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Some basic notions on Statistical Field Theory

Ising (or Heisenberg) model and the φ4 theory:
– on the lattice:

Z[B] =
∑

{Si =±1}

exp
{
− βJ

∑
<ij>

SiSj + β
∑

i

BiSi

}
– in the continuum (keeping only the leading derivative term):

Z[J] =

∫
Dφ exp

{
− S[φ] +

∫
x

J(x)φ(x)
}

with (a = lattice spacing)

S[φ] =

∫
ddx

{1

2

(
∇φ
)2

+ da−2φ2 − a−d ln
(

cosh(β

√
4Jd2

βa2−d
φ)
)}

Making a field expansion leads to:

S =

∫
ddx

{1

2

(
∇φ
)2

+
m2

0

2
φ2 +

g0

4!
φ4 + . . .

}
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The physical quantities we are interested in:

– “thermodynamic quantities”:

magnetization (classical field, vev,...) : M = 〈φ〉 = 1
Z
∂Z
∂B

susceptibility (response of M to a change of B) : χ = ∂M
∂B

correlation length ξ (renormalized mass)

critical temperature Tc and phase diagram

etc

– correlation function(s): 〈SiSj〉 ∼ 〈φ(x)φ(y)〉 = G (2)(x , y)
and G (n)(x1, . . . , xn)

⇒ universal and non-universal quantities.
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The theoretical tools and methods:

– The generating functional of correlation functions:

Z[J], W[J] = lnZ[J] and Γ[M] = Legendre transform of W[J]:

Γ[M] +W[J] =

∫
x

JxMx

⇒ Mx = 〈φx〉 =
δW[J]

δJx
and Jx =

δΓ[M]

δMx

– The mean field (classical, saddle point, Hartree) approximation:

Γ[M]→ ΓMF[M] = S[φ = M]

neglects all fluctuations around the mean field configuration M.
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– The loop expansion:

S[φ] = S0[φ] + V [φ]

Z[J] =

{∑
n

(−1)n

n!

∫
x1...xn

V [
δ

δJx1

] . . .V [
δ

δJxn

]

}
Z0[J]

→ the series of Feynman diagrams.
→ two problems:

(i) expansion of the integrand of the functional integral,
(ii) interchange of the series and the functional integral.

(i) ⇒ perturbative renormalization
(ii) ⇒ convergence properties of the renormalized series ?
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Why should we be interested in NPRG?

Perturbation theory works well when:

g is small: QED;

g is not small, the renormalized series is Borel-summable and
enough terms are known: φ4 in d = 3.

Perturbation theory doesn’t work well when:

g is not small and not enough terms are known;

g is not small, the series is Borel-summable, convergence to a
wrong result: φ4 in d = 2: η = 0.145(14) instead of 0.25;

g is not small and the series cannot be resummed: O(N)
non-linear-sigma model in d = 2 + ε;

infinitely many couplings have to be taken care: computation
of Tc ;

the phenomenon is genuinely non-perturbative: no RG
trajectory Gaussian → fixed point, convexity of the effective
potential.
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Wilson RG:

Organize the summation over the fluctuations in a different way.
⇓

Block-spins à la Kadanoff-Wilson
⇓

summation over rapid modes → effective hamiltonian for the slow modes
⇓

flow equations of functions (or even functionals)

Two main implementations of these ideas:

à la Wilson-Polchinski (flow of actions or of W[J])
and

à la Parola-Reatto-Wetterich (flow of the Legendre transform
Γ[M]).

In principle equivalent, but...
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Integration over the rapid modes:

hypothesis: the system is close to criticality (ξ � a ⇒ mR � Λ)

integrate over the rapid modes only → freeze the slow modes
→ make them non-critical → give them a large mass

q

Rk HqL

k

k2
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→ build a one-parameter family of models, indexed by a scale k
such that:

Z[J]→ Zk [J] =

∫
Dφ exp

{
− S[φ]−∆Sk [φ] +

∫
x

J(x)φ(x)
}

∆Sk [φ] =
1

2

∫
q

Rk(q)φqφ−q

• when k = Λ all fluctuations are frozen ⇒ mean field is exact:
∀q, Rk=Λ(q) ∼ Λ2, ⇒ ΓLeg

k=Λ = S + ∆Sk=Λ

⇒ work with Γk [M] = ΓLeg
k [M]−∆Sk [M]

⇒ Γk=Λ[M] = S[M]

