OUTLINE

Quantum Gravity: Space-Time Foam "medium" & Fundamental Symmetries (Lorentz) – modified dispersion for matter and radiation, time delays of more energetic photons

String theory foam model (D-(brane) foam):
D(effect)-foam -induced Vacuum refraction
Breakdown of Local effective field theory
Stringy D-foam and the DARK SECTOR

Tests: HIGH-ENERGY GAMMA-RAY ASTRONOMY as a discriminant of space-time foam models. The string model survives stringy tests

Outlook

Corfu 2010

N.E. Mavromatos
Elusive theory for the Quantum structure of space-time at Microscopic scales (e.g. Planck, string length...)

Several candidates:
- Strings (phenomenologically more successful but higher dimensional),
- Loop quantum Gravity,
- Effective (Lorentz violating, non-commutative) field theories ...

\[[X^\mu, X^\nu] = \theta^{\mu \nu} \neq 0 \]

Generic low-energy Predictions?

(i) QG as a “medium” over which matter propagates: Quantum Decoherence

(ii) Lorentz violations (?) – modified dispersion relations (MDR) for matter/radiation

(iii) CPT violation(?)

(iv) Non-commutativity effects I at low-energies

Cosmology: effects on Dark sector of Universe, origin of Dark energy
Elusive theory for the Quantum structure of space-time at Microscopic scales (e.g. Planck, string length...)

Several candidates:
- Strings (phenomenologically more successful but higher dimensional),
- Loop quantum Gravity,
- Effective (Lorentz violating, non-commutative) field theories...

\[[X^\mu, X^\nu] = \theta^{\mu\nu} \neq 0 \]

Generic low-energy Predictions?

(i) QG as a “medium” over which matter propagates: Quantum Decoherence

(ii) Lorentz violations (?) – modified dispersion relations (MDR) for matter/radiation

(iii) CPT violation(?)

(iv) Non-commutativity effects I at low-energies

Cosmology: effects on Dark sector of Universe, origin of Dark energy
Corfu 2010

QG as a medium: an old story...

Space-Time at Planck scales may have a `foamy’ structure (J. A. Wheeler), with possible coordinate non-commutativity or Lorentz Violation at microscopic scales.

Quantum Gravity then may behave as a medium, with non-trivial `optical’ properties:

- Vacuum Refractive Index induced by QG!
- Energy dependent speed of light, effects increase with energy of photon, due to increase in distortion of space time. Contrast with Matter-induced ordinary refractive indices.
- Manifested through delays in arrival times of the the more energetic photons.

First Model non-critical String theory (Ellis, NM, Nanopoulos (1992), + Amelino-Camelia (1996))

Plethora of other approaches since then… Deformed Special Relativities, Loop QG(?) …
Modified dispersion due to QG induced space-time (metric) distortions (c=1 units):

\[p^\mu p^\nu G_{\mu\nu}(\vec{p}, E) = 0 , \quad p^\mu = (E, \vec{p}) \]
Quantum-Gravity Induced Modified Dispersion for Photons

Modified dispersion due to QG induced space-time (metric) distortions (c=1 units):

\[p^\mu p^\nu G_{\mu\nu}(\vec{p}, E) = 0, \quad p^\mu = (E, \vec{p}) \]

Space-time Metric describing space-time Distortions induced by Interactions of Photons with space-time defects FINSLER type: depends on momentum (transfer)... Higher the energy, higher the distortion of space-time around the defect
Quantum-Gravity Induced Modified Dispersion for Photons

Modified dispersion due to QG induced space-time (metric) distortions (c=1 units):

\[p^\mu p^\nu G_{\mu\nu}(\vec{p}, E) = 0 \ , \quad p^\mu = (E, \vec{p}) \]

\[
E = p \left(1 + \sum_{n=1}^{\infty} a_n \left(\frac{|\vec{p}|}{M_{\text{QG}}} \right)^n \right)
\]
Quantum-Gravity Induced Modified Dispersion for Photons

Modified dispersion due to QG induced space-time (metric) distortions \((c=1\ \text{units})\):

\[p^\mu p^\nu G_{\mu\nu}(\vec{p}, E) = 0 \ , \quad p^\mu = (E, \vec{p}) \]

\[
E = p \left(1 + \sum_{n=1}^{\infty} a_n \left(\frac{|\vec{p}|}{M_{QG}} \right)^n \right)
\]

\[
V_{\text{phase}} = \frac{E}{|\vec{p}|} = \frac{1}{\eta} \ , \quad V_{\text{group}} = \frac{\partial E}{\partial |\vec{p}|}
\]

\(\eta(|\vec{p}|) = \text{refractive index in vacuo}\)

subluminal: \(\eta > 1\) , superluminal \(\eta < 1\)
Subluminal QG-induced Refractive Index: Higher energy photons arrive later

\[E = p \left(1 + \sum_{n=1}^{\infty} a_n \left(\frac{|p|}{M_{QG}} \right)^n \right) \quad a_1 < 0 \]

Courtesy: N. Doltsinis@kcl.ac.uk
Decoherence may be induced & CPT may also be violated in such stochastic models.

"Fuzzy" Space times may induce (Ford, Yu 1994, 2000): $g_{\mu\nu} = \eta_{\mu\nu} + \hbar_{\mu\nu}$, $\langle g_{\mu\nu} \rangle = \eta_{\mu\nu}$ BUT $\langle \hbar_{\mu\nu}(x)\hbar_{\lambda\sigma}(x') \rangle \neq 0$, i.e. Quantum light cone fluctuations BUT NOT mean-field effects on dispersion relations, that is, Lorentz symmetry is respected on average BUT not on individual measurements. Path of light: null geodesics $0 = ds^2 = g_{\mu\nu}dx^\mu dx^\nu$. Fluctuations: Geodesic deviations $\frac{D^2 n^\mu}{dt^2} = -R^\mu_{\alpha\nu\beta}u^\alpha n^\nu u^\beta$, quantum fluctuate.

Fluctuations in arrival time of photons at detector: $|\phi\rangle=\text{state of gravitons, } |0\rangle=\text{vacuum state}$)

\[
\Delta t_{obs}^2 = |\Delta t^2_{\phi} - \Delta t_0^2| = \frac{|\langle \phi | \sigma_1^2 | \phi \rangle - \langle 0 | \sigma_1^2 | 0 \rangle|}{r^2} \equiv \frac{|\langle \sigma_1^2 \rangle_R|}{r}
\]

\[
\langle \sigma_1^2 \rangle_R = \frac{1}{8} (\Delta r)^2 \int_0^{T_1} dr \int_0^{T_1} dr' \ n^\mu n^\nu n^\rho n^\sigma \langle \phi | h_{\mu\nu}(x) h_{\rho\sigma}(x') + h_{\mu\nu}(x') h_{\rho\sigma}(x) | \phi \rangle
\]
Subluminal QG-induced Refractive Index: Higher energy photons arrive later

Stochastic Light-Cone fluctuations: Energy dependent width of photon pulses (e.g. D-particle (stringy) foam, width proportional to photon energy)
TESTING THE MODELS

HIGH ENERGY ASTRONOMY
Multi-messenger observations of the Cosmos

cosmic accelerator

- protons $E > 10^{19}$ eV (10 Mpc)
- protons $E < 10^{19}$ eV

protons/nuclei:
Deviated by magnetic fields,
Absorbed by radiation field (GZK)

photons:
Absorbed by dust & radiation field (CMB)

neutrinos:
Difficult to detect

\Rightarrow Three “astronomies” possible...

