### Non-f(R) terms in asymptotically safe gravity

Dario Benedetti

Albert Einstein Institute, Potsdam, Germany

September 16, 2010

DB, P. F. Machado, F. Saueressig - Mod. Phys. Lett. A 24 (2009) 2233-2241 [arXiv:0901.2984], Nucl. Phys. B 824 (2010) 168-191 [0902.4630]

same + K. Groh - ongoing, see Frank's talk

Motivations

Setup

#### Results

### The perturbative story

$$S_{EH} = \frac{1}{16\pi G} \int d^4x \sqrt{g} (2\Lambda - R)$$

• 1-loop (pure) quantum gravity ['t Hooft, Veltman ( $\int E = \Lambda = 0$ ); Christensen, Duff]

$$\Gamma_{(1)\rm div} = \frac{1}{180(4\pi)^2} \frac{1}{\epsilon} \int d^4x \sqrt{g} (212E - 2088\Lambda^2 + X_{\mu\nu} \frac{\delta S}{\delta g_{\mu\nu}})$$

(where E is the integrand of the Gauss-Bonnett theorem)

on-shell: 
$$= \frac{1}{180(4\pi)^2} \frac{1}{\epsilon} \int d^4x \sqrt{g} (212E - 2088\Lambda^2)$$

⇒ divergences can be removed by field redefinition, plus renormalization of  $\Lambda$  and topological term (which can be added to  $S_{EH}$  without affecting e.o.m.)

# The perturbative story

$$S_{EH} = \frac{1}{16\pi G} \int d^4x \sqrt{g} (2\Lambda - R)$$

• 2-loop [Goroff, Sagnotti; van de Ven]

$$\Gamma_{(2)\rm div} = \frac{209}{2880(4\pi)^2} \frac{1}{\epsilon} \int d^4x \sqrt{g} (R^{\alpha\beta}_{\phantom{\alpha\beta}\gamma\delta} R^{\gamma\delta}_{\phantom{\beta}\rho\sigma} R^{\rho\sigma}_{\phantom{\beta}\alpha\beta} + Y_{\mu\nu} \frac{\delta S}{\delta g_{\mu\nu}})$$

 $\Rightarrow$  need non-trivial counterterm, not of the type found in the bare action

 $\Rightarrow$  the (in-)famous non-renormalizability of gravity!

### The perturbative story

$$S_{EH} = \frac{1}{16\pi G} \int d^4x \sqrt{g} (2\Lambda - R) + \frac{1}{2} \int d^4x \sqrt{g} \ g^{\mu\nu} \ \partial_\mu \phi \ \partial_\nu \phi$$

 1-loop quantum gravity coupled to matter ['t Hooft, Veltman; Deser, van Nieuwenhuizen; Kamenshchik, Karmazin et al.; ... ]

$$\Delta \Gamma^{\text{div}} = \frac{1}{8\pi^2 \epsilon} \int d^4 x \sqrt{g} \Big[ \frac{31}{18} R^2 + \frac{213}{180} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{463}{20} R\Lambda + \frac{463}{10} \Lambda^2 + Z_{\mu\nu} \frac{\delta S}{\delta g_{\mu\nu}} \Big]$$

 $\Rightarrow$  non-renormalizability already at 1-loop

# The non-perturbative story

- Include all the terms needed for renormalizability: generically possible ⇒ obtain an Effective Field Theory
  - "Effective" = valid only up to a certain scale  $E_{\text{new physics}}$

• Weinberg's proposal of Asymptotic Safety:

– if a non-trivial fixed point of the RG exists, then such theory is valid up to arbitrarily high energy

- if there are a finite number of relevant directions at such a fixed point, then the theory is as predictive as a renormalizable one

- $\Rightarrow$  non-triviality requires non-perturbative approximation schemes:
  - lattice methods (dynamical triangulations, Regge calculus)
  - truncations of Functional RG Equation (FRGE)

# Truncations

• The FRGE for gravity has been studied within several truncations, mainly of the polynomial *f*(*R*) type:

$$\Gamma_k^{\rm gr} = \sum_n u_n(k) \int d^4x \sqrt{g} R^n , \qquad 0 \le n \le 8(10)$$

 a non-trivial fixed point with 3 relevant directions was always found [Reuter,Lauscher; Litim; ...; Codello,Percacci,Rahmede; Machado,Saueressig; Bonanno,Contillo,Percacci]

