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Introduction

10 years of the Enveloping-algebra formalism

@ ltis already 10 years since the publishing of
{ "Gauge theory on noncommutative spaces”,
Madore, Schraml, Schupp & Wess, EPJC16(2000)16,
& "Noncommutative gauge theory for Poisson manifolds,
Jurco,Schupp & Wess, NPB584(2000)784,
{"Enveloping algebra-valued gauge transformations for non-abelian
gauge goups on non-commutative spaces”,
Jurco, Schraml, Schupp & Wess, EPJC17(2000)521,
@ where it was put forward a formalism —THE ENVELOPING-ALGEBRA
FORMALISM-, which led to
$"Non-commutative standard model",
Calmet, Jurco, Schupp, Wess & Wohlgenannt, EPJC23(2002)363,
$"Noncommutative GUTSs, standard model and C,P,T.",

Aschieri, Jurco, Schugp & Wess, NPB 651(2003)45.
There is an excellent recent review by Blaschke, Kronberger, Sedmik & Wohlgenannt,

SIGMA 6(2010) 063.
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Introduction

NC fields as ordinary-field SW map images

In the ENVELOPING-ALGEBRA FORMALISM:

@ The noncommutative fields are functions of the ordinary fields —no
change in the no. of d.o.f.— such that ordinary gauge orbits are mapped
into noncommutative gauge orbits:

Aulau, ¥, 0]+ snc Aulan, v, 01A = Aula, + sau, v + s, 0],
V[a., v, 0] + snc V(au, ¥, 0] = V[a, + sau, + s¢,0],
sneA[A, A, 1, 0] = SAIA A, 0, 6],

Al‘r[al‘r?w’ 9 = 0] = alt? w[allr?wa 9 = 0] = wa /\[/\a A7 Ua 9 = 0] = A

sne A = 0N — i[Au, N, Sne Y = iN % W, sye A = iAx A,
sa, = o —i[au, A, S = iA, SA =i\,

@ By standard SW map egs., we mean: A acts from the left!.

@ a, and ) take values on the Lie algebra, g, of a compact Lie group, G
— A, and A take values on the universal enveloping algebra of g.
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Introduction

NC gauge theories for any compact Lie group

@ The action, S, for a (nonsusy) NC GUT (-inspired) theory for a compact
Lie group, G, reads
S — Sgauge + Sfermianic + SHiggs + SYukawaa
Sgauge [A'X — 332 CrRTrR Fun[R(A)] x F*[R(A)],
Sfermion/c - fd4X \UL/D[pU>(A)]WL:
Shiggs and  Syukawa shall be dropped in the quantum theory,
Fu[R(A)] = 9uR(A). - WR(A) L — I[R(A)u, R(A)v],
Dulpw (A = 0,V — ipy(Au) x Vi,
@ W, [6", py(a), 1] is the NC left-handed spinor multiplet which is the NC
counterpart of the ordinary left-handed spinor multiplet ¢, . ), carries
an arbitrary unitary representation, p.;, of g.

@ TR labels the unitary IRREPS —typically the adjoint and matter irreps— of
gand Y, crTrrR(TH)R(T?) = 1/97, G=®), Gi.
@ Hybrid SW maps (left-right NC gauge trans.) needed for Sy,kawa, Shiggs-
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Introduction

Quantising

@ The QUANTUM version of the classical field theory defined above is
obtained by integrating over the ordinary fields in the path-integral with

Boltzmann factor
B

S is the action above, which we shall understand as a formal power
series in O*.

@ Caveat: This expansion in 6 will not yield the right Physics at

Energies > 1/V0.
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Introduction

Pause and look back

@ After those 10 years, it is advisable that we pause to look back and
assess what has been achieved as regards the quantum properties of
those GUTs.

@ | will not cover all that has been done so far, but focus on

e gauge anomalies,

e renormalisability (when there are no Higgs and no Yukawa
sectors),

e construction of Yukawa terms and

e existence Supersymmetric versions.




Gauge anomalies

Gauge anomalies

@ When quantizing a chiral gauge theory the first problem one has to face
is that of gauge anomalies.

