

Quantum Field Theory on NC Curved Spacetimes

Alexander Schenkel

(work in part with Thorsten Ohl)

Institute for Theoretical Physics and Astrophysics, University of Würzburg

Workshop on "Noncommutative Field Theory and Gravity"

Corfu Summer Institute

September 8-12, 2010

Motivation

- QFT on curved spacetimes is important for physics
- \rightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
 - precise formulation via algebraic approach [Wald, many others]
 - But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?
 - \rightarrow include some quantum gravity effects in QFT on CS
 - NC geometry is natural generalization of classical geometry
 - $\rightarrow\,$ generalize standard methods of QFT on CS as far as possible
 - NC in cosmology and black hole physics is of physical interest
 - → provide formal background for phenomenology
 - ► ∃ NC gravity solutions [Schupp, Solodukhin; Ohl, AS; Aschieri, Castellani]
 - $\rightarrow\,$ test their physical implications by using QFT on CS

Ø Outline

Outline of my talk:

1. Deformed QFT on CS: [Ohl, AS] vs. [Dappiaggi, Lechner, Morfa-Morales]

2. For formal deformation quantization:

 $\mathsf{QFT} \text{ on } \mathsf{NC} \mathsf{CS} \quad \xleftarrow{\quad *\text{-algebra isomorphism}} \mathsf{QFT} \text{ on } \mathsf{CS}[[\lambda]]$

3. Example of a convergent deformation:

QFT on NC CS _______ QFT on CS

where certain strongly localized observables are excluded!

A.	Schenkel	(Würzburg)
----	----------	------------

Scalar field theory on NC curved spacetimes

- ► Simple example of a twist: [Moyal product/twist] *-product $h \star k = h e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \iff \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\partial_{\mu}\otimes\partial_{\nu}}$
- More general class of twists: (abelian twists)

$$\mathfrak{F}^{-1} = \bar{f}^{\alpha} \otimes \bar{f}_{\alpha} = exp\left(\frac{i\lambda}{2}\Theta^{\alpha b}X_{\alpha} \otimes X_{b}\right) \text{ with } [X_{\alpha}, X_{b}] = 0$$

NB: most studied NC gravity solutions are of this type

- NC geometry via twist deformation quantization: [Wess group]
 - algebra of functions $(C^{\infty}(\mathcal{M})[[\lambda]], \star)$, where $h \star k := \overline{f}^{\alpha}(h) \cdot \overline{f}_{\alpha}(k)$
 - exterior algebra $(\Omega^{\bullet}[[\lambda]], \Lambda_{\star}, d)$, where $\omega \wedge_{\star} \omega' := \overline{f}^{\alpha}(\omega) \wedge \overline{f}_{\alpha}(\omega')$
 - pairing $\langle v, \omega \rangle_{\star} := \langle \overline{f}^{\alpha}(v), \overline{f}_{\alpha}(\omega) \rangle$ among vector fields and 1-forms

deformed action functional:

UNIVERSITÄT

$$S_{\Phi} = \int L_{\Phi} = -\frac{1}{2} \int \left(\langle \langle d\Phi, g_{\star}^{-1} \rangle_{\star}, d\Phi \rangle_{\star} + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

• use local basis: $\langle \vartheta_{\mu}, \widetilde{dx}^{\nu} \rangle_{\star} = \delta^{\nu}_{\mu}$

$$\rightarrow \quad g_{\star}^{-1} = \partial_{\mu}^{\star} \otimes_{\star} g^{\mu\nu} \star \partial_{\nu} \ , \qquad d\Phi = \widetilde{dx}^{\mu} \star \partial_{\star\mu} \Phi$$

$$L_{\Phi} = -\frac{1}{2} \left((\partial_{\star \mu} \Phi)^{*} \star g^{\mu \nu} \star \partial_{\star \nu} \Phi + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

deformed equation of motion (top-form valued):

$$0 = \frac{1}{2} \Big(\Box_{\star} [\Phi] \star \operatorname{vol}_{\star} + \operatorname{vol}_{\star} \star \big(\Box_{\star} [\Phi^*] \big)^* - M^2 \Phi \star \operatorname{vol}_{\star} - M^2 \operatorname{vol}_{\star} \star \Phi \Big)$$
$$=: \mathbf{P}_{\star} [\Phi] \star \operatorname{vol}_{\star}$$

NB: P_{\star} is formally self adjoint w.r.t. SP $(\phi, \psi)_{\star} = \int \phi^* \star \psi \star \text{vol}_{\star}$, i.e.

$$\left(\varphi, \mathsf{P}_{\star}[\psi]\right)_{\star} = \left(\mathsf{P}_{\star}[\varphi], \psi\right)_{\star}$$

Reminder: Algebraic approach to commutative QFT

Commutative free scalar QFT in one slide: [Wald; Bär, Ginoux, Pfäffle; ...]