DeNaurois 2008
COSMIC PHOTON TESTS:
(i) *Measuring Arrival times* (delays of more energetic γ s) Uncertainties Emission Mechanism Must accumulate statistically significant of ``events”

(ii) *Birefringence* (ONLY for some QG models): Measuring afterglow from distant GRBs

(iii) *Ultra-High Energy Cosmic Ray Spectrum*: LIV modifications of GZK cutoff Constraints: Non observation of UHE γ s with $E > 10^{20}$ eV

MASSIVE COSMIC PROBE TESTS: Charged Probes (electrons)
QG Modifications in Synchrotron radiation spectrum – stringent constraints from CRAB NEBULA *exclude linearly* MDR for electrons

QG induced DECOHERENCE
(i) Damped flavour oscillators Cosmic neutrinos

$$P_{\alpha \rightarrow \beta} \propto e^{-Dt} \sin\left(\frac{\Delta m^2}{E}t\right)$$

(ii) EPR Correlation modifications in meson factories (CPT operator ill-defined due to QG decoherence (Wald 79) ω-effect (Bernabeu, NEM, Papavassiliou 04)
MDR for charged matter probes

Massive Probes (e.g. electrons):

\[E^2 = p^2 \left(1 - \left(\frac{p}{M_{QG}} \right)^\alpha \right) + m^2 , \quad p \equiv |\vec{p}| \]

Constraints from Crab Nebula via Synchrotron Radiation

Electron moving in magnetic field \(H \) emits discrete frequency spectrum with a maximum at critical frequency:

\[\omega_c = \frac{3}{4} \frac{1}{R \delta(E)} \frac{1}{c(\omega_c) - v(E)} \]

- \(\omega_c \) = critical frequency
- \(R \) = orbit radius
- \(c(\omega_c) \) = photon group velocity
- \(v(E) \) = electron group velocity
- \(\delta(E) \) = angle for forward radiation pattern

Experimental measurement of \(\omega_c \) (Crab Nebula) yields

For \(M_{QG} = M_{QG1\ (MAGIC)} \sim 10^{18} \text{ GeV} \) that \(\alpha > 1.74 \)

WHAT ABOUT PHOTONS?
VHE Experimental World Today

MILAGRO

STACEE

MAGIC

TIBET ARRAY

VERITAS

CACTUS

ARGO-YBJ

TACTIC

PACT

GRAPES

TACTIC

HENSS

CANGAROO

M. MARTINEZ

N.E. Mavromatos
VHE Experimental World Today

Corfu 2010

N.E. Mavromatos
Current Evidence of Delayed Photon Arrivals

MAGIC (AGN Mkn 501, z=0.034), Highest Energy 1.2 TeV Photons
Observed Delays of O(4 min)

HESS (AGN PKS 2155-304, z=0.116), Highest Energy 10 TeV photons
Originally claim no observed time lags

FERMI (GRB 090816C, z=4.35), Highest Energy Photon 13.2 GeV
4.5 s time-lag between E > 100 MeV and E < 100 KeV
Observed Time Delay 16.5 sec

FERMI (GRB 090510, z=0.9), Highest Energy Photon 31 GeV, several 1-10 GeV
Short, intense GRB, Observed Time Delays < 1 sec

FERMI (GRB 09092B, z=1.822), Highest Energy Photon 33.4 GeV
Observed Time Delay \(\Delta t \): 82 sec after GMB trigger
50 sec after end of emission

\(z=1 \rightarrow 10^{26} \text{ m} \)
Effective Field Theory Approach

Space-Time at Planck scales may have a \``foamy\'' structure (J. A. Wheeler), with possible coordinate non-commutativity or Lorentz Violation at microscopic scales. Parametrized at low-energies by local effective Field theories (EFT), e.g. Standard Model Extension with Lorentz and/or CPT Violating Extensions (Kostelecky, Lehnert ..., Myers, Pospelov...)

Add Local operators
In a field theory in flat Space-times that Represent LV or non Commutative effects

Several tests and bounds on relevant Parameters so far, from both Atomic (non-observations of forbidden atomic transitions) and Particle physics (neutral Kaons) as well as Astrophysics

\[E = p \left(1 + \sum_{n=1}^{\infty} a_n \left(\frac{|p|}{M_{\text{QG}}} \right)^n \right) \]
\[a_1 < 0 \]
Birefringence Constraints on photons MDR

If MDR for probes stem from Local Effective Lagrangians (LEL):

\[-\frac{\xi}{2M} u^m F_{ma} (u \cdot \partial) (u_n \tilde{F}^{ma}) + \frac{1}{2M} u^m \bar{\psi} \gamma_m (\zeta_1 + \zeta_2 \gamma_5) (u \cdot \partial)^2 \psi\]

Maccione et al., arXive0707.2673

Photons:

\[\omega_\pm^2 = k^2 \pm \frac{\xi}{M} k^3\]

± signs indicate left/right movers and for Circularly polarized photons imply rotation of linear polarization angle (BIREFRINGENCE).

Electrons:

\[E_\pm^2 = p^2 + m^2 + \eta_\pm \frac{p^3}{M}\]

\[\eta_\pm = 2(\zeta_1 \pm \zeta_2)\]

UV radiation from Galaxies:

\[\xi \lesssim 2 \times 10^{-4}\]

From GRB polarization:

\[|\xi| \lesssim 2 \times 10^{-7}\]

For

\[M \sim M_{Pl} \approx 1.22 \times 10^{19} \text{ GeV}\]

Difference in polarization angle over cosmological distance \(d\):

\[\Delta \theta = \xi (k_2^2 - k_1^2) d / 2M\]
Ultra-high-energy photons

\[
\omega_{\pm}^2 = k^2 + \xi_{\pm} n \left(\frac{k}{M_{\text{pl}}} \right)^n,
\]

\[
\omega_{b}^2 = k_{b}^2,
\]

\[
E^2 = p_e^2 + m_e^2 + \eta^{e} \pm p_e \left(\frac{p_e}{M_{\text{pl}}} \right)^n
\]

Severe constraints on LIV
Parameters from absence of:
(i) Observations on UHE photons, which would evade pair production due to threshold modifications if MDR hold: \(\xi < 10^{-12} \)

\[\gamma_{\text{UHE}} + \gamma_{\text{background}} \times e^+ e^-\]

(ii) Photon Decay

\[\gamma_{\text{UHE}} \rightarrow e^+ e^-\]

Allowed, above threshold if MDR
Current Evidence of Delayed Photon Arrivals

MAGIC (AGN Mkn 501, z=0.034), Highest Energy 1.2 TeV Photons
Observed Delays of O(4 min)

HESS (AGN PKS 2155-304, z=0.116), Highest Energy 10 TeV photons
Originally claim no observed time lags

FERMI (GRB 090816C, z=4.35), Highest Energy Photon 13.2 GeV
4.5 s time-lag between E > 100 MeV and E < 100 KeV
Observed Time Delay 16.5 sec

FERMI (GRB 090510, z=0.9), Highest Energy Photon 31 GeV, several 1-10 GeV
Short, intense GRB, Observed Time Delays < 1 sec

FERMI (GRB 09092B, z=1.822), Highest Energy Photon 33.4 GeV
Observed Time Delay Δt: 82 sec after GMB trigger
50 sec after end of emission

$z=1 \quad 10^{26} \text{ m}$
DELAYED ARRIVALS OR DELAYED EMISSION?