@ The chiral vertices acquire §-dependent terms, which can give rise to
new #-dependent anomalous contributions to the famous, already
anomalous, ordinary triangle diagrams:

Stermionic = / o' Yigi+id{a- %9* [% fasiP (8)+7" foaiDs (@)]} Putp + 0(6%).

@ So, | started long ago the computation of the following three types of
one-loop 3point diagrams giving would-be 6-dependent anomalies:
———
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Gauge anomalies

Would-be anomalous 3pt diagrams

k3




Gauge anomalies

Wrong guess!

@ Actually, | was completely sure that they would give rise to new
0-dependent anomalous terms, which would lead to extra anomaly
cancellation conditions, which in turn would make most -NC SM, NC
GUTS..— of these theories meaningless at the quantum level.

@ Couldn’t be more wrong! | was very surprised to find that the
0-dependent anomalous contributions to the effective action, I', were
BRS-exact, i.e., they were not truly anomalous terms:

sT[A[a, 0], 6] = — 5,5 [d'x e#1#2#3 Tr (0, X 8, Oy Ay, )
+s[ 2 [d errarans (iMTr( Oy 8uip Opig Apy @ ;)] + o(&®) + o(6?).
@ The computations were carried out by using DIM. REG. with a
nonanticommuting «s. More details in CPM, NPB 652(2003)72.

@ When | did the computations back in 2002, | was unaware of the results
—obtained using cohomological techniques— by Barnich, Henneaux and
Brandt [PR 338 (2000) 439] on the lack of non BARDEEN anomalies for

semisimple Lie algebras.
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Gauge anomalies

Would-be anomaly at any order in 6

The next challenge was to show -at one-loop— that there were no
0-dependent gauge anomalies at any O(6) and for any number of a,’s.

We did so [F.Brandt, CPM & F. Ruiz, JHEP 07(2003)068] by using a
mixture of explicit DIM. REG. computations, brute force solution of BRS
equations and BRS techniques:

By taking advantage of the fact that in DIM REG. the Jacobian of T + M
—an operator which enters the SW map for fermions

WV, = (5/J dap + Mla,d,v,7s; 0las [J) PYg——
is TRIVIAL, we were able to obtain the complete gauge anomaly
candidate:

AJA N, 0] = — 515 [d' et142ia1aTr Axd,, (AM 5 Oy Ay + ;AHZ*AM*AM)

2472
A/t = A[aa ‘9]%“ A= /\[A 9]

Then,
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Gauge anomalies

Would-be anomaly at any order in 0, cont’

@ by carrying out brute force computations and by using cohomological
techniques, we obtained B[A®”) t0] such that

t % A[A(a, t0), N(\, t0), t0] = snc B [A®"), t6].
@ and, hence,
1t

A[A(a,0), A\, 0),0] = A% — 5 + BlA(a, t0), 10]
0

@ THE 0-DEPENDENT TERMS ARE COHOMOLOGICALLY TRIVIAL =
THEY ARE NOT ANOMALOUS CONTRIBUTIONS!
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Gauge anomalies

FUJIKAWA’'S METHOD

FUJIKAWA’S METHOD

@ Another way to obtain the gauge anomaly is Fujikawa’s method: the
gauge anomaly shows that the fermionic measure is not invariant under
chiral gauge transformations. Fujikawa’s method helps establish a
connection with index theorems.

@ As yet, we lack a derivation of the absence of §-dependent anomalous
terms by using Fujikawa’s method.

@ Within Fujikawa’s formalism, the ordinary gauge anomaly comes in two
guises, related by local redefinitions of the corresponding currents: the
consistent form, Acon, and the covariant form, Acov

@ Acon verifies the WZ consistency conditions and involves lengthy
and tedious algebra. It is not gauge covariant.