But what about the other invariants which play an essential role for the non-renormalizability ?

other reasons for looking at other invariants:

- complete the derivative expansion
- understand about degrees of freedom and unitarity

# Taming $C^2$ (plus matter)

- Background field method:  $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ 
  - Obtain a diffeomorphism invariant effective action
  - Low/high modes separation is achieved in terms of eigenvalues of the (generalized) Laplacian for the background metric

- Background field method:  $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ 
  - Obtain a diffeomorphism invariant effective action
  - Low/high modes separation is achieved in terms of eigenvalues of the (generalized) Laplacian for the background metric
- Take a truncation ansatz for  $\Gamma_k[\Phi]$  of the form

$$\Gamma_k[g,\bar{g},\ldots] = \Gamma_k^{\rm gr}[g] + S^{\rm gf}[g,\bar{g}] + S^{\rm gh}[g,\bar{g},{\rm ghosts}] + \Gamma^{\rm matter}[g,\phi]$$

 $-\Gamma_k^{\text{gr}} = \sum_n^N u_n(k) I_n[g]$ : the gravitational part;  $I_n[g]$  =geometric invariant. -  $S^{\text{gf}}$ ,  $S^{\text{gh}}$ : background-gauge-fixing term, and the corresponding ghost action

- Background field method:  $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ 
  - Obtain a diffeomorphism invariant effective action
  - Low/high modes separation is achieved in terms of eigenvalues of the (generalized) Laplacian for the background metric
- Take a truncation ansatz for  $\Gamma_k[\Phi]$  of the form

$$\Gamma_k[g,\bar{g},\ldots] = \Gamma_k^{\rm gr}[g] + S^{\rm gf}[g,\bar{g}] + S^{\rm gh}[g,\bar{g},{\rm ghosts}] + \Gamma^{\rm matter}[g,\phi]$$

 $-\Gamma_k^{\text{gr}} = \sum_n^N u_n(k) I_n[g]$ : the gravitational part;  $I_n[g]$  =geometric invariant. -  $S^{\text{gf}}$ ,  $S^{\text{gh}}$ : background-gauge-fixing term, and the corresponding ghost action

• Plug ansatz into the FRGE (Wetterich equation)

• Background field method:  $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$ 

- Obtain a diffeomorphism invariant effective action

– Low/high modes separation is achieved in terms of eigenvalues of the (generalized) Laplacian for the background metric

• Take a truncation ansatz for  $\Gamma_k[\Phi]$  of the form

$$\Gamma_k[g,\bar{g},\ldots] = \Gamma_k^{\rm gr}[g] + S^{\rm gf}[g,\bar{g}] + S^{\rm gh}[g,\bar{g},{\rm ghosts}] + \Gamma^{\rm matter}[g,\phi]$$

 $-\Gamma_k^{gr} = \sum_n^N u_n(k) I_n[g]$ : the gravitational part;  $I_n[g]$  =geometric invariant. -  $S^{gf}$ ,  $S^{gh}$ : background-gauge-fixing term, and the corresponding ghost action

Plug ansatz into the FRGE (Wetterich equation)

#### Heat Kernel expansion

- The traces on the RHS are then performed via the heat kernel expansion, which is an expansion in geometric invariants.

- Invariants on LHS and RHS are matched to extract beta functions.

### The fourth-order truncation for gravity

• Our ansatz for the gravitational part is

$$\Gamma_k^{\rm gr}[g] = \int d^4x \sqrt{g} \left[ \frac{1}{16\pi G} (2\Lambda - R) + \frac{1}{2\lambda} \frac{C^2}{3\lambda} R^2 + \frac{\theta}{\lambda} E \right]$$

•  $C^2 \equiv C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}$  is the square of the Weyl tensor

• 
$$E \equiv R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$$
 is the Gauss-Bonnet term

 A complete set of invariants at this order would also include the boundary term ∇<sup>2</sup>R, but we assume no boundary

Matter:

$$\Gamma^{\rm matter}[g,\phi] = \frac{1}{2} \int d^4x \sqrt{g} \ g^{\mu\nu} \ \partial_\mu \phi \ \partial_\nu \phi$$

# The choice of a background

- Beta functions are background independent
- Exploit background independence to choose a class of backgrounds
  - simple enough to obtain only minimal Laplacians in the Hessian,
  - generic enough to distinguish different invariants

- Beta functions are background independent
- Exploit background independence to choose a class of backgrounds
  - simple enough to obtain only minimal Laplacians in the Hessian,
  - generic enough to distinguish different invariants
- Usual choice: maximally symmetric (standard sphere)

 $\rightarrow$  only possible to distinguish different powers of the Ricci scalar.

