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The perturbative story

SEn = el /d l'\/g(ZA R)

@ 1-loop (pure) quantum gravity [t Hooft, Veltman (/ 7 — A = 0); Christensen, Duff]
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(where E is the integrand of the Gauss-Bonnett theorem)

on-shell: 1 1 / d*z\/g(212E — 2088A%)
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= divergences can be removed by field redefinition,
plus renormalization of A and topological term
(which can be added to Sgx without affecting e.o.m.)
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The perturbative story
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= need non-trivial counterterm, not of the type found in the bare action

= the (in-)famous non-renormalizability of gravity!
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The perturbative story
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@ 1-loop quantum gravity coupled to matter [t Hooft, Veltman: Deser, van Nieuwenhuizen;

Kamenshchik, Karmazin et al.; ... |
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= non-renormalizability already at 1-loop
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@ Include all the terms needed for renormalizability:
generically possible = obtain an Effective Field Theory

— "“Effective” = valid only up to a certain scale Enew physics

@ Weinberg's proposal of Asymptotic Safety:

— if a non-trivial fixed point of the RG exists, then such theory is valid up to
arbitrarily high energy

— if there are a finite number of relevant directions at such a fixed point, then the

theory is as predictive as a renormalizable one

= non-triviality requires non-perturbative approximation schemes:
— lattice methods (dynamical triangulations, Regge calculus)
— truncations of Functional RG Equation (FRGE)
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Truncations

@ The FRGE for gravity has been studied within several truncations, mainly of the
polynomial f(R) type:

e = Zun(k)/d4x\/§R" . 0<n<8(10)

e a non-trivial fixed point with 3 relevant directions was always found

[Reuter,Lauscher; Litim; ...; Codello,Percacci,Rahmede; Machado,Saueressig; Bonanno,Contillo,Percacci]
But what about the other invariants which play an essential role for the
non-renormalizability ?

other reasons for looking at other invariants:
— complete the derivative expansion
— understand about degrees of freedom and unitarity
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Taming C? (plus matter)
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The FRGE for gravity in a nutshell

@ Background field method: guv = Guv + huw
— Obtain a diffeomorphism invariant effective action

— Low/high modes separation is achieved in terms of eigenvalues of the
(generalized) Laplacian for the background metric
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The FRGE for gravity in a nutshell

@ Background field method: g, = guw + huw
— Obtain a diffeomorphism invariant effective action
— Low/high modes separation is achieved in terms of eigenvalues of the
(generalized) Laplacian for the background metric

@ Take a truncation ansatz for 'y [®] of the form
Ttlg, 3] = T§'lg] + 5*1g, 9] + 5*"[g, g, ghosts] + T™****"[g, ¢]

—T% =", (k) I.[g] : the gravitational part; I,,[g] =geometric invariant.
- 8% 52" background-gauge-fixing term, and the corresponding ghost action
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The FRGE for gravity in a nutshell

@ Background field method: g, = guw + huw
— Obtain a diffeomorphism invariant effective action
— Low/high modes separation is achieved in terms of eigenvalues of the
(generalized) Laplacian for the background metric

@ Take a truncation ansatz for 'y [®] of the form

Tklg,d,..] =T [g] + S*[g, 5] + S*"[g, g, ghosts] + ["™*"*"[g, ¢]

-T$ = ZN n(k) Inlg] : the gravitational part; I,,[g] =geometric invariant.

- ng, Se": background-gauge-fixing term, and the corresponding ghost action

@ Plug ansatz into the FRGE (Wetterich equation)
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The FRGE for gravity in a nutshell

@ Background field method: guv = Guv + huw
— Obtain a diffeomorphism invariant effective action

— Low/high modes separation is achieved in terms of eigenvalues of the
(generalized) Laplacian for the background metric

@ Take a truncation ansatz for 'y [®] of the form
Tklg, g, = TF [g] + 5%[9,g] + S*"[g, 3, ghosts] + ™" [g, ¢]

-T$ = ZN n(k) Inlg] : the gravitational part; I,,[g] =geometric invariant.

n

- ng, Se": background-gauge-fixing term, and the corresponding ghost action
@ Plug ansatz into the FRGE (Wetterich equation)