ASTROPHYSICAL MECHANISMS FOR COSMIC ACCELERATION
NO CONSENSUS AS YET.....
High-Energy Gamma Ray Astrophysics as a probe for New Physics

The MAGIC and Fermi results: non-simultaneous arrival of high-energy photons from celestial objects: more energetic photons arrive later… (Non(?)) Observation by H.E.S.S. …

Possible Interpretations:

(i) Astro-Physics at source: hadronic mechanisms or synchrotron radiation + inverse Compton scattering produce delays at emission: Non conclusive …

(ii) Exotic Interpretation: Quantum Gravity (QG) propagation effects (?): QG as a medium with refractive index, Modified Dispersion Relations for matter probes with Linear QG scale suppression (LMDR)

Check on other tests on (LMDR) modified dispersion relations: Electrons: Synchrotron Radiation from Crab Nebula Photons: Birefringence constraints for LMDR
High-Energy Gamma Ray Astrophysics as a probe for New Physics

The **MAGIC and Fermi results**: non-simultaneous arrival of high-energy photons from celestial objects: more energetic photons arrive later… (Non(?)) Observation by H.E.S.S. …

Possible Interpretations:

(i) **Astro-Physics at source**: hadronic mechanisms or synchrotron radiation + inverse Compton scattering produce delays at emission: Non conclusive …

(ii) **Exotic Interpretation**: Quantum Gravity (QG) propagation effects (?): QG as a medium with refractive index, Modified Dispersion Relations for matter probes with Linear QG scale suppression (LMDR)

Check on other tests on (LMDR) modified dispersion relations:

- Electrons: Synchrotron Radiation from Crab Nebula
- Photons: Birefringence constraints for LMDR
High-Energy Gamma Ray Astrophysics as a probe for New Physics

The MAGIC and Fermi results: non-simultaneous arrival of high-energy photons from celestial objects: more energetic photons arrive later… (Non(?)) Observation by H.E.S.S. …

Possible Interpretations:

(i) Astro-Physics at source: hadronic mechanisms or synchrotron radiation + inverse Compton scattering produce delays at emission: Non conclusive …

(ii) Exotic Interpretation: Quantum Gravity (QG) propagation effects (?): QG as a medium with refractive index, Modified Dispersion Relations for matter probes with Linear QG scale suppression (LMDR)

Check on other tests on (LMDR) modified dispersion relations:
Electrons: Synchrotron Radiation from Crab Nebula
Photons: Birefringence constraints for LMDR
DELAYED ARRIVALS OF MORE ENERGETIC PHOTONS:
FIT WITH A LINEARLY SUPPRESSED (BY THE QG SCALE) SUBLUMINAL DISPERSION RELATION?

\[E = p \left(1 - \frac{p}{M_{\text{QG}}} \right) \]

\[\text{Delay } \Delta t \propto E \text{ (plus cosmic expansion)} \]

BUT WHAT IS A NATURAL SIZE OF \(M_{\text{QG}} \)?
Is it Planck?
Is it the String Scale?
Is it Microscopic
Model Dependent?
\[
\Delta t/E_\gamma = (0.43 \pm 0.19) \times K(z)/\text{GeV}, \quad K(z) \equiv \int_0^2 \frac{(1+z)dz}{\sqrt{\Omega_\Lambda + \Omega_m(1+z)^3}}.
\]
\[\Delta t/E_\gamma = (0.43 \pm 0.19) \times K(z) \text{s/GeV}, \quad K(z) \equiv \int_0^2 \frac{(1 + z)dz}{\sqrt{\Omega_\Lambda + \Omega_m(1 + z)^3}}. \]

\[M_{QG} > 1.5 \times 10^{19} \text{ GeV} = 1.22 \, M_p \text{ (ECF method)} \]

AGN Mkn 501
MAGIC

AGN PKS 2155-304
HESS

Fermi GRB 09092B
Fermi GRB 080916c

AGN PKS 2155-304
HESS

Fermi GRB 090510

+ Sakharov Sarkisyan

Special Relativity
Effective Field Theory Approach

Space-Time at Planck scales may have a `foamy’ structure (J. A. Wheeler), with possible coordinate non-commutativity or Lorentz Violation at microscopic scales. Parametrized at low-energies by local effective Field theories (EFT), e.g. Standard Model

\[E = p \left(1 + \sum_{n=1}^{\infty} a_n \left(\frac{|p|}{M_{\text{QG}}} \right)^n \right) \quad a_1 < 0 \]

\[10^{-35} \text{ m} \]

BUT WHAT IS A NATURAL SIZE OF \(M_{\text{QG}} \)?
Is it Planck?
Is it the String Scale?
Is it Microscopic Model Dependent?

Several tests and bounds on relevant Parameters so far, from both Atomic (non-observations of forbidden atomic transitions) and Particle physics (neutral Kaons) as well as Astrophysics.
Effective Field Theory Approach

Space-Time at Planck scales may have a ``foamy'' structure (J. A. Wheeler), with possible coordinate non-commutativity or Lorentz Violation at microscopic scales. Parametrized at low-energies by local effective Field theories (EFT), e.g. Standard Model

\[E = p \left(1 + \sum_{n=1}^{\infty} a_n \left(\frac{|p|}{M_{QG}} \right)^n \right) \quad a_1 < 0 \]

Several tests and bounds on relevant Parameters so far, from both Atomic (non-observations of forbidden atomic transitions) and Particle physics (neutral Kaons) as well as Astrophysics

BUT WHAT IS A NATURAL SIZE OF \(M_{QG} \)? Is it Planck? Is it the String Scale? Is it Microscopic Model Dependent?

Corfu 2010
If QG-induced modified dispersion relations occur, due to Finsler-type metric distortions, then time delays of more energetic photons may occur.

\[p^\mu p^\nu G_{\mu\nu}(\vec{p}, E) = 0 , \quad p^\mu = (E, \vec{p}) \]

\[E = p \left(1 + \sum_{n=1}^{\infty} a_n \left(\frac{|\vec{p}|}{M_{\text{QG}}} \right)^n \right) \]

Induced Time delay for photons e.g. for \(n=1 \)

\[\Delta t = \frac{a_1 \Delta E L}{M_{\text{QG}} c} \]
Time Delays due to QG foam

But are these time delays necessarily linked to modified dispersion?

