# An Introduction to Non Perturbative RG or ERG or FRG or eRG

## Bertrand Delamotte, LPTMC, Université Paris VI

Corfu, September 2010

## Some basic notions on Statistical Field Theory

Ising (or Heisenberg) model and the  $\phi^4$  theory: – on the lattice:

$$\mathcal{Z}[B] = \sum_{\{S_i = \pm 1\}} \exp\left\{-\beta J \sum_{\langle ij \rangle} S_i S_j + \beta \sum_i B_i S_i\right\}$$

- in the continuum (keeping only the leading derivative term):

$$\mathcal{Z}[J] = \int D\phi \; \exp \left\{ -\mathcal{S}[\phi] + \int_{x} J(x)\phi(x) 
ight\}$$

with (a = lattice spacing)

$$\mathcal{S}[\phi] = \int d^d x \Big\{ \frac{1}{2} \big( \nabla \phi \big)^2 + da^{-2} \phi^2 - a^{-d} \ln \Big( \cosh(\beta \sqrt{\frac{4Jd^2}{\beta a^{2-d}}} \phi) \Big) \Big\}$$

Making a field expansion leads to:

$$S = \int d^{d}x \left\{ \frac{1}{2} \left( \nabla \phi \right)^{2} + \frac{m_{0}^{2}}{2} \phi^{2} + \frac{g_{0}}{4!} \phi^{4} + \dots \right\}$$

The physical quantities we are interested in:

- "thermodynamic quantities":
  - magnetization (classical field, vev,...) :  $M = \langle \phi \rangle = \frac{1}{Z} \frac{\partial Z}{\partial B}$
  - susceptibility (response of *M* to a change of *B*) :  $\chi = \frac{\partial M}{\partial B}$
  - correlation length  $\xi$  (renormalized mass)
  - critical temperature  $T_c$  and phase diagram
  - etc

- correlation function(s):  $\langle S_i S_j \rangle \sim \langle \phi(x) \phi(y) \rangle = G^{(2)}(x, y)$ and  $G^{(n)}(x_1, \dots, x_n)$  $\Rightarrow$  universal and non-universal quantities. The theoretical tools and methods:

- The generating functional of correlation functions:

 $\mathcal{Z}[J], \mathcal{W}[J] = \ln \mathcal{Z}[J]$  and  $\Gamma[M] = \text{Legendre transform of } \mathcal{W}[J]$ :

$$\Gamma[M] + \mathcal{W}[J] = \int_{X} J_{X} M_{X}$$

$$\Rightarrow \quad M_x = \langle \phi_x \rangle = \frac{\delta \mathcal{W}[J]}{\delta J_x} \text{ and } J_x = \frac{\delta \Gamma[M]}{\delta M_x}$$

- The mean field (classical, saddle point, Hartree) approximation:

$$\Gamma[M] \to \Gamma^{\mathrm{MF}}[M] = \mathcal{S}[\phi = M]$$

neglects all fluctuations around the mean field configuration M.

- The loop expansion:

$$\mathcal{S}[\phi] = \mathcal{S}_0[\phi] + V[\phi]$$
$$\mathcal{Z}[J] = \left\{ \sum_n \frac{(-1)^n}{n!} \int_{x_1 \dots x_n} V[\frac{\delta}{\delta J_{x_1}}] \dots V[\frac{\delta}{\delta J_{x_n}}] \right\} \mathcal{Z}_0[J]$$

- $\rightarrow$  the series of Feynman diagrams.
- $\rightarrow$  two problems:
  - (i) expansion of the integrand of the functional integral,
  - (ii) interchange of the series and the functional integral.
- (i)  $\Rightarrow$  perturbative renormalization
- (ii)  $\Rightarrow$  convergence properties of the renormalized series ?

# Why should we be interested in NPRG?

Perturbation theory works well when:

- g is small: QED;
- g is not small, the renormalized series is Borel-summable and enough terms are known:  $\phi^4$  in d = 3.

Perturbation theory doesn't work well when:

- g is not small and not enough terms are known;
- g is not small, the series is Borel-summable, convergence to a wrong result:  $\phi^4$  in d = 2:  $\eta = 0.145(14)$  instead of 0.25;
- g is not small and the series cannot be resummed: O(N) non-linear-sigma model in  $d = 2 + \epsilon$ ;
- infinitely many couplings have to be taken care: computation of T<sub>c</sub>;
- the phenomenon is genuinely non-perturbative: no RG trajectory Gaussian  $\rightarrow$  fixed point, convexity of the effective potential.