@ Ao does not verify the WZ conditions, it is gauge covariant and,
as a result, the algebraic computations that lead to it are simpler
than in the "consistent" case.
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Gauge anomalies

The covariant form of the gauge anomaly. |

@ A few moths ago | decided to work out the covariant form of the gauge
anomaly in the U(1) case —non-trivial from the Cohomological
viewpoint: Barnich, Brandt & Henneaux, Phys. Rept. 338 (2000) 439,
up to first order in 6:

Z[a,0) = [didy e [TxIPY

D=D+R, DP=9- laPL
R = —[30" fap7" Du+ 5 0°° 1 f,a Dg] P

Then, following Fujikawa, one introduces two bases of orthonormal
eigenfunctions {¢m} & {ém},

(in(@) D(@)em = Xom  D(@)(1D(@)) 6m = X2 0m,
and expands
b= ampm, =Y _ bn¢h=>dddy=]] dbndan.
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Gauge anomalies

The covariant form of the gauge anomaly. ||

@ The gauge anomaly equation in covariant disguise reads
/ d* Trw(x) (D"[a)7, %) (x) = —6J = Alw, &, 0] cov,

where

sJd=di dy —dddy o =1+ iwPi, P = — ipPrw
2 2
6J = liMa 00 fd X Zm{quwef A/ N2 Prém — ohwe ™ n/N Prom}
T2 %) = gy | dibd 2z @ Semone, Sigmionic = [d*X DiDy

@ By changing to a plane wave basis, one gets

o _(@0)@)?
Alw, @,0]cor = liMass0o — fd4xTrw (x) f(z ¥ {( e g A2 e/px) },
PO(a) =D+ R, R = —[16°° f.57" Dy + 3 0°7 47 £,0Dp].
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Gauge anomalies

The covariant form of the gauge anomaly. IlI

@ By expanding in powers of § and removing the terms that vanish as
A — oo, one gets

) ip(®) @)
Alw, a,0lcov = iMoo — [d' Tr wf(::‘;4 tr {(75 e e_(p o e/PX)} =
Alerdnam ;- a] + AW [w, a, 6] + o(6?)
A[w, a](ordinary) -z fd4X TrwehvrPe f;wfp(r,
Dw, a,0] = fd Trw(X [A1(x) + A2(x) + As(x)]
4 S lima 20 [:£9; &% rsP?(Aq) {P(AG). RAG)} P (AQ)L,
. . 4
= =7, iMoo 2i [ dq4 e sz 15 P? (Ag) {P(AQ), R(AG)} P**~)(Ag)I,
= o limaso 2/f 7w € ¢ aatrsP?(Aq) {P(Ag), R(AQ)} P?C~(Ag)L.
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Gauge anomalies

The covariant form of the gauge anomaly. IV

@ Some lengthy algebra and the fact that the a,’'s commute —U(1) case—

lead to
A1 = 8 Lo geBenveo(— fa[gfwfpa fmfuﬁfpa)
aﬁﬁe“”f"’[w(a fgaD,3]I+ 50, fag Do) + Oufyafoe Dll
+3 10, fasfoo Dy I[]
Ap = 2(4ﬂ 50°P Pt Bf;wfpa—k
— 1oz 07?7 (110 0ploa DX + Oufoa foo Dl + 5 (fun0plas Dol
+ Oufapfoe D)),
A3 =0
@ Then

Dw, a,0] = deTrw )NA1(x) + A2(x) + As(x)] =
’ eaﬂeuupo' fd TrW aﬁful/fp(f + 4f1/o¢f;46 po‘) =0.
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Gauge anomalies

The covariant form of the gauge anomaly. IV

@ In summary,

A[w7 a7 e]cov = A(ordinary) [wv a] + O(ez)

@ NO FIRST-ORDER-IN-0-CORRECTIONS TO THE ORDINARY GAUGE
ANOMALY IN THE U(1) CASE: AGREEMENT WITH DIM. REG.

@ NONABELIAN CASE SHOULD BE WORKED OUT!
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Renormalisability

Renormalisability and the enveloping-algebra formalism. |

@ The issue of the renormalisability of NC theories formulated within the
enveloping-algebra formalism started off splendidly, for it was shown by
Bichl, Grimstrup, Grosse, Popp. Schweda and Wulkenhaar —JHEP
0106(2001)013- that the photon 2pt function is renormalisable at any
orderin 6.

