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Why? Motivation

I QFT on curved spacetimes is important for physics

→ cosmology (CMB fluctuations) and black holes (Hawking radiation)

I precise formulation via algebraic approach [Wald, many others]

I But why should we make all of this noncommutative?

I NC geometry from quantum gravity!?!?
→ include some quantum gravity effects in QFT on CS

I NC geometry is natural generalization of classical geometry
→ generalize standard methods of QFT on CS as far as possible

I NC in cosmology and black hole physics is of physical interest
→ provide formal background for phenomenology

I ∃ NC gravity solutions [Schupp, Solodukhin; Ohl, AS; Aschieri, Castellani]
→ test their physical implications by using QFT on CS
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Outline

Outline of my talk:

1. Deformed QFT on CS: [Ohl, AS] vs. [Dappiaggi, Lechner, Morfa-Morales]

spacetime deform−−−−−−−→ deformed spacetime

quantum fields
y yquantum fields

QFT deform−−−−−−−→ deformed QFT

2. For formal deformation quantization:

QFT on NC CS
∗-algebra isomorphism←−−−−−−−−−−−−−−−→ QFT on CS[[λ]]

3. Example of a convergent deformation:

QFT on NC CS
injective ∗-morphism−−−−−−−−−−−−−−−−−→ QFT on CS

where certain strongly localized observables are excluded!
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Scalar field theory

Scalar field theory on NC curved spacetimes
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Scalar field theory Kinematics

I Simple example of a twist: [Moyal product/twist]

?-product h ? k = he
iλ
2
←−
∂µΘ

µν−→∂ν k ! twist F−1 = e
iλ
2 Θ

µν∂µ⊗∂ν

I More general class of twists: (abelian twists)

F−1 = f̄α ⊗ f̄α = exp
(
iλ

2
ΘabXa ⊗ Xb

)
with [Xa,Xb] = 0

NB: most studied NC gravity solutions are of this type

I NC geometry via twist deformation quantization: [Wess group]

I algebra of functions (C∞(M)[[λ]], ?), where h ? k := f̄α(h) · f̄α(k)

I exterior algebra (Ω•[[λ]], ∧?,d), where ω∧? ω
′ := f̄α(ω) ∧ f̄α(ω′)

I pairing 〈v,ω〉? := 〈f̄α(v), f̄α(ω)〉 among vector fields and 1-forms
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Scalar field theory Dynamics of a real scalar field

I deformed action functional:

SΦ =

∫
LΦ = −

1
2

∫ (
〈〈dΦ,g−1

? 〉?,dΦ〉? +M2Φ ?Φ
)

? vol?

I use local basis: 〈∂µ, d̃x
ν
〉? = δνµ

→ g−1
? = ∂∗µ ⊗? g

µν ? ∂ν , dΦ = d̃x
µ

? ∂?µΦ

LΦ = −
1
2
(
(∂?µΦ)∗ ? gµν ? ∂?νΦ+M2Φ ?Φ

)
? vol?

I deformed equation of motion (top-form valued):

0 =
1
2

(
�?[Φ] ? vol? + vol? ?

(
�?[Φ

∗]
)∗

−M2Φ ? vol? −M2 vol? ?Φ
)

=: P?[Φ] ? vol?

NB: P? is formally self adjoint w.r.t. SP
(
ϕ,ψ

)
?

=
∫
ϕ∗ ?ψ ? vol? , i.e.(

ϕ,P?[ψ]
)
?

=
(
P?[ϕ],ψ

)
?
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QFT on CS

Reminder: Algebraic approach to commutative QFT
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QFT on CS QFT on commutative curved spacetimes

Commutative free scalar QFT in one slide: [Wald; Bär, Ginoux, Pfäffle; . . . ]

I Let (M,g) be time-oriented, connected and globally hyperbolic

I start with Klein Gordon operator P = �−M2

⇒ unique retarded and advanced Green’s operators ∆±

⇒ fundamental solution ∆ = ∆+ − ∆− (i.e. ∆[C∞0 (M)] = SolP := Ker(P))

⇒ symplectic vector space (V,ω) with

V = C∞0 (M,R)/Ker(∆) and ω([ϕ], [ψ]) =
(
ϕ,∆(ψ)

)
=
∫
ϕ∆[ψ] vol

⇒ Weyl algebra is generated by W(ϕ), ϕ ∈ V, such that
(i) W(0) = 1
(ii) W(−ϕ) = W(ϕ)∗

