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The perturbative story

SEH =
1

16πG

Z
d4x
√
g(2Λ−R)

1-loop (pure) quantum gravity [’t Hooft, Veltman (
R
E = Λ = 0); Christensen, Duff]

Γ(1)div =
1

180(4π)2

1

ε

Z
d4x
√
g(212E − 2088Λ2 +Xµν

δS

δgµν
)

(where E is the integrand of the Gauss-Bonnett theorem)

on-shell: =
1

180(4π)2

1

ε

Z
d4x
√
g(212E − 2088Λ2)

⇒ divergences can be removed by field redefinition,
plus renormalization of Λ and topological term
(which can be added to SEH without affecting e.o.m.)
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The perturbative story

SEH =
1

16πG

Z
d4x
√
g(2Λ−R)

2-loop [Goroff, Sagnotti; van de Ven]

Γ(2)div =
209

2880(4π)2

1

ε

Z
d4x
√
g(RαβγδR

γδ
ρσR

ρσ
αβ + Yµν

δS

δgµν
)

⇒ need non-trivial counterterm, not of the type found in the bare action

⇒ the (in-)famous non-renormalizability of gravity!
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The perturbative story

SEH =
1

16πG

Z
d4x
√
g(2Λ−R)+ 1

2

Z
d4x
√
g gµν ∂µφ∂νφ

1-loop quantum gravity coupled to matter [’t Hooft, Veltman; Deser, van Nieuwenhuizen;

Kamenshchik, Karmazin et al.; ... ]

∆Γdiv =
1

8π2ε

Z
d4x
√
g
h31

18
R2 +

213

180
CµνρσC

µνρσ − 463

20
RΛ +

463

10
Λ2

+ Zµν
δS

δgµν

i
⇒ non-renormalizability already at 1-loop
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The non-perturbative story

Include all the terms needed for renormalizability:
generically possible ⇒ obtain an Effective Field Theory

– “Effective” = valid only up to a certain scale Enew physics

Weinberg’s proposal of Asymptotic Safety:

– if a non-trivial fixed point of the RG exists, then such theory is valid up to
arbitrarily high energy

– if there are a finite number of relevant directions at such a fixed point, then the
theory is as predictive as a renormalizable one

⇒ non-triviality requires non-perturbative approximation schemes:

– lattice methods (dynamical triangulations, Regge calculus)

– truncations of Functional RG Equation (FRGE)
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Truncations

The FRGE for gravity has been studied within several truncations, mainly of the
polynomial f(R) type:

Γgr
k =

X
n

un(k)

Z
d4x
√
gRn , 0 ≤ n ≤ 8(10)

a non-trivial fixed point with 3 relevant directions was always found
[Reuter,Lauscher; Litim; ...; Codello,Percacci,Rahmede; Machado,Saueressig; Bonanno,Contillo,Percacci]

But what about the other invariants which play an essential role for the
non-renormalizability ?

other reasons for looking at other invariants:
– complete the derivative expansion
– understand about degrees of freedom and unitarity
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Taming C2 (plus matter)
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The FRGE for gravity in a nutshell

Background field method: gµν = ḡµν + hµν

– Obtain a diffeomorphism invariant effective action

– Low/high modes separation is achieved in terms of eigenvalues of the
(generalized) Laplacian for the background metric

Take a truncation ansatz for Γk[Φ] of the form

Γk[g, ḡ, ...] = Γgr
k [g] + Sgf [g, ḡ] + Sgh[g, ḡ, ghosts] + Γmatter[g, φ]

– Γgr
k =

PN
n un(k) In[g] : the gravitational part; In[g] =geometric invariant.

– Sgf , Sgh : background-gauge-fixing term, and the corresponding ghost action

Plug ansatz into the FRGE (Wetterich equation)

Heat Kernel expansion

– The traces on the RHS are then performed via the heat kernel expansion, which
is an expansion in geometric invariants.

– Invariants on LHS and RHS are matched to extract beta functions.
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The fourth-order truncation for gravity

Our ansatz for the gravitational part is

Γgr
k [g] =

Z
d4x
√
g

»
1

16πG
(2Λ−R) +

1

2λ
C2 − ω

3λ
R2 +

θ

λ
E

–

C2 ≡ CµνρσCµνρσ is the square of the Weyl tensor

E ≡ R2 − 4RµνRµν + Rµνρσ Rµνρσ is the Gauss-Bonnet term

A complete set of invariants at this order would also include the
boundary term ∇2R, but we assume no boundary

Matter:

Γmatter[g, φ] = 1
2

Z
d4x
√
g gµν ∂µφ∂νφ
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The choice of a background

Beta functions are background independent

Exploit background independence to choose a class of backgrounds

simple enough to obtain only minimal Laplacians in the Hessian,
generic enough to distinguish different invariants
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The choice of a background

Beta functions are background independent

Exploit background independence to choose a class of backgrounds

simple enough to obtain only minimal Laplacians in the Hessian,
generic enough to distinguish different invariants

Usual choice: maximally symmetric (standard sphere)

→ only possible to distinguish different powers of the Ricci scalar.

In particular C2 = 0 and E ∼ R2 ⇒ not good for our truncation
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The choice of a background

Beta functions are background independent

Exploit background independence to choose a class of backgrounds

simple enough to obtain only minimal Laplacians in the Hessian,
generic enough to distinguish different invariants

A generic Einstein background satisfying

R̄µν =
R̄

4
ḡµν

is sufficient to partially meet the two criteria.

– We indeed found that the operators appearing in the functional traces can be
casted in the form of Lichnerowicz Laplacians, and that the heat kernel methods
can be applied smoothly.
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Crank the Laplacian-mincer...
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The non-Gaussian fixed point

Our background choice allows us to determine the non-perturbative β-functions of
the linear combinations

u2 = − ω

3λ
+

θ

6λ
, u3 =

1

2λ
+
θ

λ

(along with u0 = Λ/(8πG), u1 = −1/(16πG)).

Switch to the dimensionless couplings gi = k−diui and consider the β-functions
∂tgi = βi.

We find that the β-functions for the couplings contained in our truncation indeed
give rise to a NGFP very close to the ones obtained within other truncations

g∗0 = 0.00442 , g∗1 = −0.0101 ,

g∗2 = 0.00754 , g∗3 = −0.00501 .
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Stability

Linearized RG flow around the NGFP: ∂tgi = Bij(gj − g∗j )
stability matrix: Bij ≡ ∂jβi|∗

Stability coefficients (negative eigenvalues of B):

θ0 = 2.51 , θ1 = 1.69 , θ2 = 8.40 , θ3 = −2.11 .

The negative stability coefficient θ3 thereby indicates that the corresponding
eigendirection (V3 = [0.07, −0.21, 0.97, −0.09]) is IR-attractive.

⇒ 3 relevant directions

Coefficients are all real, no more spirals... a sign of the physical importance of
these non-f(R) terms
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Conclusions and outlook

We have studied an “R2 + C2” (plus matter) truncation using an Einstein
background

We found a NGFP with very similar properties to what observed in different

truncations

The value of (GΛ)∗ is very close to that found before

The number of relevant directions is still three

The asymptotic safety results obtained with the FRGE seem to be pretty robust
against the “menace of the counterterms”

Nonetheless they have a non-trivial effect on stability coefficients, so we should
keep an eye on them

Outlook:

Studying larger truncations in the polynomial f(R) class has become just a matter
of computing power.

How much can we generalize this statement for generic local truncations?

For further work in this direction see Frank’s talk at 19:00!
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