
Motivations
Minimally coupled scalar �eld

E�ective Average action
Flow

Integrating the �ow
Summary

Polyakov action from the fRG

A. Codello

Institute of Physics

University of Mainz

September 14, 2010

A. Codello Polyakov action from the fRG



Motivations
Minimally coupled scalar �eld

E�ective Average action
Flow

Integrating the �ow
Summary

Outline

1 Motivations

2 Minimally coupled scalar �eld

3 E�ective Average action

4 Flow

5 Integrating the �ow

6 Summary

A. Codello Polyakov action from the fRG



Motivations
Minimally coupled scalar �eld

E�ective Average action
Flow

Integrating the �ow
Summary

Motivations

Study quantum gravity in d = 2 using the fRG

Learn how to treat non-local terms in the fRG framework

A simple situation where we can carry over the fRG �recipe�
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Minimally coupled scalar �eld

Scalar �eld φ on an arbitrary 2d Riemannian manifold (M ,g)

The scalar interacts with the background metric gµν :

S [φ ,g ] =
1

2

∫
d2x
√
gg µν

∂µφ∂νφ =
1

2

∫
d2x
√
gφ∆φ

Laplace-Beltrami operator:

∆φ =− 1
√
g

∂µ (
√
gg µν

∂νφ)

A. Codello Polyakov action from the fRG



Motivations
Minimally coupled scalar �eld

E�ective Average action
Flow

Integrating the �ow
Summary

E�ective average action

Introduce a cuto� action

∆Sk [φ ,g ] =
1

2

∫
ddx
√
gφ Rk(∆)φ

and de�ne:

eWk [J,g ] =
∫
Dgφ exp

(
−S [φ ,g ]−∆Sk [φ ,g ] +

∫
ddx
√
gJφ

)
The cuto� kernel Rk is constructed using ∆: the �ow will be

covariant
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E�ective average action

De�ne the e�ective average action:

Γk [ϕ,g ] + ∆Sk [ϕ,g ] =
∫
ddx
√
gJ(ϕ)ϕ−Wk [J(ϕ),g ]

fRG quantization:

lim
k→0

Γk [ϕ,g ] = Γ[ϕ,g ] lim
k→Λ

Γk [ϕ,g ] = S [ϕ,g ]
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Flow equation

One-loop �ow is exact in the simple case we are considering:

∂tΓk [ϕ,g ] =
1

2
Tr
(

δ 2S [ϕ,g ]

δϕδϕ
+Rk [g ]

)−1
∂tRk [g ]

Since S (2,0)[0,g ] = ∆ we have:

∂tΓk [0,g ] =
1

2
Tr

∂tRk(∆)

∆ +Rk(∆)

Functional trace of a function of the Laplace-Beltrami

operator: evaluate using the non-local heat kernel expansion
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Truncation

Truncation ansatz for the e�ective average action:

Γk [0,g ] =
∫
d2x
√
g (ak +bkR +R ck(∆)R) +O(R3)

The scalar interaction are not generated along the �ow (in this

simple case only!)

Exact expansion to order R2 involving two couplings ak , bk
and a running structure function ck(∆)
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Evaluation of the trace

Curvature expansion of the functional trace:

∂tΓk [0,g ] =
1

8π
Q1[hk ]

∫
d2x
√
g +

1

48π
Q0[hk ]

∫
d2x
√
gR

+
1

8π

∫
d2x
√
gR

[∫
∞

0
ds h̃k(s)s fR2d (s∆)

]
R

+O(R3)

Non-local heat kernel structure function:

fR2d (x) =
1

32
f (x) +

1

8x
f (x)− 1

16x
+

3

8x2
f (x)− 3

8x2

f (x) =
∫ 1

0
dξ e−xξ (1−ξ )

h̃(s) is the inverse Laplace transform of hk(z) = ∂tRk(z)
z+Rk(z)
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Beta functions of ak and bk

Beta function for the couplings:

∂tak =
1

8π
Q1[hk ] ∂tbk =

1

48π
Q0[hk ]

Using the optimized cuto�:

∂tak =
k2

4π
∂tbk =

1

24π
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Flow of ck(x)

Flow equation for the running structure function:

8π ∂tck(x) =
1

32

∫ 1

0
dξ Q−1 [hk(z + xξ (1−ξ ))]

+
1

8x

∫ 1

0
dξ Q0 [hk(z + xξ (1−ξ ))]− 1

16x
Q0[hk ]

+
3

8x2

∫ 1

0
dξ Q1 [hk(z + xξ (1−ξ ))]− 3

8x2
Q1[hk ]

x stands for ∆
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Flow of ck(x)

The �ow can be written as:

∂tck(x) =
1

8π k2
f
( x

k2

)
The function f (u), u = x/k2, depends explicitly on the cuto�

shape function used:

fopt(u) =
1

8u

[√
u

u−4
− u+4

u

√
u−4

u

]
θ(u−4)

fmass(u) =

√
u(u+4)(u+6) +8(u+3)artanh

√
u

u+4

(u+4)3/2u5/2

fexp(u) is found numerically
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Flow of ck(x)

2 4 6 8 10
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0.07

f (u) evaluated using the exponential cuto� (long dashed), the mass

cuto� (short dashed) and the optimized cuto� (thick)
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Flow of ck(x)

All three functions are analytic around the origin and fopt(u) is

zero in the entire interval [0,4)

If we expand f (u) as a power series in u about u = 0, it follows

that we have a non-zero running of local terms of the form

c
(n)
k

∫ √
gR∆nR only for the exponential and the mass cuto�s

For example, we can expand for small u

fmass(u) =
1

30
− u

70
+

u2

210
+O(u3) ,

and read o� the resulting beta functions for the couplings c
(n)
k

in the mass cuto� case
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Flow of ck(x)

For the optimized cuto� none of the couplings c
(n)
k has a

non-zero beta function

The running of the couplings c
(−n)
k , n > 0 (which multiply

non-local terms involving inverse powers of ∆) is zero for all

three cuto� choices. In particular, the beta function of the

coupling c
(−1)
k pertaining to the operator

∫ √
gR 1

∆R is zero,

even if this is the form the EAA is expected to reach at k = 0!

To capture the non-local features of the EAA we need to

consider the running of the whole structure function ck(x)
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Integrating the �ow

Integrate the �ow equations from the UV scale Λ to the IR

scale k → 0

Impose initial conditions (renormalize) on the �ow of the

couplings:

ak = aΛ−
1

4π
(Λ2−k2)

bk = bΛ−
1

24π
log

Λ

k

Set aΛ = Λ2

4π
so that the renormalized a0 vanishes and

conformal invariance is preserved

Introduce the arbitrary scale k0 and set bΛ = 1
24π

log Λ
k0
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Integrating the �ow

Integrate the �ow equation for the structure function:

ck(x) = cΛ(x)− 1

16πx

∫ x/k2

x/Λ2
du f (u)

We can take the limit Λ→ ∞

Set the initial condition c∞(x) = 0
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E�ective average action

Complete e�ective average action to order R2:

Γk [0,g ] =
k2

4π

∫
d2x
√
g +

χ

12
log

k

k0

− 1

96π

∫
d2x
√
gR

[√
∆/k2−4(∆/k2 +2)

∆(∆/k2)3/2
θ(∆/k2−4)

]
R+O(R3)

χ = 1
2π

∫
d2x
√
gR is the Euler characteristic of the manifold M

Safe k → 0 limit on the torus χ = 0. In the spherical case,

χ = 2, or in all higher genus topologies, the limit k → 0 can be

taken only if we also send k0→ 0 in such a way that k
k0

remains constant
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E�ective average action

For k → 0 we �nd (for all cuto� shapes):

c0(x) =− 1

96πx

We recover Polyakov's e�ective action:

Γ0[0,g ] =− 1

96π

∫
d2x
√
g R

1

∆
R

In principle we still have to show that all higher terms in the

truncation vanish at k = 0
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E�ective average action

Flow of the structure function ck(x) from c∞(x) = 0 to c0(x) =− 1

96πx
for

di�erent values of the IR cuto� in the range ∞≥ k ≥ 0

Convergence of the e�ective average action to the e�ective action is
non-uniform: ck(x)∼ c0(x) for x < 4k2

A. Codello Polyakov action from the fRG



Motivations
Minimally coupled scalar �eld

E�ective Average action
Flow

Integrating the �ow
Summary

Summary

We explained how the Polyakov e�ective action for a minimally

coupled scalar �eld on a curved two dimensional manifold

emerges within the functional RG approach

We calculated the RG �ow of the structure function ck(∆)
using the non-local heat kernel expansion
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Summary

We learned that in order to be able to recover, at the IR scale,

special non-local terms in the EAA,
∫ √

gR 1
∆R in our example,

it is necessary to include the running of the complete structure

function which allows for an arbitrary dependence on ∆

We also saw that, quite remarkably, individual non-local terms

in a Laurent series expansion,
∫ √

gR∆−nR , n > 0, have no

RG running, even though the k → 0 limit of the EAA is

precisely of this type

We learned that convergence of the e�ective average action to

the e�ective action is non-uniform in general
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Summary

First step in view of applications of this framework to

quantized gravity in d = 2 and in d = 4

Along the same line the low energy e�ective action for

quantum gravity in d = 4 can be recovered

To know more: A.C. arXiv:1004.2171 and A. Satz, A.C., F.D.

Mazzitelli arXiv:1006.3808
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