@ Unfortunately, Wulkenhaar —JHEP 0203(2002)024— showed that this

0-expanded QED was not renormalisable mainly due to the infamous
4pt fermionic divergence:

c B8 ' 4., T T
=0 €pvpo | AXYy5y Yy
€

@ 4 years after Wulkenhaar’s paper, there came along the encouraging
results by Buric, Latas and Radovanovic —JHEP 02(2006)040— & Buric,
Radovanovic and Trampetic —~JHEP 03(2007) 030- that the gauge
sector of SU(N) and the NC SM were one-loop renormalizable at first
orderin 6.
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Renormalisability

Renormalisability and the enveloping-algebra formalism: Matter sector

@ However, due to the infamous 4pt fermionic divergence above, the
construction of theories with a renormalisable one-loop and
first-order-in-6 matter sector remained an open issue.

@ Then, it came along the paper by Buric, Latas, Radovanovic and
Trampetic —PRD 77 (2008) 045031—, where they showed that the
divergence of the 4pt fermionic function vanishes for a NC SU(2) chiral
theory with the matter sector being an SU(2)-doublet of NC LH
fermions.

@ This result was later generalized —-CPM & C. Tamarit, PRD 80 (2009)
065023—to any NC GUT inspired theory with only fermions as matter
fields.{> NC GUT inspired theories: gauge theories whose
noncommutative fermions are left-handed multiplets.

@ Thus, one of the obstacles —what about the renormalisability of the
other 1PI functions?— to achieve one-loop and first-order-in-6
renormalisability had been removed by selecting Grand Unification as a
guiding principle.
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Renormalisability

One-loop & o(#) ren. GUT inspired models

@ The absence of the infamous 4pt fermionic divergence opened up the
possibility of building NC theories with massless fermionic NC chiral
matter that are one-loop renormalisable at first in 6.

@ Actually, Wulkenhaar had already pointed out in his
non-renormalizability-of-6-expanded-noncommutative-QED paper that,
in the massless case, the theory is (off-shell) one-loop renormmalisable,
at first order in 6, if one forgets about the fermionic 4pt function.

@ Atlong last, it was shown —CPM & C. Tamarit, JHEP 12(2009)042- that
NC GUT inspired theories, with a matter sector made out of fermions
and no scalars, were, on-shell, one-loop-and-first-order-in-0
renormalisable for any anomaly safe compact simple gauge group, if,
and only if, all the flavour fermionic multiplets carry irreps with the same
quadratic Casimir [ie, RENORMALISABILITY is very partial to FAMILY
UNIFICATION]. (SO(10), Eg, not SU(5) —See C.TAMARIT, PRD81
(2010) 025006.
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Renormalisability

The on-shell renormalisability

@ NC GUT inspired models:

S— /d4x _ QLQZTrFW « F™ 40Dy,

Fuv = 0uAs — AL — i[AL Alls,  Dutpr = 0,V — ipu(AL) x WV,

py denotes an arbitrary unitary representation, which is a direct sum of
irreducible representations, p, = EB',; Prp-




Renormalisability

The effective action divergent part

@ Lengthy computations led to the following result:

Once v, g and 6 have been renormalised as follows
)= (Z})' 20k, g = b Zogr 0" = Zi0R",
2[21 +g15022 29_1 + 167rf|:181 CZ(G)_%ZfC2(r)i|7
Zy = -2, — (13C2( ) —4Cs(G)),

48'r

the UV divergences —one-loop and first order in 6— which remain in the
background-field effective action are

St — /d“x éa(;?X) Fila, ] + <Z p (if )G,[a Y] + c.c. >

—VANISHING ON-SHELL!-, where
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Renormalisability

F and G functions

I:/J, - }/1 guﬁpufuﬂr‘F_}Qg;zﬁ Dl/fl/o + Zr yé’g;z:} (’l;r"/(\,PL Ta@Ur)Ta
132, Va0 (Vs PLTH) T2 + y50,,° D f, 5,
Gr,L = k‘]rgaﬂfaﬁ PLI/ + krgeaﬁf}/ap PLfﬁ“d}r
+ K50°° Yo PLDg D* " + kg yop PLD?4)"
+ K0P ysPLfap”; yi ER, ki € C,
with
yr =1ImK{,y3 = 29 Ya,
y‘{ = _y5g2 3847r (1602( ) - 1302(6))‘
Rek{ = — JImkj — 2. (13C2(r) — 8C(G)),
Imk{ = 38; (11Ca(r) — scz(e))
Imk£ = 384022 ,Re k2 192 19272¢ (262( ) CQ(G)),
Imkj = Rek} = 2Reki = —2Rek4.
Notice that y1, y2, y5 and Zy must be flavour independent, and so must be
ys, ¥a: Co(r), the same for all irreps — family unification.