## Wilson RG:

## 

Two main implementations of these ideas:

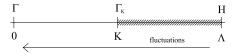
à la Wilson-Polchinski (flow of actions or of  $\mathcal{W}[J]$ ) and

à la Parola-Reatto-Wetterich (flow of the Legendre transform  $\Gamma[M]$ ).

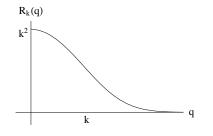
In principle equivalent, but...

## Integration over the rapid modes:

hypothesis: the system is close to criticality ( $\xi \gg a \Rightarrow m_R \ll \Lambda$ )



integrate over the rapid modes only  $\ \rightarrow\$  freeze the slow modes  $\ \rightarrow\$  make them non-critical  $\ \rightarrow\$  give them a large mass



 $\rightarrow$  build a one-parameter family of models, indexed by a scale k such that:

$$\mathcal{Z}[J] \to \mathcal{Z}_k[J] = \int D\phi \exp\left\{-\mathcal{S}[\phi] - \Delta \mathcal{S}_k[\phi] + \int_x J(x)\phi(x)
ight\}$$
  
 $\Delta \mathcal{S}_k[\phi] = \frac{1}{2}\int_q R_k(q)\phi_q\phi_{-q}$ 

• when  $k = \Lambda$  all fluctuations are frozen  $\Rightarrow$  mean field is exact:  $\forall q, R_{k=\Lambda}(q) \sim \Lambda^2, \Rightarrow \Gamma_{k=\Lambda}^{\text{Leg}} = S + \Delta S_{k=\Lambda}$   $\Rightarrow \text{ work with } \Gamma_k[M] = \Gamma_k^{\text{Leg}}[M] - \Delta S_k[M]$  $\Rightarrow \Gamma_{k=\Lambda}[M] = S[M]$ 

• when k = 0 all fluctuations are integrated out and the original model is retrieved

 $\forall q, \ \ R_{k=0}(q) = 0, \quad \Rightarrow \ \ \mathcal{Z}_{k=0}[J] = \mathcal{Z}[J] \text{ and } \Gamma_{k=0} = \Gamma$ 

define:

• 
$$\mathcal{Z}_k[J] = \int D\phi \exp \left\{ -\mathcal{S}[\phi] - \Delta \mathcal{S}_k[\phi] + \int_x J(x)\phi(x) \right\}$$

• 
$$\mathcal{W}_k[J] = \ln \mathcal{Z}_k[J]$$

• 
$$\Gamma_k[M] + \mathcal{W}_k[J] = \int_x J_x M_x - \frac{1}{2} \int_q R_k(q) \phi_q \phi_{-q}$$
  
(effective average action)

with

$$\begin{cases} R_{k=\Lambda}(q) \sim \Lambda^2 \quad (\text{or } \infty) \\ \\ R_{k=0}(q) = 0 \end{cases}$$
(1)

then  $\Gamma_{k=\Lambda}[M]$  interpolates between the microphysics at  $k = \Lambda$  and the macrophysics at k = 0:

$$\begin{cases} \Gamma_{k=\Lambda}[M] = S[\phi = M] \\ \Gamma_{k=0}[M] = \Gamma[M] \end{cases}$$
(2)

э

The flow equation for  $\Gamma_k[M]$  writes:

$$\partial_k \Gamma_k[M] = \frac{1}{2} \int_q \partial_k R_k(q) G[q; M]$$
(3)

where G[q; M] is the full propagator:  $G[q; M] = (\Gamma_k^{(2)} + R_k)^{-1}$ 

Some properties of the Wetterich's equation:

- differential formulation of field theory
- involves only one integral
- the initial condition is the (microscopic) bare theory
- good properties of decoupling of the massive and rapid modes
- starting point of non-perturbative approximation schemes (not linked to an expansion in a small parameter)
- BUT leads to very few exact results.

### Approximation schemes require

- to lead to tractable calculations;
- to focus on the "sector" of the model that we want to describe;
- to preserve automatically the good properties of RG;
- to enable a systematic improvement of the results.

Two main (non-perturbative) approximation schemes: The derivative expansion (DE) The Blaizot-Mendez-Wschebor scheme (BMW)

## The derivative expansion

• 
$$\Gamma_k = \int d^d x \left( U_k(M) + \frac{1}{2} Z_k(M) (\nabla M)^2 + O(\nabla^4) \right)$$

• flow of  $\Gamma_k \Rightarrow$  flow of  $U_k(M), Z_k(M), ...$ 

Consists in keeping all  $\Gamma_k^{(n)}$  correlation functions and expanding in their momenta (more precisely in  $\frac{p_i}{k}$ ).

