can we get from it ?

(Wetterich and Tetradis 94', Litim and Tetradis 95')

 \rightarrow Precisely we are interested in a scalar theory with an $\mathcal{O}(N)$ symmetry

 \rightarrow Starting point : Flow equation for an average action

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \left\{ \left[\Gamma_k^{(2)}[\phi] + R_k \right]^{-1} \partial_t R_k \right\}$$

 \rightarrow Ansatz for Γ_k : the Local Potential Approximation $(\bar{\rho}=\phi^2/2)$

$$\Gamma_k[\phi] = \int d^d x \left\{ U_k(\bar{
ho}) + rac{1}{2} (\partial_\mu \phi)^2
ight\}$$

We introduce dimensionless variables:

$$\rho = k^{2-d}\bar{\rho} , \quad u_k(\rho) = k^{-d} U_k(\bar{\rho})$$

and take the large N limit (we neglect radial mode)

$$\partial_t u - (d-2)\rho u' + du = 2v_d N \int_0^\infty dy y^{\frac{d}{2}+1} \frac{r'(y)}{[y(1+r)+u']}$$

where $y = q^2/k^2$, $R_k(q^2) = q^2 r(y)$ ($2v_d N$ can be absorbed)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

<u>NEW</u>: We interchange momenta and scale integration to solve the flow equation $(P^2 = y(1 + r))$

$$\partial_t u' - (d-2)\rho u'' + \frac{2}{d} \mathcal{I}\left[\frac{P^{2+d}}{(P^2+u')^2}\right] u'' + 2u' = 0$$

We introduce the operator

$$\mathcal{I}[f(y)] = -\frac{d}{2} \int_0^\infty \frac{r'(y) \, dy}{[1+r(y)]^{\frac{d}{2}+1}} f(y)$$

- ightarrow Important property : $\mathcal{I}[1] = 1$
- \rightarrow The integrand is local in momenta

Using the method of characteristics we find

$$\rho \cdot |u'|^{1-d/2} - \mathcal{G}_P(u') = F(u'e^{2t})$$

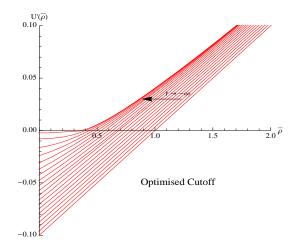
with

$$\mathcal{G}_{P}(u') = \frac{2}{d(2+d)} \mathcal{I}\left[\frac{P^{d+2}}{(P^{2}+u')^{1+d/2}} \times {}_{2}F_{1}\left(\frac{d}{2},1+\frac{d}{2},2+\frac{d}{2},\frac{P^{2}}{P^{2}+u'}\right)\right]$$

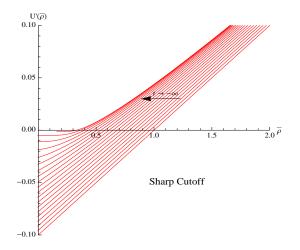
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \rightarrow Defined for $-1 < \frac{u'}{P^2}$

 \rightarrow Full solution for d > 2 and arbitrary regulator r(y)



Effective potential for $-\infty < t < 0$ and d = 3 in dimensionful units ($\Lambda = 1$). We used the initial conditions $u'_{t=0} = \lambda_{\Lambda}(\rho - \kappa_{\Lambda})$ with $\lambda_{\Lambda} = 0.2$ and $\kappa_{\Lambda} = 1$



・ロト ・四ト ・ヨト ・ヨト

æ

Solution in 3d: (we imposed initial conditions)

$$\rho = \frac{|u'|}{\lambda_{\Lambda}} e^{t} + \frac{\kappa_{\Lambda}}{e^{t}} + |u'|^{1/2} \left(\mathcal{G}_{P}(u') - \mathcal{G}_{P}(u'e^{2t}) \right)$$

When $t \to -\infty$, for specific initial conditions, there exist a non gaussian (Wilson-Fisher) fixed point solution

$$\rho = \frac{2}{3} \mathcal{I} \Big[P_2 F_1 \Big(2, -\frac{1}{2}, \frac{1}{2}, -\frac{u'_{\star}}{P^2} \Big) \Big]$$

(we still have a pole at $u' = -\frac{u'}{P^2}$)

 \rightarrow This solution separates the symmetric phase ($\rho_0 = 0$) and the phase with a spontaneously broken symmetry ($\rho_0 \neq 0$)

 \rightarrow We can use this solution to compute critical exponent

Expansion in amplitude

For large u' (*f* depend on the regulator)

$$\rho(u'_{\star}) = \frac{\pi}{2} \sqrt{u'_{\star}} + \mathcal{O}\left(f(u'^{-1}_{\star})\right)$$

For small u'

$$\rho(u'_{\star}) = \sum_{n=0}^{\infty} \alpha_n (u'_{\star})^n$$

with

$$\alpha_n = (-1)^{n+1} \frac{2}{3} \left(\frac{n+1}{2n-1} \right) \mathcal{I}[P^{1-2n}]$$