NC Yulawa terms

Ordinary SO(10), E¢ Yukawa terms

@ Yukama terms for (the most promising 4D GUTS) SO(10) and Es:
Yo = / d*x Vi Cais Vs asr bis

@ i = (), 9% Yukawa coefficients.
@ Fermionic multiplets:vy,» ~ 16 for SO(10), v.¢ ~ 27 for Eg.
@ Higgs multiplets: ¢; ~ 10,120, 126 for SO(10), ¢; ~ 27,351’,351 for Es.
16(X) 16 = (10€P 126)s €P 12045, 27 Q) 27 = (27 ) 351")s (P 357as
@ %, is an invariant tensor:
Sac o + CaM; + CpcTag =0

T2 M2, ¥2group generators in irreps by JX,, ¢i and Y gy, respectively.
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NC Yulawa terms

NC SO(10), Es Yukawa terms: naive

@ A naive NC version of the ordinary Yukawa term would not do

yna/ve = [dX Vi Cais \Tle * W,y x P,
WS, W, & denote the NC fermionic and Higgs fields

defined by standard SW maps,ie, solutions to
snc(NCField) = i\ x (NCField) = s(NCField).

Indeed, 0 # chy na,ve =
jdX Yirr Cais (I/\AC*\IIcf * Wopr *x D) +\IJA, * iNgc* Vocr * ®;
—I—\UAf * W * iNjx ®)),
for

@ « is not commutative &
@ %is not invariant for enveloping-algebra valued A’s.
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NC Yulawa terms

NC SO(10), Es Yukawa terms: tensor rep. fields

@ To carry over the properties of ©;5 to the NC theory in a consistent way,
one first combines ¢4is with the ordinary fields %, ¥.5r and ¢; and,
then, defines new ordinary fields that transform under tensor products
of ordinary irreps of the gauge group, but carry the very same NUMBER
OF DEGREES of freedom as %, 1,51 and ¢;:

dag = Cas bi, Vigr = Var Ca,  Vasir = CaB Vasir -

@ Their BRS transformations read:

Sdap = — A%) bos — i dac A,

31/ bigr = ’>\ 1/),Bf - ”/)ICf A(c“};),

_ | / (¢)
Sanirr = _I)‘AC Vaci — [anp i




NC Yulawa terms

NC SO(10), Es Yukawa terms: hybrid SW NC fields

@ To each ordinary ¢4z, ﬁ,fgf and ¢, 4, we associate a NC counterpart
P asl¢as, a5, 0], Wik, ai, 0] and W[, &y, 0],
respectively, which are solutions to the Hybrid SW map egs.:
Snc®as = S®as,  SncVibr = SV,  SnoVaar = SWaar,

where one defines

SnePas = 7!/\54%) * Do — i¢AC * /\(C%)’
sneWigr = — i A« Ui — i Wi, « NGy

() , b
Sncw(\A,‘f/ = — /\(ALC) * \UaCff’ — IwaAjf/ * /\/(»/-( )

@ The Left-Right action (as opposed to LL, RR actions) of the A’s is the
only choice consistent with (SNc)2 =0!