Most celebrated: Local Potential Approximation (LPA):

$$\Gamma_k^{\text{LPA}} = \int d^d x \left( U_k(M) + \frac{1}{2} (\nabla M)^2 \right)$$

- bare momentum dependence of  $\Gamma_k^{(2)}(p)$ ;
- zero momentum approximation for all other correlation functions.

$$\partial_k U_k(M) = \frac{k^{d+1}}{k^2 + U_k''(M)}$$

## Some properties of the DE (for the O(N) models)

- it is one-loop exact in  $d = 4 - \epsilon$  and in  $d = 2 + \epsilon$  (for  $N \ge 2$ ) and exact for  $U = U_{k=0}$  at  $N = \infty$  (LPA')

- it preserves the convexity of  $U = U_{k=0}$  in the broken phase (LPA)
- initial conditions  $\Rightarrow$  non-universal physics  $\Rightarrow$  computation of  $T_c$
- it reproduces well the physics of the Kosterlitz-Thouless transition (N = 2, d = 2)

– it leads to accurate results for the universal quantities: Ising model in d = 3:

| NPRG:        | u = 0.63014     | $\eta=$ 0.0352    |
|--------------|-----------------|-------------------|
| Monte Carlo: | u = 0.63020(12) | $\eta=$ 0.368(2)  |
| 6 loops:     | u = 0.6304(13)  | $\eta=$ 0.335(25) |

But the DE has some drawbacks:

(i) the physical quantities depend on the choice of  $R_k$ ;

(ii) the momentum dependence of the  $\Gamma_k^{(n)}(\{p_i\}, M = 0)$  is badly truncated: at  $T_c$  (that is  $m_R = 0$ ):  $\Gamma_{k=0}^{(2)}(p) \sim p^{2-\eta}$ .

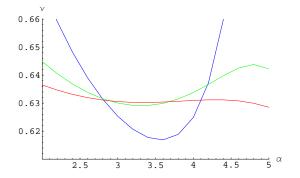
(i) ⇒ does the DE converge?
(ii) ⇒ for which p<sub>i</sub> is the DE valid?

# Does the DE converge?

No general answer.

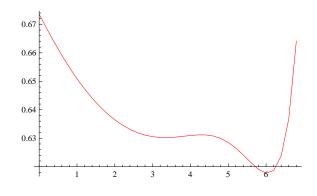
Test:

convergence  $\Rightarrow$  dependence upon  $R_k$  decreases with the order. But this is an ill-posed problem! Ising, d=3 resummed 4-, 5- and 6-loop results for u

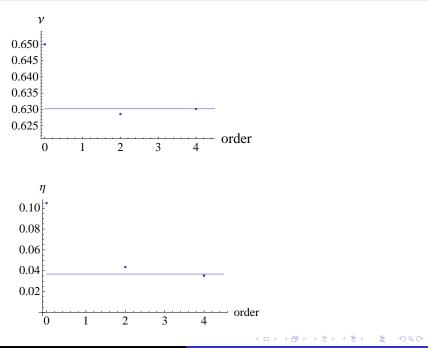


э





 $\nu_{\rm opt} = 0.63023$  (MC:  $\nu = 0.63020(12)$ )



## Range of $p_i$ where the DE is valid?

$$\begin{array}{rcl} \mathsf{DE} & \Rightarrow & \mathsf{expansion of the } \Gamma_k^{(n)} \ \mathsf{in } \ p_i / k \\ & & \Downarrow \\ & \forall p_i \lesssim k \end{array}$$

Consistent with

$$Z_k(M) \sim \partial_{p^2} \Gamma_k^{(2)}[p,M]|_{p=0,M_{\text{unif.}}}$$
$$\partial_k Z_k(M) \sim \int_q \partial_k R_k(q) \ \partial_{p^2} \Gamma_k^{(3)}(p,p-q,q)|_{p=0} \dots$$
accuracy of the DE  $\Rightarrow \Gamma_k^{(n)}(\{p_i\}) \simeq \Gamma_k^{(n),\text{DE}}(\{p_i\})$  for  $p_i \lesssim k$ 

BUT does not give any information for momenta higher than k !

Remark: better situation in a massive theory:  $p_i \leq Max(k, m)$ 

# Blaizot-Mendez-Wschebor (BMW) approximation

- keep all  $\Gamma_k^{(n)}$  correlation functions (as in the DE);
- aim at being as accurate as possible for the  $\Gamma_k^{(n)}$ 's with low *n*; Exact equation on  $\Gamma_k^{(2)}(p, M)$  (for uniform field *M*):

$$\partial_k \Gamma_k^{(2)}(p, M) = \int_q \partial_k R_k(q) G(q; M)^2 \Big( -\frac{1}{2} \Gamma_k^{(4)}(p, -p, q, -q; M) + \Gamma_k^{(3)}(p, q, -p - q; M) G(p + q; M) \Gamma_k^{(3)}(-p, -q, p + q; M) \Big)$$

Infinite hierarchy of equations on the  $\Gamma_k^{(n)}(\{p_i\}, M)$  $\Rightarrow$  closure requires approx. on  $\Gamma_k^{(3)}$  and  $\Gamma_k^{(4)}$  in terms of  $\Gamma_k^{(2)}$ 

• truncate the momentum dependence of the  $\Gamma_k^{(n)}$ 's with "large"  $n \Rightarrow$  closed set of equations for  $\Gamma_k^{(n)}$  with low n.