- Let $(\mathfrak{M}, \mathfrak{g})$ be time-oriented, connected and globally hyperbolic
- ▶ start with Klein Gordon operator $P = \Box M^2$
- \Rightarrow unique retarded and advanced Green's operators Δ_{\pm}
- ⇒ fundamental solution $\Delta = \Delta_+ \Delta_-$ (i.e. $\Delta[C_0^{\infty}(\mathcal{M})] = Sol_P := Ker(P)$)
- \Rightarrow symplectic vector space (V, ω) with

 $V = C_0^\infty(\mathcal{M}, \mathbb{R}) / \text{Ker}(\Delta) \quad \text{and} \quad \omega([\phi], [\psi]) = \left(\phi, \Delta(\psi)\right) = \int \phi \, \Delta[\psi] \, \text{vol}$

⇒ Weyl algebra is generated by W(φ), φ ∈ V, such that
 (i) W(0) = 1
 (ii) W(-φ) = W(φ)*

(iii)
$$W(\varphi) \cdot W(\psi) = e^{-i\omega(\varphi,\psi)/2} W(\varphi + \psi)$$

NB: $\omega(\phi, \psi)$ is called "commutator function" in physics literature, since $[\Phi(\phi), \Phi(\psi)] = i \omega(\phi, \psi) \mathbf{1}$

UNIVERSITÄT

QFT on NC curved spacetimes

• $(\mathcal{M}, g_{\star}, \star)|_{\lambda=0}$ time-oriented, connected, globally hyperbolic

• let
$$P_{\star} = \sum_{n=0}^{\infty} \lambda^n P_{(n)}$$
 be a deformed Klein-Gordon operator

- ▶ technical assumption: $P_{(n)} : C^{\infty}(\mathcal{M}) \to C^{\infty}_{0}(\mathcal{M})$ for all n > 0
 - fulfilled for all twists of compact support
 - or g_{\star} asymptotically (outside compact region) symmetric under \mathfrak{F}
- based on strong results for the commutative case we find:

there exist unique Green's operators $\Delta_{\star\pm}:=\sum_{n=0}^\infty\lambda^n\Delta_{(n)\pm}$ satisfying

(i)
$$P_{\star} \circ \Delta_{\star\pm} = \operatorname{id}_{C_0^{\infty}(\mathcal{M})[[\lambda]]}$$
,

- (ii) $\Delta_{\star\pm} \circ P_{\star} |_{C_0^{\infty}(\mathcal{M})[[\lambda]]} = id_{C_0^{\infty}(\mathcal{M})[[\lambda]]}$,
- $\text{(iii)}\quad \text{supp}\big(\Delta_{(\mathfrak{n})\pm}(\phi)\big)\subseteq J^{\pm}\big(\text{supp}(\phi)\big)\ ,\quad \text{for all } \mathfrak{n}\in\mathbb{N}^0\ \text{and}\ \phi\in C_0^\infty(\mathcal{M})\ ,$

where J^{\pm} is the causal future/past with respect to the metric $g_{\star}|_{\lambda=0}$.

Explicit formula for $\Delta_{\star\pm}$ in terms of $\Delta_{\pm} := \Delta_{(0)\pm}$:

$$\begin{split} \Delta_{\star\pm} &= \Delta_{\pm} \\ &-\lambda \, \Delta_{\pm} \circ \mathsf{P}_{(1)} \circ \Delta_{\pm} \\ &-\lambda^2 \left(\Delta_{\pm} \circ \mathsf{P}_{(2)} \circ \Delta_{\pm} - \Delta_{\pm} \circ \mathsf{P}_{(1)} \circ \Delta_{\pm} \circ \mathsf{P}_{(1)} \circ \Delta_{\pm} \right) \\ &+ \mathfrak{O}(\lambda^3) \quad \text{[higher orders follow the same structure]} \end{split}$$

Graphically:

$$= - - \lambda - (1 - \lambda^{2} \left(- (2 - - - (1 - 1)) \right) - \lambda^{3} \left(- (3 - - - (1 - 1)) - (1 - 1) \right) + 0(\lambda^{4})$$