NOT NECESSARILY, BEST EXAMPLE STRINGY SPACE-TIME FOAM DUE TO BRANE DEFECTS
(1) Time Delays proportional to E dominant for photons
(2) Stable Photons
(3) No birefringence
(4) Beyond EFT
(5) Possibly z-dependent effective QG scale (inversely proportional to density of defects in the foam)
(1) Time Delays proportional to E
dominant for photons

(2) Stable Photons

(3) No birefringence

(4) Beyond EFT

(5) Possibly
z-dependent
effective QG scale
(inversely proportional
to density of defects
in the foam)
(1) Time Delays proportional to \(E \) dominant for photons

(2) Stable Photons

(3) No birefringence

(4) Beyond EFT

(5) Possibly \(z \)-dependent effective QG scale (inversely proportional to density of defects in the foam)

Linear Time Delays related to stringy uncertainties, hence disentangled from Modified Dispersion Relations that may be quadratically suppressed (or higher-order) by the \(M_{\text{QG}} \) ...
Colliding Brane world model of Space-Time with point-like space-time defects
DEFECT-STRING CAPTURE
String Theory Types and p-Branes

<table>
<thead>
<tr>
<th>String Theory Type</th>
<th>p-Braun Types Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>type-IIA</td>
<td>(p = 0, 2, 4, 6, 8)</td>
</tr>
<tr>
<td>type-IIB</td>
<td>(p = -1, 1, 3, 5, 7, 9)</td>
</tr>
<tr>
<td>type-I</td>
<td>(p = 1, 5, 9)</td>
</tr>
</tbody>
</table>

Heterotic Strings admit no p-branes
STRING/D-BRANE BASICS

<table>
<thead>
<tr>
<th>String theory type</th>
<th>p-brane types allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>type-IIA</td>
<td>(p = 0, 2, 4, 6, 8)</td>
</tr>
<tr>
<td>type-IIB</td>
<td>(p = -1, 1, 3, 5, 7, 9)</td>
</tr>
<tr>
<td>type-I</td>
<td>(p = 1, 5, 9)</td>
</tr>
</tbody>
</table>

Heterotic Strings admit no p-branes
String/D-Branes Basics

<table>
<thead>
<tr>
<th>String theory type</th>
<th>p-brane types allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>type-IIA</td>
<td>$p = 0, 2, 4, 6, 8$</td>
</tr>
<tr>
<td>type-IIB</td>
<td>$p = -1, 1, 3, 5, 7, 9$</td>
</tr>
<tr>
<td>type-I</td>
<td>$p = 1, 5, 9$</td>
</tr>
</tbody>
</table>

Heterotic Strings admit no p-branes.

Compactify to 3 + 1 Large Dim.
String/D-brane Basics

<table>
<thead>
<tr>
<th>String theory type</th>
<th>p-brane types allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>type-IIA</td>
<td>(p = 0, 2, 4, 6, 8)</td>
</tr>
<tr>
<td>type-IIB</td>
<td>(p = -1, 1, 3, 5, 7, 9)</td>
</tr>
<tr>
<td>type-I</td>
<td>(p =)</td>
</tr>
</tbody>
</table>

Heterotic Strings admit no p-branes

Compactify to

3 + 1 Large Dim

Wrap up along

Three cycles ("D-particles")

Li, NM, Nanopoulos, Xie

Corfu 2010
N.E. Mavromatos
44
Open strings on D3-brane world represent electrically neutral matter or radiation, interacting via splitting/capture with D-particles (electric charge conservation).

D-particle foam medium transparent to (charged) Electrons no modified dispersion for them.

Photons or electrically neutral probes feel the effects of D-particle foam Modified Dispersion for them.

NON-UNIVERSAL ACTION OF D-PARTICLE FOAM ON MATTER & RADIATION
Consider Four-point Veneziano Amplitude for scattering of two open string states to two open string states in the D-particle/D3-branes backgrounds

Antoniadis, Benakli, Laugier
Type IIB String Model of D-particle Foam

T.Li, NM, Nanopoulos, D. Xie

Couplings of ND strings Stretched between D3 and D7 branes (Capture process)

\[
\frac{1}{g_{37}^2} = \frac{V_{A3}R'}{(1.55l_s)^4 \frac{l_s^4}{g_i^2}} = \frac{V_{A3}R'}{(1.55)^4 \frac{1}{g_i^2}}
\]

D-Foam: Uniform Distribution of D-particles in space with \(V_{A3}\) = their average 3D-volume, \(R'\) = radius of forth space dim transverse to D3 branes. Avoid tachyon condensation:

D3 branes have widths 1.55 \(l_s\)

Capture process: Backward Scattering \(u=0\) (Mandelstam)
Time delays arise by considering Backward scattering \(u=0 \).

\[
A(1, 2, 3, 4) \propto g_s \ell_s^2 \left(t \ell_s^2 \bar{u}(1) \gamma_\mu u(2) \bar{u}(4) \gamma^\mu u(3) + s \ell_s^2 \bar{u}(1) \gamma_\mu u(4) \bar{u}(2) \gamma^\mu u(3) \right) \times \frac{\Gamma(-s \ell_s^2) \Gamma(-t \ell_s^2)}{\Gamma(1 + u \ell_s^2)},
\]

\[
A(1, 3, 2, 4) \propto g_s \ell_s^2 \left(t \ell_s^2 \bar{u}(1) \gamma_\mu u(3) \bar{u}(4) \gamma^\mu u(2) + u \ell_s^2 \bar{u}(1) \gamma_\mu u(4) \bar{u}(3) \gamma^\mu u(2) \right) \times \frac{\Gamma(-u \ell_s^2) \Gamma(-t \ell_s^2)}{\Gamma(1 + s \ell_s^2)},
\]

\[
A(1, 2, 4, 3) \propto g_s \ell_s^2 \left(u \ell_s^2 \bar{u}(1) \gamma_\mu u(2) \bar{u}(3) \gamma^\mu u(4) + s \ell_s^2 \bar{u}(1) \gamma_\mu u(3) \bar{u}(2) \gamma^\mu u(4) \right) \times \frac{\Gamma(-s \ell_s^2) \Gamma(-u \ell_s^2)}{\Gamma(1 + t \ell_s^2)},
\]

Seiberg, Susskind
Toumbas
Time delays arise by considering
Backward scattering \(u = 0 \).
For massless particles \(u + t + s = 0 \) ...

\[
\ell_s^2 \Gamma(-s\ell_s^2) \Gamma(-t\ell_s^2) = -s\ell_s^2 \Gamma(-s\ell_s^2) \Gamma(s\ell_s^2) \\
\quad = \frac{\pi}{\sin(\pi s\ell_s^2)}.
\]

It has poles at \(s = n/\ell_s^2 \).

