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The problem

Branching and annihilating random walks

Diffussing particles suffering chemical reactions

A
σ−→ 2A

2A
λ−→ ∅

No temperature, no Boltzmann probability distribution

Existence of stationary probability distribution
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Phase transitions in BARW

Depending on reaction rates there exists an
active-to-absorbing second order phase transition

Mean field result → mass action law:

∂ρ

∂t
= σρ− λρ2

With stationary solutions ρ = 0 (unstable) and ρ = σ/λ

No phase transition! → fluctuation induced phase transition

Perturbative RG: existence of phase transitions for d = 1 and
d = 2 but not above
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Phase transitions in BARW

MonteCarlo shows a phase transition in all dimensions, for
small branching ratio σ but for λ > λc threshold value
Belongs to the Directed Percolation universality class (dc = 4)
But here we are interested in non-universal properties
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Expansion in the branching rate σ

For studying the existence of a phase transition one can
perform a perturbative expansion in the branching rate σ

We start with the case σ = 0

We first solve Pure Annihilation → exactly solvable
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NPRG flow equations for Γ
(n,m)
k

ϕ(x) = 〈φ(x)〉, (average density) ϕ̂(x) = 〈φ∗(x)〉 (average
response field) real fields → usual Legendre transform

We work with NPRG equations for the (n,m)- correlation

functions Γ
(n,m)
k

Γ
(n,m)
k =

δn+mΓk [ϕ, ϕ̂]

δnϕδmϕ̂

∣∣∣∣
ϕ,ϕ̂=const

In principle we have to solve an infinite hierarchy of equations

Must enforce causality (Itô prescription)
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Pure annihilation

Simple system 2A→ ∅, no active phase

Microscopic action:

SPA[φ̄, φ] =

∫
ddxdt

{
φ̄(∂t − D∇2)φ+ λφ̄(φ̄+ 2)φ2

}
.

Hierarchy of NPRG equations can be closed

Simplifying properties: Γ
(n,m)
k = 0 for n < m and Γ

(n,0)
k = 0 for

all n

No field renormalization!
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Pure annihilation

Solving the flow of Γ(2,2)

∂sΓ
(2,2)
k (p1, p2, p3, p4) =

∫
q
∂sRk(q)G 2

k (q)Gk(p1 + p2 − q)

×Γ
(2,2)
k (p1, p2,−q,−p1−p2+q)Γ

(2,2)
k (q, p1+p2−q,−p3,−p4)

So that one can define λk(p1 + p2) = 1
4 Γ

(2,2)
k (p1, p2, p3, p4)

With final solution

λk(p) =
λ

1 + 2λ
∫
q

{
Gk(q)Gk(p − q)− GΛ(q)GΛ(p − q)

}
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Microscopic action

Sodd =

∫
ddxdt

{
φ̄(∂t−D∇2)φ+λφ̄(φ̄+2)φ2−σφ̄(φ̄+1)φ

}
Bare level power counting is preserved along the flow

Flow can again be closed → finite hierarchy
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Threshold λc for d > 2

For finding conditions for criticality one imposes

Γ
(1,1)
k=0 (p = 0) = 0

at order σ one finds

Γ
(1,1)
k (p) = −σ − 2

σ

λ
(λk(p)− λ)

With λk(p) the same as in pure annihilation

Regulator dependence is natural: λc is non-universal and
depends on the UV details of the theory

In this work → hypercubic lattice & continuum theory with
cut-off Λ
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Threshold λc in lattice & continuum

Hypercubic lattice dimension 3 4 5 6

λc/Da
d−2 (this work) 3.96 6.45 8.65 10.7

λc/Da
d−2 (MonteCarlo) [Canet04] 3.99 6.48 8.6 10.8

With large d limit

λc/Da
2−d d→∞∼ 2d .

Whereas for the continuum one finds

λ̃c =
DΛ2−d(4π)d/2Γ(d/2) d(d − 2)

4

In agreement with previous NPRG numerical results
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Generalizations (work in progress)

Parity Conserving universality class (in particular dc)

Higher order σ-expansion

Other out of equilibrium systems
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