 \rightarrow perturbative approach to deformed Green's operators

- define fundamental solution $\Delta_{\star} := \Delta_{\star +} \Delta_{\star -}$
- we obtain $\Delta_{\star}[C_0^{\infty}(\mathcal{M})[[\lambda]]] = \mathsf{Sol}_{P_{\star}}^{\mathbb{C}} := \mathsf{Ker}(P_{\star})$
- space of "physical sources":

$$\mathsf{H} := \left\{ \phi \in C_0^\infty(\mathcal{M})[[\lambda]] : \left(\Delta_{\star \pm}(\phi) \right)^* = \Delta_{\star \pm}(\phi) \right\}$$

NB: Let ψ be a real solution of the deformed wave equation, then there is a $\phi \in H$, such that $\psi = \Delta_{\star}(\phi)$.

Proposition (T. Ohl, AS) (V_*, ω_*) with $V_* := H/Ker(\Delta_*)$ and $\omega_*([\phi], [\psi]) := (\phi, \Delta_*(\psi))_* = \int \phi^* \star \Delta_*(\psi) \star vol_*$

is a symplectic vector space.

Proposition

There is a symplectic isomorphism $S : (V_*, \omega_*) \to (V[[\lambda]], \omega)$, i.e. $\omega(S[\phi], S[\psi]) = \omega_*([\phi], [\psi])$, between the NC and com. field theory[[\lambda]]. ► Consider unital *-algebras over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]

Def: Let (V, ρ) be a symplectic vector space over $\mathbb{R}[[\lambda]]$. Then $\mathcal{A}_{(V,\rho)}$ is *-algebra of field polynomials if it is generated by $\Phi(\phi), \phi \in V$, such that

$$\begin{split} \Phi(\alpha \, \varphi + \beta \, \psi) &= \alpha \, \Phi(\varphi) + \beta \, \Phi(\psi) \;, \\ \Phi(\varphi)^* &= \Phi(\varphi) \;, \\ \left[\Phi(\varphi), \Phi(\psi) \right] &= \mathfrak{i} \, \rho(\varphi, \psi) \, \mathfrak{1} \;. \end{split}$$

$$\bullet \; \mathcal{A}_{(\mathsf{V}_{\star}, \boldsymbol{\omega}_{\star})} \stackrel{\circ}{=} \mathsf{NC} \; \mathsf{QFT} \quad, \qquad \mathcal{A}_{(\mathsf{V}[[\lambda]], \boldsymbol{\omega})} \stackrel{\circ}{=} \mathsf{com.} \; \mathsf{QFT}[[\lambda]] \end{split}$$

Corollary

UNIVERSITÄT

The symplectic isomorphism $S : (V_{\star}, \omega_{\star}) \to (V[[\lambda]], \omega)$ induces via $\mathfrak{S}(\Phi_{\star}(\phi)) := \Phi(S\phi)$ a \star -algebra isomorphism $\mathfrak{S} : \mathcal{A}_{(V_{\star},\omega_{\star})} \to \mathcal{A}_{(V[[\lambda]],\omega)}$ between NC and commutative QFT[[\lambda]].

- Consequences:
 - Induction of (algebraic) states $\Omega_{\star} := \Omega \circ \mathfrak{S} : \mathcal{A}_{(V_{\star}, \omega_{\star})} \to \mathbb{C}[[\lambda]]$
 - NC correlation functions from commutative correlation functions

 $\langle \mathbf{0} | \Phi_{\star}(\phi_{1}) \cdots \Phi_{\star}(\phi_{n}) | \mathbf{0} \rangle = \langle \mathbf{0} | \Phi(S\phi_{1}) \cdots \Phi(S\phi_{n}) | \mathbf{0} \rangle$

An example of a convergent deformation

- spacetime: ${\mathfrak M}=(0,\infty)\times S_1$ with $g=-dt\otimes dt+t^2d\varphi\otimes d\varphi$
- ► deformation: $\mathcal{F}^{-1} = e^{i\lambda(t\partial_t \otimes \partial_{\Phi} \partial_{\Phi} \otimes t\partial_t)} \rightarrow t \star e^{i\Phi} = e^{-2\lambda} e^{i\Phi} \star t$
- \blacktriangleright in Fourier space ($\varphi \rightarrow k \in \mathbb{Z})$ we have

$$\widetilde{P}_{\star} = \textup{cosh}(3\lambda k) \circ \widetilde{\square} \;, \quad \widetilde{\Delta}_{\pm\star} = \widetilde{\Delta}_{\pm} \circ \textup{cosh}(3\lambda k)^{-1}$$