• when k = 0 all fluctuations are integrated out and the original
model is retrieved
∀q, Rk=0(q) = 0, ⇒ Zk=0[J] = Z[J] and Γk=0 = Γ
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define:

• Zk [J] =
∫

Dφ exp
{
− S[φ]−∆Sk [φ] +

∫
x J(x)φ(x)

}
• Wk [J] = lnZk [J]

• Γk [M] +Wk [J] =
∫
x JxMx − 1

2

∫
q Rk(q)φqφ−q

(effective average action)

with 
Rk=Λ(q) ∼ Λ2 (or ∞)

Rk=0(q) = 0
(1)

then Γk=Λ[M] interpolates between the microphysics at k = Λ and
the macrophysics at k = 0:

Γk=Λ[M] = S [φ = M]

Γk=0[M] = Γ[M]
(2)
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The flow equation for Γk [M] writes:

∂kΓk [M] =
1

2

∫
q
∂kRk(q)G [q; M] (3)

where G [q; M] is the full propagator: G [q; M] = (Γ
(2)
k + Rk)−1

Some properties of the Wetterich’s equation:
– differential formulation of field theory
– involves only one integral
– the initial condition is the (microscopic) bare theory
– good properties of decoupling of the massive and rapid modes
– starting point of non-perturbative approximation schemes (not
linked to an expansion in a small parameter)

– BUT leads to very few exact results.
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Approximation schemes require

to lead to tractable calculations;

to focus on the “sector” of the model that we want to
describe;

to preserve automatically the good properties of RG;

to enable a systematic improvement of the results.

Two main (non-perturbative) approximation schemes:
The derivative expansion (DE)
The Blaizot-Mendez-Wschebor scheme (BMW)
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The derivative expansion

Γk =
∫

ddx
(
Uk(M) + 1

2 Zk(M)(∇M)2 + O(∇4)
)

flow of Γk ⇒ flow of Uk(M),Zk(M), ...

Consists in keeping all Γ
(n)
k correlation functions and expanding in

their momenta (more precisely in pi
k ).

Most celebrated: Local Potential Approximation (LPA):

Γ LPA
k =

∫
ddx

(
Uk(M) +

1

2
(∇M)2

)
- bare momentum dependence of Γ

(2)
k (p);

- zero momentum approximation for all other correlation functions.

∂kUk(M) =
kd+1

k2 + U ′′k (M)
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Some properties of the DE (for the O(N) models)

– it is one-loop exact in d = 4− ε and in d = 2 + ε (for N ≥ 2)
and exact for U = Uk=0 at N =∞ (LPA’)
– it preserves the convexity of U = Uk=0 in the broken phase (LPA)
– initial conditions ⇒ non-universal physics ⇒ computation of Tc

– it reproduces well the physics of the Kosterlitz-Thouless
transition (N = 2, d = 2)
– it leads to accurate results for the universal quantities: Ising
model in d = 3:
NPRG: ν = 0.63014 η = 0.0352
Monte Carlo: ν = 0.63020(12) η = 0.368(2)
6 loops: ν = 0.6304(13) η = 0.335(25)
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But the DE has some drawbacks:

(i) the physical quantities depend on the choice of Rk ;

(ii) the momentum dependence of the Γ
(n)
k ({pi},M = 0) is badly

truncated: at Tc (that is mR = 0): Γ
(2)
k=0(p) ∼ p2−η.

(i) ⇒ does the DE converge?
(ii) ⇒ for which pi is the DE valid?
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Does the DE converge?

No general answer.

Test:

convergence ⇒ dependence upon Rk decreases with the order.

But this is an ill-posed problem!
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Ising, d = 3 resummed 4-, 5- and 6-loop results for ν

2.5 3 3.5 4 4.5 5
Α

0.62

0.63

0.64

0.65

0.66
Ν
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Ising, d = 3 resummed 6-loop results for ν

1 2 3 4 5 6

0.63

0.64

0.65

0.66

0.67

νopt=0.63023 (MC: ν = 0.63020(12))
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0 1 2 3 4
order

0.625
0.630
0.635
0.640
0.645
0.650

Ν

0 1 2 3 4
order

0.02

0.04

0.06

0.08

0.10

Η
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Range of pi where the DE is valid?

DE ⇒ expansion of the Γ
(n)
k in pi/k

⇓
∀pi . k

Consistent with

Zk(M) ∼ ∂p2Γ
(2)
k [p,M]|p=0,Munif.