To define the poles we use the correct \(\epsilon \) prescription replacing \(s \rightarrow s + i\epsilon \), which shift the poles off the real axis. Thus, the functions \(1/\sin(\pi s\ell_s^2) \) can be expanded as a power series in \(y \) which is

\[
y = e^{i\pi s\ell_s^2 - \epsilon}.
\]

(10)

Note that \(s = E^2 \), we obtain the time delay at the lowest order

\[
\Delta t = E\ell_s^2.
\]

(11)
A Stringy (type IIA) Model of Space - Time Foam

Open strings on D3-brane world represent electrically neutral matter or radiation, interacting via splitting/capture with D-particles (electric charge conservation).

D-particle foam medium transparent to (charged) Electrons no modified dispersion for them.

Photons or electrically neutral probes feel the effects of D-particle foam Modified Dispersion for them.

TYPE IIA string models: D-foam transparent to charged probes

TYPE IIB string models electrically charged probes have suppressed foam effects compared to neutral probes by several orders of magnitude.
Backward scattering $u=0$ implies

\[A(1, 3, 2, 4) \propto g_s \ell_s^2 \left(\frac{1}{u \ell_s^2} u^{(1)} \gamma_\mu u^{(3)} \overline{u}^{(4)} \gamma_\mu u^{(2)} - \frac{1}{s \ell_s^2} u \ell_s^2 \overline{u}^{(1)} \gamma_\mu u^{(4)} \overline{u}^{(3)} \gamma_\mu u^{(2)} \right) \]

JUST POLE TERMS...
NO TIME DELAY AT LEADING ORDER in η

T.Li, NM, Nanopoulos, D. Xie
At order η, there are time delays...

\[
A(1_{j_1 I_1} 2_{j_2 I_2} 3_{j_3 I_3} 4_{j_4 I_4}) =
\]
\[-g_s l_s^2 \int_0^1 dx \; x^{-1-s l_s^2} (1 - x)^{-1-t l_s^2} \frac{1}{[F'(x)]^2} \times
\]
\[
\left[\bar{u}^{(1)} \gamma_\mu u^{(2)} \bar{u}^{(4)} \gamma_\mu u^{(3)} (1 - x) + \bar{u}^{(1)} \gamma_\mu u^{(4)} \bar{u}^{(2)} \gamma_\mu u^{(3)} x \right]
\]
\[
\times \{ \eta \delta_{I_1, \bar{I}_2} \delta_{I_3, \bar{I}_4} \delta_{\bar{j}_1, j_4} \delta_{j_2, \bar{j}_3} \sum_{m \in \mathbb{Z}} e^{-\pi \tau m^2 \ell_s^2/R'^2}
\]
\[
+ \delta_{j_1, \bar{j}_2} \delta_{j_3, \bar{j}_4} \delta_{\bar{I}_1, I_4} \delta_{I_2, \bar{I}_3} \sum_{n \in \mathbb{Z}} e^{-\pi \tau n^2 R'^2 / \ell_s^2} \}
\]

where j_i and I_i with $i = 1$, 2, 3, 4 are indices on the D7-branes and D3-branes, respectively. And η is

\[
\eta = \frac{(1.55 \ell_s)^4}{V_A 3 R'}.
\]
During Capture: intermediate String stretching between D-particle and D3-brane is Created. It acquires N internal Oscillator excitations & Grows in size & oscillates from Zero to a maximum length by absorbing incident photon Energy p^0:

$$p^0 = \frac{L}{\alpha'} + \frac{N}{L}$$

Minimise right-hand-size w.r.t. L.
End of intermediate string on D3-brane Moves with speed of light in vacuo c=1 Hence TIME DELAY (causality) during Capture:

$$\Delta t \sim \alpha' p^0$$

DELAY IS INDEPENDENT OF PHOTON POLARIZATION, HENCE NO BIREFRINGENCE....
Stringy Uncertainties & the Capture Process

During Capture: intermediate String stretching between D-particle and D3-brane is Created. It acquires N internal Oscillator excitations & Grows in size & oscillates from Zero to a maximum length by absorbing incident photon

Minimise right-hand-size w.r.t. L. End of intermediate string on D3-brane Moves with speed of light in vacuo c=1 Hence TIME DELAY (causality) during Capture:

\[\Delta t \sim \alpha' p^0 \]

DELAY IS INDEPENDENT OF PHOTON POLARIZATION, HENCE NO BIREFRINGENCE....
Stringy Uncertainties & the MAGIC Effect

- D-foam: transparent to electrons
- D-foam captures photons & re-emits them
- Time Delay (Causal) in each Capture:

\[\Delta t \sim \alpha' p^0 \]

THESE TIME DELAYS ARE ASSOCIATED WITH STRING UNCERTAINTY PRINCIPLES:

\[\Delta t \Delta x \geq \alpha' , \quad \Delta p \Delta x \geq 1 + \alpha' (\Delta p)^2 + \ldots \]

(\(\alpha' = \) Regge slope = Square of minimum string length scale)

REPRODUCE 4±1 MINUTE DELAY OF MAGIC from Mk501 (redshift z=0.034)
For \(n^* = O(1) \) & \(M_s \sim 10^{18} \) GeV, consistently with Crab Nebula & other
Astrophysical constraints on modified dispersion relations……
Stringy Uncertainties & the MAGIC Effect

- D-foam: transparent to electrons
- D-foam captures photons & re-emits them
- Time Delay (Causal) in each Capture:

\[\Delta t \sim \alpha' p^0 \]

- Independent of photon polarization (no Birefringence)
- Total Delay from emission of photons till observation over a distance D (assume \(n^* \) defects per string length):

\[\Delta t_{\text{total}} = \alpha' p^0 n^* \frac{D}{\sqrt{\alpha'}} = \frac{p^0}{M_s} n^* D \]

Effectively modified Dispersion relation for photons due to induced metric distortion \(G_{0i} \sim p^0

REPRODUCE 4±1 MINUTE DELAY OF MAGIC from Mk501 (redshift \(z=0.034 \))

For \(n^* = O(1) \) & \(M_s \sim 10^{18} \) GeV, consistently with Crab Nebula & other

Astrophysical constraints on modified dispersion relations…….
Stringy Uncertainties & the MAGIC Effect

- D-foam: transparent to electrons
- D-foam captures photons & re-emits them.
- Time Delay (Causal) in each capture is independent of photon polarization.
- Total Delay from emission of photons till observation over a distance D (assume D_{defects} per string length).

$$\Delta t_{\text{total}} = \alpha' p^0 n^* \frac{D}{\sqrt{\alpha'}} = \frac{p^0}{M_s} n^* D$$

REPRODUCE 4±1 MINUTE DELAY OF MAGIC from Mk501 (redshift $z=0.034$)
For $n^* = O(1)$ & $M_s \sim 10^{18}$ GeV, consistently with Crab Nebula & other Astrophysical constraints on modified dispersion relations......
Red-Shift Dependent QG Scale