In particular  $C^2=0$  and  $E\sim R^2\Rightarrow$  not good for our truncation

# The choice of a background

- Beta functions are background independent
- Exploit background independence to choose a class of backgrounds
  - simple enough to obtain only minimal Laplacians in the Hessian,
  - generic enough to distinguish different invariants

• A generic Einstein background satisfying

$$\bar{R}_{\mu\nu} = \frac{\bar{R}}{4} \,\bar{g}_{\mu\nu}$$

is sufficient to partially meet the two criteria.

- We indeed found that the operators appearing in the functional traces can be casted in the form of Lichnerowicz Laplacians, and that the heat kernel methods can be applied smoothly.

# Crank the Laplacian-mincer...



### The non-Gaussian fixed point

• Our background choice allows us to determine the non-perturbative  $\beta$ -functions of the linear combinations

$$u_2 = -\frac{\omega}{3\lambda} + \frac{\theta}{6\lambda}, \qquad u_3 = \frac{1}{2\lambda} + \frac{\theta}{\lambda}$$

(along with  $u_0 = \Lambda/(8\pi G)$ ,  $u_1 = -1/(16\pi G)$ ).

### The non-Gaussian fixed point

 Our background choice allows us to determine the non-perturbative β-functions of the linear combinations

$$u_2 = -\frac{\omega}{3\lambda} + \frac{\theta}{6\lambda}, \qquad u_3 = \frac{1}{2\lambda} + \frac{\theta}{\lambda}$$

(along with  $u_0 = \Lambda/(8\pi G)$ ,  $u_1 = -1/(16\pi G)$ ).

- Switch to the dimensionless couplings  $g_i = k^{-d_i} u_i$  and consider the  $\beta$ -functions  $\partial_t g_i = \beta_i$ .
- We find that the β-functions for the couplings contained in our truncation indeed give rise to a NGFP very close to the ones obtained within other truncations

$$\begin{split} g_0^* &= 0.00442 \;, \qquad g_1^* &= -0.0101 \;, \\ g_2^* &= 0.00754 \;, \qquad g_3^* &= -0.00501 \;. \end{split}$$

# Stability

- Linearized RG flow around the NGFP:  $\partial_t g_i = \mathbf{B}_{ij}(g_j g_j^*)$ stability matrix:  $\mathbf{B}_{ij} \equiv \partial_j \beta_i|_*$
- Stability coefficients (negative eigenvalues of B):

 $\theta_0 = 2.51$ ,  $\theta_1 = 1.69$ ,  $\theta_2 = 8.40$ ,  $\theta_3 = -2.11$ .

• The negative stability coefficient  $\theta_3$  thereby indicates that the corresponding eigendirection ( $V_3 = [0.07, -0.21, 0.97, -0.09]$ ) is IR-attractive.

#### $\Rightarrow$ 3 relevant directions

• Coefficients are all real, no more spirals... a sign of the physical importance of these non-f(R) terms

# Conclusions and outlook

- We have studied an " $R^2 + C^{2"}$  (plus matter) truncation using an Einstein background
- We found a NGFP with very similar properties to what observed in different truncations
  - The value of  $(G\Lambda)^*$  is very close to that found before
  - The number of relevant directions is still three
- The asymptotic safety results obtained with the FRGE seem to be pretty robust against the "menace of the counterterms"
- Nonetheless they have a non-trivial effect on stability coefficients, so we should keep an eye on them

# Conclusions and outlook

- We have studied an " $R^2 + C^{2"}$  (plus matter) truncation using an Einstein background
- We found a NGFP with very similar properties to what observed in different truncations
  - The value of  $(G\Lambda)^*$  is very close to that found before
  - The number of relevant directions is still three
- The asymptotic safety results obtained with the FRGE seem to be pretty robust against the "menace of the counterterms"
- Nonetheless they have a non-trivial effect on stability coefficients, so we should keep an eye on them

Outlook:

• Studying larger truncations in the polynomial f(R) class has become just a matter of computing power.

How much can we generalize this statement for generic local truncations?

For further work in this direction see Frank's talk at 19:00!