@ The solutions to the egs. above are SW maps of hybrid type, a notion
introduced by Schupp [hep-th/0111038].
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NC Yulawa terms

NC SO(10), E¢ Yukawa terms: Term 1

@ We are now in the position to obtain in a natural(naive) way NC SO(10),
Ee¢ Yukawa terms from their ordinary counterparts:

@ Interms of ¢4s, the ordinary Yukawa term reads:

y1(ord) = ylord _ / dx 9 zZ}ff DAB Vabr! -

@ Then, its NC counterpart is

yire — /d4X 9’,,<u1) Wi % Gag x Vopr,

@ THE NC YUKAWA TERM IS OBTAINED BY REPLACING EACH
ORDINARY FIELD IN ¥ WITH ITS NC COUNTERPART AND THE
ORDINARY PRODUCT WITH THE « PRODUCT!
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NC Yulawa terms

NC SO(10), Es Yukawa terms: NC BRS INV. Term 1

@ By construction V" is invariant under the following NC BRS
transformations:

SNC\T/Zf = I'\T/gf * /N\gi‘), SncWVaBr = I'/\g? * W cr,
SnePas = —I'7\<W) * Pog — i Dyc * A(C%)

snolSy) = —i NG« AL snon) = inG) S ).

@ The SW maps which define the NC fields are
‘T"}f = "ZZf - 1 0" 8/! ";gfafng + ’i o Jgfaifc)séing + 0(92)7
Pap = ¢ + 3 0" @ #Ac dvics + 5 0" HACaE,L)C;DQﬁDB+
+ 3049, @ACaS/ s+ 40" ¢ACau ci‘Dag, [gs
+ 50" 3 Acbe0d, 5 + O(6%),

/ 1 v A(Y) A i . (z,) (1) 2
Vasr = Yapr — 3 0" &, gcOutacr + 30" &, gca, cp¥br + O(67).
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NC Yulawa terms

NC SO(10), Es Yukawa terms: Terms 2 & 3

@ If we use E,fgf and ¢, 4 to formulate an ordinary Yukawa term, we
obtain the same ordinary Yukawa term:

q -~
VOV = [d% % G b Dasr

d e I
yéor ) = [d'% % s Yanir bi,
y1(ord) _ yéord) _ y:(,’ord)

@ BUT THE NC COUNTERPARTS OF Y and Y% ARE NOT EQUAL:
VO = [d% 92 &% U« Wopn
WO = [d*% 9D Cais V5 bi Vs
y1(nc) ” yénc) " y:(snc) # y1(nc)
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NC Yulawa terms

NC SO(10), Es Yukawa terms: The Yukawa Term

@ Since

y1(nc) #yénc) ;éyénc) ;éy1(nc)
@ the NC YUKAWA term reads

y(nc) _ y1(nc) + yénc) + yénc).

@ It can be shown —see CPM, arXiv: 1008.1871— that at first order in 6
this is the most general BRS invariant Yukawa-type term:

6" /d4X Vi g VIZ10°7, 8y, &) 61 sy,

one can write. This Yukawa term is therefore renormalisable at first
orderin 6.

@ FURTHER DETAILS IN CPM, arXiv: 1008.1871.



Supersymmetry

WHAT ABOUT SUSY?
Details in CPM & C. Tamarit JHEP 0811 (2008) 087, JHEP 0911 (2009) 092.

@ For U(N) in the fundamental rep., N' = 1 SYM exists —at least in the
WZ gauge- in the enveloping-algebra formalism as a classical theory:

Snesym = 21—92Tr/d4x [f% F" % Fp — 2i N % 0" D, A" + D D]
where
A, = Aula Mo, d,0], Aafa, Ao, d,0]and D = Dla, A\, d, 0]
are SW maps.
Sncsywm is invariant under A/ = 1 SUSY:
@ linearly realized in terms of the NC fields,
(there is a local superfield formulation)
and
@ nonlinearly realized in terms of the ordinary fields.
(no local superfield formulation exists, but a nonlocal one does, at least
for U(1))
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Supersymmetry

Susy transformations

Aulp, 0] = AL, 0] = Aulp, 0] + 5. Aulip, 0]
Nalio, 0] = AD[p, 0] = Aalp, 0] + P[0, 0]
D[(p, 9] — D(E)[(Pv ‘9] = D[‘P7 0] + 56D[‘P7 6']

¢ stands for the ordinary fields

A, 0] = Aulio + deip, 0]
N[, 0] = Aalp + deip, 0]
Dp, 6] = Dlp + beip, 6]

where . .
S A" = je“at N + iev5h N,
6o = (0") o €5 Fy + l€a D,
6D = —e*o" DA + &G4 DN,

o

and, up to first order in ,— ——
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Supersymmetry

nonlinear susy trans.