Universe Expansion may affect density of defects – $n^\ast(z)$ Red-shift Dependent

\[
\Delta t_{\text{obs}} = \int_0^z \frac{n(z) E_{\text{obs}}}{M_s H_0} \frac{(1+z)}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}}
\]
Red-Shift Dependent QG Scale

Universe Expansion may affect density of defects – $n^*(z)$ Red-shift Dependent

$$\Delta t_{\text{obs}} = \int_{0}^{z} dz \frac{n(z) E_{\text{obs}}}{M_s H_0} \frac{(1 + z)}{\sqrt{\Omega_M (1 + z)^3 + \Omega_\Lambda}}$$

$$M_{\text{QG}}^{\text{Eff}} = \frac{M_s}{n^*(z)}$$
Universe Expansion may affect density of defects – \(n^*(z) \) Red-shift Dependent

\[
\Delta t_{\text{obs}} = \int_{0}^{z} dz \frac{n(z) E_{\text{obs}}}{M_s H_0} \frac{(1 + z)}{\sqrt{\Omega_M (1 + z)^3 + \Omega_\Lambda}}
\]

\[
M_{QG}^{\text{Eff}} = \frac{M_s}{n^*(z)}
\]

\(n^*(z) \) = effective density of defects
Interacting with propagating photon
Universe Expansion may affect density of defects – $n^*(z)$ Red-shift Dependent

$$\Delta t_{\text{obs}} = \int_0^z d\bar{z} \frac{n(z)}{M_s \frac{E_{\text{obs}}}{H_0}} \frac{(1 + z)}{\sqrt{\Omega_M (1 + z)^3 + \Omega_\Lambda}}$$

$n^*(z)$ can increase with z

If brane moves in inhomogeneous bulk
Red-Shift Dependent QG Scale

Universe Expansion may affect density of defects – $n^*(z)$ Red-shift Dependent

\[\Delta t_{obs} = \int_0^z dz \frac{n(z) E_{obs}}{M_s H_0} \frac{(1 + z)}{\sqrt{\Omega_M (1 + z)^3 + \Omega_\Lambda}} \]

$M_{QG}^{Eff} = \frac{M_s}{n^*(z)}$

Account for MAGIC (& HESS) events for low z and ALSO for GRB 090510 (short burst) at high $z = 1$

Higher z GRBs delays partly due to D-foam, partly due to Source Delayed Emission

D-void around $z = 1$?

Accounts for Deceleration/ Acceleration transition in Brane Universe

$n^*(z)$ can increase with z

If brane moves in inhomogeneous bulk
Stringy Uncertainties & the MAGIC Effect

- D-foam: transparent to electrons
- D-foam captures photons & re-emits them
- Time Delay (Causal) in each Capture:

\[\Delta t \sim \alpha' p^0 \]

THESE TIME DELAYS ARE ASSOCIATED WITH STRING UNCERTAINTY DUE TO ENERGETIC SUSCEPTIBILITY

\[\Delta \alpha \propto \Delta \alpha' \propto \Delta x \geq 1 \text{ (mm, micron, etc.)} \]

(\(\alpha' = \text{Regge slope} \), \(\Delta x \) = minimum string length scale)

REPRODUCE 4\pm1 MINUTE DELAY OF MAGIC from Mk501 (redshift } z = 0.034\)

For } n^* \approx O(1) \& M_s \approx 10^{18} \text{ GeV, consistently with Crab Nebula & other Astrophysical constraints on modified dispersion relations} ...
WHY BEYOND LOCAL EFT?
Recoil of the D-particle Defects during scattering
Distortion of the neighbouring space-time, with a Metric (Finsler type) which depends on both position and momentum transfer of incident string...
Recoil of the D-particle Defects during scattering
Distortion of the neighbouring space-time, with a Metric (Finsler type) which depends on both position and momentum transfer of incident string…
Cannot represent the effect by local field operators (higher-derivatives) in a flat space-time lagrangian…
Induced (Finsler) Space-Time Metric

D-particle Recoil velocity as "electric field" string background

\[p_\mu p_\nu g^{\mu \nu}_{\text{open,electric}} = 0 \]

Implies Finsler-type target-space metric

\[g^{\text{open,electric}}_{\mu \nu} = (1 - \tilde{u}_i^2) \eta_{\mu \nu}, \quad \mu, \nu = 0, 1 \]

\[g^{\text{open,electric}}_{\mu \nu} = \eta_{\mu \nu}, \quad \mu, \nu = \text{all other values}, \]

Notice that corrections to MDR due to metric are Quadratically suppressed by the string mass scale \(M_s \) in contrast to time delays due to stringy uncertainties which are linear.

\[\Delta t \sim \alpha' p^0 \]

Stringy Uncertainties... Beyond Local EFT!
NEW TYPE OF ``GZK'' CUTOFF, From Lorentz Invariance of underlying string theory: recoil velocity must be

\[\frac{u}{c} = \frac{\Delta p}{M_{QG}} < 1 \]

\[(M_{QG} = M_s / g_s) \]

\[g_{\mu\nu}^{\text{open,electric}} = \left(1 - \tilde{u}_i^2\right) \eta_{\mu\nu} , \quad \mu, \nu = 0, 1 \]
\[g_{\mu\nu}^{\text{open,electric}} = \eta_{\mu\nu} , \mu, \nu = \text{all other values} , \]

\[g_s^{\text{eff}} = g_s \left(1 - \tilde{u}^2\right)^{1/2} \]

\[M_s / g_s \text{ free parameter in string theory…} \]

\[\text{Avoid constraints on UHECR altogether?} \]
Ultra-high-energy photons

\[\omega_{\pm}^2 = k^2 + \varepsilon^2 \left(\frac{k}{M_{\text{pl}}} \right)^n, \]

\[\omega_b^2 = k_b^2, \]

\[E_{e, \pm}^2 = p_e^2 + m_e^2 + \eta m_{\pm} \left(\frac{p_e}{M_{\text{pl}}} \right)^n. \]

Severe constraints on LIV Parameters from absence of:

(i) Observations on UHE photons, which would evade pair production due to threshold modifications if MDR hold:

\[\gamma_{\text{UHE}} + \gamma_{\text{background}} \not\rightarrow e^+ e^- \]

(ii) Photon Decay

\[\gamma_{\text{UHE}} \leftrightarrow e^+ e^- \]

Allowed, above threshold if MDR

NB: MDR are quadratically suppressed by the QG scale
Ultra-high-energy photons

\[\omega_\pm^2 = k^2 + \xi_n^\pm k^2 \left(\frac{k}{M_{\text{pl}}} \right)^n, \]
\[\omega_b^2 = k_b^2, \]
\[E_{e, \pm}^2 = p_e^2 + m_e^2 + \eta_{\pm}^e \pm p_e^2 \left(\frac{p_e}{M_{\text{pl}}} \right)^n. \]

Severe constraints on LIV Parameters from absence of:

(i) Observations on UHE photons, which would evade pair production due to threshold modifications if MDR hold:

(ii) Photon Decay

\[\gamma UHE \leftrightarrow e^+ e^- \]

Allowed, above threshold if MDR

NB: MDR are quadratically suppressed by the QG scale
D-FOAM & THE UNIVERSE DARK SECTOR
Uses 8-Brane stacks to account for appropriate supersymmetries if no motion + Orientifold 8-Planes to compactify bulk 9th space dim.
Interaction of D-particles with Brane Worlds via stretched Strings due to relative motion perpendicularly to branes only
D-FOAM & THE DARK SECTOR

Interaction of D-particles with Brane Worlds via stretched Strings due to relative motion perpendicularly to branes only

Contributions to Brane potentials (additional contrib. to Dark Energy)
Interaction of D-particles with Brane Worlds via stretched Strings due to relative motion perpendicularly to branes only

Contributions to Brane potentials (additional contrib. to Dark Energy)

Velocity-independent terms cancelled by Orientifold O8 contributions

\begin{align*}
\mathcal{V}_{D0-D8}^{\text{short}} &= -\frac{r}{4\pi\alpha'} - \frac{\pi\alpha' v^2}{12 r^3} \\
r &\ll \sqrt{\alpha'}, \quad v \ll 1
\end{align*}

\begin{align*}
\mathcal{V}_{D0-D8}^{\text{long}} &= -\frac{r}{4\pi\alpha'} + \frac{r v^2}{8\pi\alpha'} \\
r &\gg \sqrt{\alpha'}, \quad v \ll 1
\end{align*}
Interaction of D-particles with Brane Worlds via stretched Strings due to relative motion perpendicularly to branes only

Contributions to Brane potentials (additional contrib. to Dark Energy)

Velocity-independent terms cancelled by Orientifold O8 contributions
D-FOAM & THE DARK SECTOR

Interaction of D-particles with Brane Worlds via stretched Strings due to relative motion perpendicularly to branes only

Contributions to Brane potentials (additional contrib. to Dark Energy)

Velocity-independent terms cancelled by Orientifold O8 contributions

Sign of velocity-dependent terms in potential depends on D-particle/D-brane distance. May cancel out over long periods

\[
\mathcal{V}_{D0-D8}^{\text{short}} = -\frac{r}{4\pi\alpha'} - \frac{\pi\alpha' v^2}{12} r^3
\]

\[r \ll \sqrt{\alpha'}, \quad v \ll 1\]

\[
\mathcal{V}_{D0-D8}^{\text{long}} = -\frac{r}{4\pi\alpha'} + \frac{r v^2}{8\pi\alpha'}
\]

\[r \gg \sqrt{\alpha'}, \quad v \ll 1\]
Interaction of D-particles with Brane Worlds via stretched Strings due to relative motion perpendicularly to branes only

Contributions to Brane potentials (additional contrib. to Dark Energy)

Velocity-independent terms cancelled by Orientifold O8 contributions

Sign of velocity-dependent terms in potential depends on D-particle/D-brane distance. May cancel out over long periods.

\[V_{short}^{D0-D8} = -\frac{r}{4\pi \alpha'} - \frac{\pi \alpha' v^2}{12 r^3} \]
\[V_{long}^{D0-D8} = -\frac{r}{4\pi \alpha'} + \frac{r v^2}{8\pi \alpha'} \]

\[r \ll \sqrt{\alpha'} , \quad v \ll 1 \]

\[r \gg \sqrt{\alpha'} , \quad v \ll 1 \]
Interaction of D-particles with Brane Worlds via stretched Strings due to relative motion perpendicularly to branes only

Contributions to Brane potentials (additional contrib. to Dark Energy)

Velocity-independent terms cancelled by Orientifold O8 contributions

Sign of velocity-dependent potential depends on D-particle/brane distance. May cancel out over long periods

\[V_{short}^{D0-D8} = -\frac{r}{4\pi\alpha'} - \frac{\alpha'}{12} \frac{v^2}{r^3} \]

\[r \ll \sqrt{\alpha'}, \quad v \ll 1 \]

\[V_{long}^{D0-D8} = -\frac{r}{4\pi\alpha'} + \frac{r}{8\pi\alpha'} \frac{v^2}{r^3} \]

\[r \gg \sqrt{\alpha'}, \quad v \ll 1 \]
D-FOAM EFFECTS ON DARK MATTER (THERMAL) RELICS
Interaction of D-particles with Open strings attached to the Brane world (Standard Model Excitations)
CORFU 2010

D-contribution to dark-energy

NOT DARK MATTER PER SE.

D-PARTICLES VIEWED AS BACKGROUND DEFECTS.

Ellis, NEM, Nanopoulos
D-PARTICLES VIEWED AS BACKGROUND DEFECTS, NOT DARK MATTER PER SE...

D-particle fluctuations Induce metric distortions which affect Dark Sector

Sarben Sarkar, Vergou, NEM
D-foam Induced Finsler metric modifications in thermal Dark Matter Relic Abundances – Modification in Botlzmann equation

\[g_{\mu\nu} = \begin{pmatrix} -1 & a^2(t)r_1 p_1 & a(t)^2 r_2 p_2 & a^2(t) r_3 p_3 \\ a^2(t)r_1 p_1 & a^2(t) & 0 & 0 \\ a^2(t)r_2 p_2 & 0 & a^2(t) & 0 \\ a^2(t)r_3 p_3 & 0 & 0 & a^2(t) \end{pmatrix}. \]

Sarben Sarkar, NEM, Vergou

\[v_i = g_s \frac{\Delta p_i}{M_s} \equiv r_i p_i \]

Stochastic foam fluctuations

\[\langle r_i \rangle = 0, \quad \langle r_i r_j \rangle = \sigma_i^2 \delta_{ij} \]

Metric in a boosted frame of velocity \(u_i \) embedded in a FRW expanding Universe

D-particle recoil velocity
BOLTZMAN EQ. MODIFICATION

\[f(x^\mu, \bar{p}^\mu, ; t) \]

\[\hat{L}[f] = C[f] \]

\[\hat{L}[f] = p^\mu \frac{\partial f}{\partial x^\mu} + m \sum_i \frac{\partial f}{\partial \bar{p}^i} \frac{d\bar{p}^i}{d\tau}. \]

\[\bar{p}^i \equiv a(t)p^i, \quad i = 1, 2, 3 \]

\[C[f] = -\langle \bar{\sigma} v \rangle (n^2 - n_{eq}^2) \]
BOLTZMAN EQ. MODIFICATION

\[f(x^\mu, \overline{p}^\mu, ; t) \]

\[\overline{p}^i \equiv a(t)p^i, \quad i = 1, 2, 3 \]

\[\hat{L}[f] = C[f] \]

\[C[f] = -\langle \bar{\sigma} v \rangle (n^2 - n_{eq}^2) \]

\[\hat{L}[f] = p^\mu \frac{\partial f}{\partial x^\mu} + m \sum_i \frac{\partial f}{\partial \overline{p}^i} \frac{d\overline{p}^i}{d\tau} \]