(iii) W(ϕ) ·W(ψ) = e−iω(ϕ,ψ)/2 W(ϕ+ψ)

NB: ω(ϕ,ψ) is called “commutator function” in physics literature,
since [Φ(ϕ),Φ(ψ)] = iω(ϕ,ψ) 1
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QFT on NC CS

QFT on NC curved spacetimes
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QFT on NC CS Deformed Green’s operators

I (M,g?, ?)
∣∣
λ=0 time-oriented, connected, globally hyperbolic

I let P? =
∞∑
n=0

λnP(n) be a deformed Klein-Gordon operator

I technical assumption: P(n) : C∞(M)→ C∞0 (M) for all n > 0
I fulfilled for all twists of compact support
I or g? asymptotically (outside compact region) symmetric under F

I based on strong results for the commutative case we find:

there exist unique Green’s operators ∆?± :=
∞∑
n=0

λn∆(n)± satisfying

(i) P? ◦ ∆?± = idC∞0 (M)[[λ]] ,

(ii) ∆?± ◦ P?

∣∣
C∞0 (M)[[λ]]

= idC∞0 (M)[[λ]] ,

(iii) supp
(
∆(n)±(ϕ)

)
⊆ J±

(
supp(ϕ)

)
, for all n ∈N0 and ϕ ∈ C∞0 (M) ,

where J± is the causal future/past with respect to the metric g?|λ=0.
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QFT on NC CS Deformed Green’s operators

Explicit formula for ∆?± in terms of ∆± := ∆(0)±:

∆?± = ∆±

− λ ∆± ◦ P(1) ◦ ∆±
− λ2 (∆± ◦ P(2) ◦ ∆± − ∆± ◦ P(1) ◦ ∆± ◦ P(1) ◦ ∆±

)
+ O(λ3) [higher orders follow the same structure]

Graphically:

= − λ 1 − λ2

(
2 − 1 1

)

− λ3

(
3 − 1 2 − 2 1 + 1 1 1

)
+ O(λ4)

→ perturbative approach to deformed Green’s operators
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QFT on NC CS Deformed symplectic vector space

I define fundamental solution ∆? := ∆?+ − ∆?−

I we obtain ∆?[C
∞
0 (M)[[λ]]] = SolCP?

:= Ker(P?)

I space of “physical sources”:

H :=
{
ϕ ∈ C∞0 (M)[[λ]] :

(
∆?±(ϕ)

)∗
= ∆?±(ϕ)

}
NB: Let ψ be a real solution of the deformed wave equation, then there is a

ϕ ∈ H, such that ψ = ∆?(ϕ).

Proposition (T. Ohl, AS)
(V?,ω?) with V? := H/Ker(∆?) and

ω?([ϕ], [ψ]) :=
(
ϕ,∆?(ψ)

)
?

=

∫
ϕ∗ ? ∆?(ψ) ? vol?

is a symplectic vector space.

Proposition
There is a symplectic isomorphism S : (V?,ω?)→ (V[[λ]],ω),
i.e. ω(S[ϕ],S[ψ]) = ω?([ϕ], [ψ]), between the NC and com. field theory[[λ]].
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QFT on NC CS ∗-algebras of field polynomials

I Consider unital ∗-algebras over C[[λ]] [math/0408217 (Waldmann), . . . ]

Def: Let (V, ρ) be a symplectic vector space over R[[λ]]. Then A(V ,ρ) is
∗-algebra of field polynomials if it is generated by Φ(ϕ), ϕ ∈ V, such that

Φ(αϕ+ βψ) = αΦ(ϕ) + βΦ(ψ) ,
Φ(ϕ)∗ = Φ(ϕ) ,[

Φ(ϕ),Φ(ψ)
]

= i ρ(ϕ,ψ) 1 .

I A(V?,ω?) =̂ NC QFT , A(V[[λ]],ω) =̂ com. QFT[[λ]]

Corollary
The symplectic isomorphism S : (V?,ω?)→ (V[[λ]],ω) induces via
S
(
Φ?(ϕ)

)
:= Φ(Sϕ) a ∗-algebra isomorphism S : A(V?,ω?) → A(V[[λ]],ω)

between NC and commutative QFT[[λ]].