▶ symplectic VS $(V_{\star}, \omega_{\star}) = (C_0^{\infty}(\mathcal{M}, \mathbb{R}) / \text{Ker}(\Delta_{\star}), \omega_{\star})$ with

$$\omega_{\star}(\phi,\psi) = -\int_{0}^{\infty} dt \, t \int_{0}^{\infty} d\tau \, \tau \, \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \widetilde{\phi}(t,-k) \, \frac{\Delta(t,\tau,k)}{\text{cosh}(3\lambda k)} \widetilde{\psi}(\tau,k)$$

- symplectic map $S:(V_\star,\omega_\star)\to (V,\omega)$ in Fourier space

$$\big(\widetilde{S}\widetilde{\phi}\big)(t,k) = \frac{\widetilde{\phi}(t,k)}{\sqrt{\text{cosh}(3\lambda k)}} \quad \Rightarrow \quad \omega(S\phi,S\psi) = \omega_{\star}(\phi,\psi)$$

- S is injective but not surjective (all $\tilde{S} \tilde{\phi}$ fall of faster than $e^{-3\lambda |k|/2}$ for $|k| \gg 1$)
- Interpretation:

QFT on NC CS is *-isomorphic to a **reduced** QFT on CS, where strongly localized observables are excluded.

A. Schenkel (Würzburg)

Summary

- QFT on NC curved spacetimes [arXiv:0912.2252]:
 - formally self adjoint EOM operators P_{*}
 - existence, uniqueness and construction of the deformed Green's operators
 - symplectic structure on the space of real solutions of P_{*}
 - quantization via *-algebras of field polynomials
 - ► QFT on NC CS / QFT on CS[[λ]]-correspondence via *-algebra isomorphism
- Convergent deformation of a FRW toy-model [arXiv:1009.1090]:
 - construction of the deformed symplectic vector space
 - quantization in terms of Weyl algebras
 - ► ∃ *-isomorphism between QFT on NC CS and a reduced QFT on CS, where strongly localized observables are excluded
 - relation between NC and commutative field operators:

$$\widehat{\Phi}_{\star}(t,k) = \sqrt{\text{cosh}(3\lambda k)^{-1}} \, \widehat{\Phi}(t,k) \overset{|k| \gg 1}{\approx} \sqrt{2} \, e^{-3\lambda |k|/2} \, \widehat{\Phi}(t,k)$$

 $\Rightarrow\,$ the NC theory is strongly improved in the UV (i.e. $|k|\gg1)$

Some details

UNIVERSITÄT WÜRZBURG

- $\blacktriangleright \text{ Remember: } H := \left\{ \phi \in C_0^\infty(\mathcal{M})[[\lambda]] : \left(\Delta_{\star\pm}(\phi) \right)^* = \Delta_{\star\pm}(\phi) \right\}$
- Hodge operators:

 $\alpha, \boldsymbol{\alpha_\star}: C^\infty(\mathcal{M})[[\lambda]] \to \Omega^d(\mathcal{M})[[\lambda]], \, \alpha(\phi) = \phi \text{ vol } \text{; } \boldsymbol{\alpha_\star}(\phi) = \phi \star \text{vol}_\star$

We have the following lemmas:

 $\textbf{I:} \ \kappa := \alpha_{\star}^{-1} \circ \alpha : C_0^{\infty}(\mathcal{M},\mathbb{R})[[\lambda]] \to H \text{ is a vector space isomorphism}$

- $$\begin{split} \text{IV:} \ \ \hat{\omega}_\star([\phi],[\psi]) &= \left(\phi, \hat{\Delta}_\star(\psi)\right), \text{where} \ \hat{\Delta}_\star = \left(\text{id} \Delta_\mp \circ P\right) \circ \Delta_\star \circ P_\star \circ \Delta_\pm \\ \text{satisfies} \ P \circ \hat{\Delta}_\star = \hat{\Delta}_\star \circ P = 0 \text{ on } C_0^\infty(\mathcal{M},\mathbb{R})[[\lambda]] \end{split}$$

$$\begin{split} \textbf{V:} \ \ S &= \sum \lambda^n S_{(n)} : V \to V \text{ given by } S_{(0)} = \text{id and} \\ S_{(n)} &= \frac{1}{2} \big(\Delta^{-1} \circ \hat{\Delta}_{(n)} - \sum_{m=1}^{n-1} S_{(m)} \circ S_{(n-m)} \big) \text{ satisfies} \\ & \omega(S[\phi], S[\psi]) = \hat{\omega}_{\star}([\phi], [\psi]) \text{ for all } [\phi], [\psi] \in V \end{split}$$