<u>First order</u>: LPA, already good for  $p \to 0$  in many cases. <u>Second order</u>: keep  $\Gamma_k^{(2)}$ , truncate  $\Gamma_k^{(3)}$ ,  $\Gamma_k^{(4)}$ ,  $\cdots$ 

# The LPA has the first order of approximation of the BMW scheme

0-point function for  $M_{|_{\mathrm{unif.}}} \Rightarrow \Gamma_k[M] \propto U_k(M)$ 

$$\partial_k U_k(M) = \frac{1}{2} \int_q \frac{\partial_k R_k(q)}{\Gamma_k^{(2)}(q,M) + R_k(q)}$$
(4)

Truncate the q-dependence of  $\Gamma_k^{(2)}(q, M)$  by setting q = 0 ?

$$\Rightarrow$$
 This is the LPA equation for  $U_k$ .

## The second order of approximation of BMW

$$\partial_k \Gamma_k^{(2)}(p; M) = \int_q \partial_k R_k(q) G(q; M)^2 \Big( -\frac{1}{2} \Gamma_k^{(4)}(p, -p, q, -q; M) + \Gamma_k^{(3)}(p, q, -p - q; M) G(p + q; M) \Gamma_k^{(3)}(-p, -q, p + q; M) \Big)$$

Three (crucial) remarks

• 
$$q \leq k$$
 because of  $R_k(q)$ ;

• finite  $k \Rightarrow$  no IR divergence  $\Rightarrow \Gamma_k^{(n)}(\{p_i\}, M)$  expandable in  $p_i$ ;

• 
$$\Gamma_k^{(n)}(p_1,\ldots,p_{n-1},0;M)=\frac{\partial}{\partial M}\Gamma_k^{(n-1)}(p_1,\ldots,p_{n-1};M).$$

Thus

• for 
$$p \gg k > q \Rightarrow \Gamma_k^{(3)}(p,q,-p-q;M) \simeq \Gamma_k^{(3)}(p,0,-p;M)$$
  
and  $\Gamma_k^{(4)}(p,-p,q,-q;M) \simeq \Gamma_k^{(4)}(p,-p,0,0;M)$ 

• for  $p \ll k$ : "LPA regime": again q is neglected and  $p \rightarrow 0$ 

BMW approximation

$$\partial_{k}\Gamma_{k}^{(2)}(p;M) = \int_{q} \partial_{k}R_{k}(q)G(q;M)^{2} \Big(-\frac{1}{2}\Gamma_{k}^{(4)}(p,-p,0,0;M) + \Gamma_{k}^{(3)}(p,0,-p;M)G(p+q;M)\Gamma_{k}^{(3)}(-p,0,p;M)\Big)$$

Final result:

$$\partial_k \Gamma_k^{(2)}(p; M) = \left(\partial_M \Gamma_k^{(2)}\right)^2 J_3(p; M) - \frac{1}{2} \left(\partial_M^2 \Gamma_k^{(2)}\right) J_2(0; M)$$

where

$$J_n(p; M) = \int_q \partial_k R_k(q) \ G(p+q; M) G(q; M)^{n-1}$$

That's all folks... (??)

## Not fully !

Search for fixed points:

 $\Rightarrow$  numerical instabilities

$$\Rightarrow \text{ good variables } \frac{\Gamma_k^{(2)}(p,M) - \Gamma_k^{(2)}(0,M)}{p^2} - 1 \text{ and } V_k(M)$$

- $\Rightarrow$  difficulties for  $p \rightarrow 0$
- $\Rightarrow$  necessary to avoid non analytic  $R_k$  functions...

Results in d = 3, N = 1:

- $\eta = 0.039$   $\eta_{\rm MC} = 0.0368(2)$
- u = 0.632  $u_{\rm MC} = 0.6302(1)$
- $\omega=0.78$   $\omega_{
  m MC}=0.821(5)$

Results in d = 2, N = 1:

- $\eta = 0.254$   $\eta = 0.25$
- $\nu = 1.00$   $\nu = 1$

AND... at five loops:  $\eta = 0.145(14)$ 

3) 3