→ Clear dependence of the convergence on the regulator → Convergence Radius: $r_c(sharp) = \frac{1}{2}$, $r_c(opt) = 1$

Expansion in the field

- \rightarrow Implicit solution in ρ
- \rightarrow Different convergence properties for expansion in ρ

By inverting the expansion of $ho(u'_{\star})$, we compute

$$u'_{\star}(
ho)=u'_{\star0}+\sum_{n=1}^{\infty}\gamma_n(
ho-
ho_0)^n.$$

 \rightarrow Two examples: the sharp and the optimised cutoff We evaluate numerically the radius of convergence:

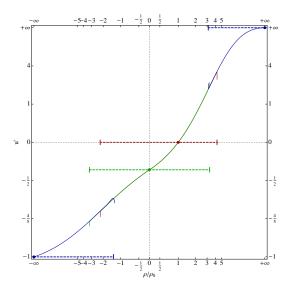
	Sharp	Optimised
$\rho = 0$	2.17845	3.21630
$\rho = \rho_0$	2.66189	3.21036

About $\rho = +\infty \rightarrow \text{similar behavior for both cutoff}$

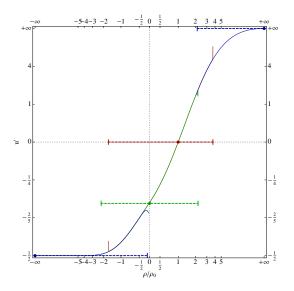
$$u'_{\star}(\rho) = a_0 \rho^2 + \frac{a_1}{\rho} + \sum_{n=2}^{\infty} \frac{a_n}{\rho^{n+1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ightarrow Can be anticipated form large u'
- \rightarrow The first coefficient is regulator independent
- ightarrow a_1 , a_3 and a_5 vanished with the sharp cutoff



Optimised cutoff



Sharp cutoff

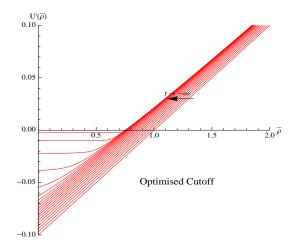
Solution in 4d:

$$\rho = \frac{u'}{\lambda_{\Lambda}} + \frac{\kappa_{\Lambda}}{e^{2t}} + u' \left(\mathcal{G}_{P}(u') - \mathcal{G}_{P}(u'e^{2t}) \right)$$

But when $t \to -\infty$, the asymptotic behavior of \mathcal{G}_P leads to the gaussian (trivial) fixed point solution $u'_{\star} = 0$.

 \rightarrow We can still choose to be slightly way form criticality and find a vanishing quartic coupling (as $\Lambda \gg U'_{k=0}$)

$$U'' = \frac{\bar{\lambda}_{\Lambda}}{1 - \frac{\bar{\lambda}_{\Lambda}}{2} \mathcal{I}\left[\ln\left(\frac{U'}{\Lambda^2} \frac{e^{3/2}}{P^2}\right)\right]} \to 0$$



・ロト ・四ト ・ヨト ・ヨト

æ

Summary:

 \rightarrow Use large N technique in the context of FRG

 \rightarrow Full analytical solution without specifying the cutoff by interchanging momenta and scale integration

 \rightarrow Detailed study of the fixed point solution in 3d by means of local expansion

 \rightarrow Next step : finite *N* (inclusion of radial mode)

The operator $\ensuremath{\mathcal{I}}$

 \rightarrow Measure :

$$d\mu(y) = -\frac{d}{2} \frac{r'(y) \, dy}{\left[1 + r(y)\right]^{\frac{d}{2} + 1}} \to d\mu(r) = -\frac{d}{2} \frac{dr}{\left(1 + r\right)^{\frac{d}{2} + 1}} \quad (1)$$

 \rightarrow Link with threshold function :

$$\ell(\omega) = \mathcal{I}\left[\frac{P^{2+d}}{P^2 + \omega}\right]$$
(2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

with

$$\ell(\omega) = \frac{1}{2} \int_0^\infty dy y^{\frac{d}{2}} \frac{\partial_t r(y)}{[y(1+r) + \omega]}$$
(3)

Behavior at $t \to -\infty$ in 4d

 \rightarrow Expression for $\mathcal{G}_p(z)$ about z = 0:

$$\begin{aligned} \mathcal{G}_P(z) &= \frac{1}{12} \, \mathcal{I}\left[\left(\frac{P^2}{z}\right)^3 \, _2F_1\left(2,3,4,-\frac{P^2}{z}\right)\right] \\ &= \frac{1}{4} \frac{\mathcal{I}[P^2]}{z} + \frac{1}{4} + \frac{1}{2} \, \mathcal{I}\left[\log\left(\frac{|z|}{P^2}\right)\right] + \mathcal{I}\left[\mathcal{O}\left(\frac{z}{P^2}\right)\right] \end{aligned}$$

 \rightarrow Then the solution becomes

$$ho = rac{u'}{\lambda_{\Lambda}} - u't + rac{\mathcal{I}[P^2]}{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