@ Heat Kernel expansion
— The traces on the RHS are then performed via the heat kernel expansion, which
is an expansion in geometric invariants.
— Invariants on LHS and RHS are matched to extract beta functions.
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The fourth-order truncation for gravity

@ Our ansatz for the gravitational part is

1 1 w 0
gr _ 4 _ /2_7 2 _
T[] _/d /g {TSWG(QA R+ 50t~ 2R+ B

o C? = C,,,0C"P% is the square of the Weyl tensor
e E=R%2— 4R, R + R, pe R*7P7 is the Gauss-Bonnet term

o A complete set of invariants at this order would also include the
boundary term V2R, but we assume no boundary

@ Matter:

Fmatter[g7 (b] — % /d4;p\/§ g,uu 8M¢ au¢
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The choice of a background

@ Beta functions are background independent

@ Exploit background independence to choose a class of backgrounds

e simple enough to obtain only minimal Laplacians in the Hessian,
e generic enough to distinguish different invariants
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The choice of a background

@ Beta functions are background independent

@ Exploit background independence to choose a class of backgrounds

e simple enough to obtain only minimal Laplacians in the Hessian,
e generic enough to distinguish different invariants

@ Usual choice: maximally symmetric (standard sphere)
— only possible to distinguish different powers of the Ricci scalar.

In particular C? = 0 and E ~ R? = not good for our truncation
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The choice of a background

@ Beta functions are background independent

@ Exploit background independence to choose a class of backgrounds

e simple enough to obtain only minimal Laplacians in the Hessian,
e generic enough to distinguish different invariants

@ A generic Einstein background satisfying
. R _
R}“/ = Z Juv

is sufficient to partially meet the two criteria.

— We indeed found that the operators appearing in the functional traces can be
casted in the form of Lichnerowicz Laplacians, and that the heat kernel methods
can be applied smoothly.
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Crank the Laplacian-mincer...
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The non-Gaussian fixed point

@ Our background choice allows us to determine the non-perturbative (3-functions of
the linear combinations

(along with uo = A/(87G), u1 = —1/(167Q)).
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T on-Gaussian fixed point

@ Our background choice allows us to determine the non-perturbative (3-functions of
the linear combinations

(along with uo = A/(87G), u1 = —1/(167Q)).

@ Switch to the dimensionless couplings g; = k~%u; and consider the 8-functions
atgi = Bi.

@ We find that the (-functions for the couplings contained in our truncation indeed
give rise to a NGFP very close to the ones obtained within other truncations

go =0.00442,  g¢; = —0.0101,
g5 =0.00754, g3 = —0.00501.
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@ Linearized RG flow around the NGFP: 8.g; = Bi;(g; — g7)
stability matrix: B;; = 8;0i],

@ Stability coefficients (negative eigenvalues of B):

0o =251, 6,=169, 6,=840, 03=—2.11.

@ The negative stability coefficient 03 thereby indicates that the corresponding
eigendirection (V3 = [0.07, —0.21, 0.97, —0.09]) is IR-attractive.

= 3 relevant directions

@ Coefficients are all real, no more spirals... a sign of the physical importance of
these non-f(R) terms
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Conclusions and outlook

@ We have studied an “R? 4+ C?" (plus matter) truncation using an Einstein
background

@ We found a NGFP with very similar properties to what observed in different
truncations

@ The value of (GA)" is very close to that found before
@ The number of relevant directions is still three

@ The asymptotic safety results obtained with the FRGE seem to be pretty robust
against the “menace of the counterterms”

@ Nonetheless they have a non-trivial effect on stability coefficients, so we should
keep an eye on them
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Conclusions and outlook

@ We have studied an “R? 4+ C?" (plus matter) truncation using an Einstein
background

@ We found a NGFP with very similar properties to what observed in different
truncations

@ The value of (GA)" is very close to that found before
@ The number of relevant directions is still three

@ The asymptotic safety results obtained with the FRGE seem to be pretty robust
against the “menace of the counterterms”

@ Nonetheless they have a non-trivial effect on stability coefficients, so we should
keep an eye on them

Outlook:

@ Studying larger truncations in the polynomial f(R) class has become just a matter
of computing power.

How much can we generalize this statement for generic local truncations?
For further work in this direction see Frank’s talk at 19:00!
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