Se@u = Jeou\ — 460#)\+ 50" [{aWZD (eour—Ea,N\)—ila,, cou—E5, ]}
—{eonA =&\, Opay + Y _{a,,d,(co A —ea, \)+D, (e A —E5m))
Dﬂ(eapﬁ—a}//\)}} + 67,
Seda = —€ad + 2iey (") fu + 3077 [f HeouA—e5, ), 2D, Aa —i[8p, Aa]}
@0 41D, (65 (7)) 2L €3 ()7 ]+ £le A7 Aol
+ 62
6cd = i€5" DX + iec" DX + 1607 {Zi{fw E*Dp\ + e Do}
+i{av, (9, + D,)(ed* DX + GO'MD“A)} 4{60',,_ €, 2D,d~ila,, d]}
—{a,,2D,(ieg" D\ + iea" D \)—i[a,, ieg" D\ + ieat D]
+1[eap/_\—eap/\,d]}] + 6%
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Supersymmetry

Comments

COMMENTS ON THE NONLINEAR SUSY TRANSFORMATIONS
@ They are truly SUSY transformations,
[0c,, 0c,](fields) = i(e20" €1 — €10"&)0, (fields) + gauge transformations,

due to the fact that the NC fields carry a linear realisation of A/ = 1
SUSY. This holds at any order in # —see CPM and C.Tamarit, JHEP
2008.

@ f.a,, 0. Ao and d.d belong to the Lie algebra of the ordinary gauge
group only for U(N) in the fundamental rep. and its siblings, i.e.,

@ for an arbitrary Lie algebra they take values on the enveloping-algebra:
they are not ordinary field variations which are also ordinary fields.
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Supersymmetry

Susy for NC GUTS? |

@ For simple gauge groups it still makes sense to consider
S= 2ingr/d4x [~ F" % Fuu — 2iA% x 0% DA% + D D]

where
AL =Aula Ao, d, 0], Aula, Ao, d,0]and D = D|a, A\, d, 6]
are SW maps.
@ It looks like as if it were a SUSY invariant NC action, but, the CATCH is

that the invariance is under

Aulp. 0] = AL, 0] = Aulip, 0] + 6. A, 0]

Nalio, 0] = AD[p, 0] = Aalp, 0] + Mo, 0]

¢ stands for the ordinary fields

and A, 0], Au[e, 6], D[p, 6] ARE NOT SW MAPS!. —s—>—

e e
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Supersymmetry

Susy for NCGUTS? Il

@ Those transformations are therefore defined from the space of NC
"physical" fields —those defined by the SW map— into the space of
general fields taking values on the enveloping algebra.

@ The so remaining question is whether this invariance has any physical
consequences.

@ In this regard, it is worth noticing that —unlike in U(N) case—the "SUSY"
NC SU(N) theory thus obtained is one-loop and first-order-in-0
(off-shell) renormalisable. This would be just a lucky chance unless
there is a symmetry at work, at first order in 6, that relates the gluon and
gluino dynamics —see CPM and C. Tamarit JHEP 0911 (2009) 092.

NC GUTS: A STATUS REPORT



Open problems

Open problems

PRESSING PROBLEMS

@ For SO(10), Ee, inclusion of a phenomenologically relevant NC Higgs
potencial: a non trivial issue as implied by the construction of Yukawa
terms.

Study of the one-loop renormalisability of those GUTS at first order in 6.
Construction and analysis of the properties of NC SO(10), E¢ "SUSY".
Study of the phenomenological implications of NC SO(10), Es GUTs.

Gauge anomalies, Fujikawa’s method and index theorems.
Recall that the index theorem in 2n+2 dimensions gives the gauge anomaly in 2n dimensions, that the index

of the Dirac operator does not change under small deformations of it and that in our formalism we are

considering small deformations of the ordinary Dirac operator = No #-dependent anomalous terms.

@ Will this NC GUTS eventually find accommodation within F-theory?
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