∂kZk(M) ∼
∫

q
∂kRk(q) ∂p2Γ

(3)
k (p, p − q, q)|p=0

. . .

accuracy of the DE ⇒ Γ
(n)
k ({pi}) ' Γ

(n),DE
k ({pi}) for pi . k

BUT does not give any information for momenta higher than k !

Remark: better situation in a massive theory: pi . Max(k,m)
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Blaizot-Mendez-Wschebor (BMW) approximation

keep all Γ
(n)
k correlation functions (as in the DE);

aim at being as accurate as possible for the Γ
(n)
k ’s with low n;

Exact equation on Γ
(2)
k (p,M) (for uniform field M):

∂kΓ
(2)
k (p,M) =

∫
q
∂kRk(q)G (q; M)2

(
− 1

2
Γ

(4)
k (p,−p, q,−q; M)

+ Γ
(3)
k (p, q,−p − q; M)G (p + q; M)Γ

(3)
k (−p,−q, p + q; M)

)
Infinite hierarchy of equations on the Γ

(n)
k ({pi},M)

⇒ closure requires approx. on Γ
(3)
k and Γ

(4)
k in terms of Γ

(2)
k

truncate the momentum dependence of the Γ
(n)
k ’s with

“large” n ⇒ closed set of equations for Γ
(n)
k with low n.

First order: LPA, already good for p → 0 in many cases.

Second order: keep Γ
(2)
k , truncate Γ

(3)
k , Γ

(4)
k , ...
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The LPA has the first order of approximation

of the BMW scheme

0-point function for M|unif.
⇒ Γk [M] ∝ Uk(M)

∂kUk(M) =
1

2

∫
q

∂kRk(q)

Γ
(2)
k (q,M) + Rk(q)

(4)

Truncate the q-dependence of Γ
(2)
k (q,M) by setting q = 0 ?

No! Keep the bare dependence ⇒ Γ
(2)
k (q,M)→ q2 + U ′′k (M)

⇒ This is the LPA equation for Uk .
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The second order of approximation of BMW

∂kΓ
(2)
k (p; M) =

∫
q
∂kRk(q)G (q; M)2

(
− 1

2
Γ

(4)
k (p,−p, q,−q; M)

+Γ
(3)
k (p, q,−p − q; M)G (p + q; M)Γ

(3)
k (−p,−q, p + q; M)

)
Three (crucial) remarks

q . k because of Rk(q);

finite k ⇒ no IR divergence ⇒ Γ
(n)
k ({pi},M) expandable in pi ;

Γ
(n)
k (p1, . . . , pn−1, 0; M) =

∂

∂M
Γ

(n−1)
k (p1, . . . , pn−1; M).

Thus

for p � k > q ⇒ Γ
(3)
k (p, q,−p − q; M) ' Γ

(3)
k (p, 0,−p; M)

and Γ
(4)
k (p,−p, q,−q; M) ' Γ

(4)
k (p,−p, 0, 0; M)

for p � k:“LPA regime”: again q is neglected and p → 0
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BMW approximation

∂kΓ
(2)
k (p; M) =

∫
q
∂kRk(q)G (q; M)2

(
− 1

2
Γ

(4)
k (p,−p, 0, 0; M)

+ Γ
(3)
k (p, 0,−p; M)G (p + q; M)Γ

(3)
k (−p, 0, p; M)

)
Final result:

∂kΓ
(2)
k (p; M) =

(
∂MΓ

(2)
k

)2
J3(p; M)− 1

2

(
∂2

MΓ
(2)
k

)
J2(0; M)

where

Jn(p; M) =

∫
q
∂kRk(q) G (p + q; M)G (q; M)n−1

That’s all folks... (??)
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Not fully !

Search for fixed points:

⇒ numerical instabilities

⇒ good variables
Γ

(2)
k (p,M)− Γ

(2)
k (0,M)

p2
− 1 and Vk(M)

⇒ difficulties for p → 0
⇒ necessary to avoid non analytic Rk functions...

Results in d = 3, N = 1:

η = 0.039 ηMC = 0.0368(2)
ν = 0.632 νMC = 0.6302(1)
ω = 0.78 ωMC = 0.821(5)
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Results in d = 2, N = 1:

η = 0.254 η = 0.25
ν = 1.00 ν = 1

AND... at five loops: η = 0.145(14)
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