I Consequences:
I Induction of (algebraic) states Ω? := Ω ◦S : A(V?,ω?) → C[[λ]]

I NC correlation functions from commutative correlation functions
〈0|Φ?(ϕ1) · · ·Φ?(ϕn)|0〉 = 〈0|Φ(Sϕ1) · · ·Φ(Sϕn)|0〉
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QFT on NC CS

An example of a convergent deformation
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QFT on NC CS 2-dimensional FRW universe

I spacetime: M = (0,∞)× S1 with g = −dt⊗ dt+ t2dφ⊗ dφ

I deformation: F−1 = eiλ(t∂t⊗∂φ−∂φ⊗t∂t) → t ? eiφ = e−2λ eiφ ? t

I in Fourier space (φ→ k ∈ Z) we have

P̃? = cosh(3λk) ◦ �̃ , ∆̃±? = ∆̃± ◦ cosh(3λk)−1

I symplectic VS (V?,ω?) = (C∞0 (M,R)/Ker(∆?),ω?) with

ω?(ϕ,ψ) = −

∞∫
0

dt t

∞∫
0

dτ τ
1

2π

∞∑
k=−∞ ϕ̃(t, −k)

∆(t, τ,k)
cosh(3λk)

ψ̃(τ,k)

I symplectic map S : (V?,ω?)→ (V,ω) in Fourier space(
S̃ϕ̃
)
(t,k) =

ϕ̃(t,k)√
cosh(3λk)

⇒ ω(Sϕ,Sψ) = ω?(ϕ,ψ)

I S is injective but not surjective (all S̃ϕ̃ fall of faster than e−3λ|k|/2 for |k|� 1)

I Interpretation:
QFT on NC CS is ∗-isomorphic to a reduced QFT on CS, where strongly
localized observables are excluded.

A. Schenkel (Würzburg) QFT on NC CS Corfu 2010 16 / 17



Summary

I QFT on NC curved spacetimes [arXiv:0912.2252]:

I formally self adjoint EOM operators P?

I existence, uniqueness and construction of the deformed Green’s operators

I symplectic structure on the space of real solutions of P?

I quantization via ∗-algebras of field polynomials

I QFT on NC CS / QFT on CS[[λ]]-correspondence via ∗-algebra isomorphism

I Convergent deformation of a FRW toy-model [arXiv:1009.1090]:

I construction of the deformed symplectic vector space

I quantization in terms of Weyl algebras

I ∃ ∗-isomorphism between QFT on NC CS and a reduced QFT on CS,
where strongly localized observables are excluded

I relation between NC and commutative field operators:

Φ̂?(t,k) =
√

cosh(3λk)−1 Φ̂(t,k)
|k|�1
≈
√

2 e−3λ|k|/2 Φ̂(t,k)

⇒ the NC theory is strongly improved in the UV (i.e. |k|� 1)
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Details

Some details . . .
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Details Symplectic isomorphism

I Remember: H :=
{
ϕ ∈ C∞0 (M)[[λ]] :

(
∆?±(ϕ)

)∗
= ∆?±(ϕ)

}
I Hodge operators:
α,α? : C∞(M)[[λ]]→ Ωd(M)[[λ]], α(ϕ) = ϕ vol ; α?(ϕ) = ϕ ? vol?

We have the following lemmas:

I: κ := α−1
? ◦ α : C∞0 (M,R)[[λ]]→ H is a vector space isomorphism

II: j± : C∞0 (M,R)[[λ]]→ C∞0 (M,R)[[λ]] defined by j± := κ−1 ◦ P? ◦∆± is a VS
isomorphism with j±

(
P[C∞0 (M,R)[[λ]]]

)
= (κ−1 ◦ P?)[C

∞
0 (M,R)[[λ]]]

III: ω̂? := ω? ◦
(
κ ◦ j± ⊗ κ ◦ j±

)
is a symplectic structure on

V := C∞0 (M,R)[[λ]]/P[C∞0 (M,R)[[λ]]]

IV: ω̂?([ϕ], [ψ]) =
(
ϕ, ∆̂?(ψ)

)
, where ∆̂? =

(
id − ∆∓ ◦ P

)
◦ ∆? ◦ P? ◦ ∆±

satisfies P ◦ ∆̂? = ∆̂? ◦ P = 0 on C∞0 (M,R)[[λ]]

V: S =
∑
λnS(n) : V → V given by S(0) = id and

S(n) = 1
2

(
∆−1 ◦ ∆̂(n) −

n−1∑
m=1

S(m) ◦ S(n−m)

)
satisfies

ω(S[ϕ],S[ψ]) = ω̂?([ϕ], [ψ]) for all [ϕ], [ψ] ∈ V
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