GEODESIC EQUATION (DEFINING THE FORCE) IS MODIFIED AS WELL

\[
\begin{align*}
\frac{\hat{L}[f]}{\overline{p}^0} &= \frac{\partial f}{\partial t} - H \sum_i \overline{p}^i \frac{\partial f}{\partial \overline{p}^i} - 2H a^2(t) \overline{p}^0 \sum_i r_i \overline{p}^i \frac{\partial f}{\partial \overline{p}^i} + 8H a^4(t) \sum_i r_i^2 (\overline{p}^i)^3 \frac{\partial f}{\partial \overline{p}^i} \\
&+ \frac{2}{\overline{p}^0} H a^2(t) \sum_j (\overline{p}^j)^2 \sum_i r_i \overline{p}^i \frac{\partial f}{\partial \overline{p}^i} + 4H a^4(t) (\overline{p}^0)^2 \sum_i r_i^2 \overline{p}^i \frac{\partial f}{\partial \overline{p}^i} - 4a^4(t)H \sum_i (\overline{p}^i)^2 \sum_i r_i^2 \overline{p}^i \frac{\partial f}{\partial \overline{p}^i}
\end{align*}
\]
BOLTZMAN EQ. MODIFICATION

\[\frac{\dot{L}[f]}{p^0} = \frac{\partial f}{\partial t} - H \sum_i \vec{p}^i \frac{\partial f}{\partial \vec{p}^i} - 2H a^2(t) \vec{p}^0 \sum_i r_i \vec{p}^i \frac{\partial f}{\partial \vec{p}^i} + 8H a^4(t) \sum_i r_i^2 (\vec{p}^i)^3 \frac{\partial f}{\partial \vec{p}^i} \\
+ \frac{2}{p^0} H a^2(t) \sum_j (\vec{p}^j)^2 \sum_i r_i \vec{p}^i \frac{\partial f}{\partial \vec{p}^i} + 4H a^4(t) (\vec{p}^0)^2 \sum_i r_i^2 \vec{p}^i \frac{\partial f}{\partial \vec{p}^i} - 4a^4(t) H \sum_i (\vec{p}^i)^2 \sum_i r_i^2 \vec{p}^i \frac{\partial f}{\partial \vec{p}^i} \]

\[\hat{L}[f] = C[f] \]

Number density of particles

\[n(t) \equiv \frac{g}{(2\pi)^3} \int d^3\vec{p} \ f(t, \vec{p}^i) \]

Average temperature

\[\frac{g}{(2\pi)^3} \int d^3\vec{p} (\vec{p}^i)^2 f \equiv T mn \]
D-foam Induced Finsler metric modifications in thermal Dark Matter
Relic Abundances – \textbf{Modification in Botlzmann equation}

\[
\frac{dn}{dt} + 3H n = \Gamma(t) n + \frac{g}{(2\pi)^3} \int d^3p \frac{C[f]}{E}
\]

\[
C[f] = -\langle \tilde{\sigma} \nu \rangle \left(n^2 - n_{eq}^2\right)
\]

Number density of DM particles

Thermal equilibrium density

\[
\Gamma(t) = H a^4(t) \left(\sum_i \sigma_i^2 \right) \left[18Tm + 4m^2 \right]
\]

Heavy DM $m \gg T$

Also modified by the Foam

Due to modified dispersion Relations

Corfu 2010

N.E. Mavromatos
D-foam Induced Finsler metric modifications in thermal Dark Matter Relic Abundances – Modification in Botlzmann equation

\[
\frac{dn}{dt} + 3Hn = \Gamma(t)n + \frac{g}{(2\pi)^3} \int d^3p \frac{C[f]}{E}
\]

Number density of DM particles

\[
\Gamma(t) = H a^4(t) \left(\sum_i \sigma_i^2 \right) \left[18Tm + 4m^2 \right]
\]

Heavy DM m >> T

Thermal equilibrium density

\[
C[f] = -\langle \tilde{\sigma} \nu \rangle \left(n^2 - n_{eq}^2 \right)
\]

Also modified by the Foam

Due to modified dispersion Relations

Source terms in Boltzmann, related to particle production features of D-foam
\[\overline{p}^0 = a^2(t) \sum_i \left(\overline{p}^i \right)^2 r_i + \sqrt{\sum_i \left(\overline{p}^i \right)^2 + m^2} \left[1 + \frac{a^4(t) \left(\sum_i \left(\overline{p}^i \right)^2 r_i \right)^2}{\sum_i \left(\overline{p}^i \right)^2 + m^2} \right]^{1/2} \]

\[\ll r_i \gg = 0 \] , \[\ll r_i r_j \gg = \sigma_i^2 \delta_{ij} \]

Quadratically suppressed by QG scale after stochastic averaging
D-foam Induced Finsler metric modifications in thermal Dark Matter

Relic Abundances – Modification in Boltzmann equation

\[
\frac{dn}{dt} + 3Hn = \Gamma(t)n + \frac{g}{(2\pi)^3} \int d^3p \frac{C[f]}{E}
\]

\[
C[f] = -\langle \tilde{\sigma} \nu \rangle (n^2 - n_{eq}^2)
\]

Due to modified dispersion Relations

\[
n_{eq} = g \left(\frac{m}{2\pi^3} \right)^{\frac{3}{2}} e^{-(m-\mu)\beta} \times \left[1 + \frac{\sqrt{2}}{5\pi^{3/2}} \left(m^2 (2\pi)^{3/2} \right) \sigma_0^2 \left(\frac{15}{2} - \frac{45}{16\sqrt{2}} \xi e^{-(m-\mu)\beta} + \frac{15}{27\sqrt{3}} \xi^2 e^{-2(m-\mu)\beta} \right) \right. \\
- \left. \frac{1}{12\pi^{3/2}} \left(\beta^{-2} + m^2 \right) \sigma_0^2 (2\pi)^{3/2} \left(3 - \frac{3}{4\sqrt{2}} \xi e^{-(m-\mu)\beta} \right) \right]
\]

\[
= n_{st} \times \left[1 + \frac{\sqrt{2}}{5\pi^{3/2}} \left(m^2 (2\pi)^{3/2} \right) \sigma_0^2 \left(\frac{15}{2} - \frac{45}{16\sqrt{2}} \xi e^{-(m-\mu)\beta} + \frac{15}{27\sqrt{3}} \xi^2 e^{-2(m-\mu)\beta} \right) \right. \\
- \left. \frac{1}{12\pi^{3/2}} \left(\beta^{-2} + m^2 \right) \sigma_0^2 (2\pi)^{3/2} \left(3 - \frac{3}{4\sqrt{2}} \xi e^{-(m-\mu)\beta} \right) \right]
\]

\[
\sigma_0^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2
\]
D-foam Induced Finsler metric modifications in thermal Dark Matter
Relic Abundances – Modification in Botlzmann equation

Modified Thermal Relic abundances of heavy DM due to Finsler geometry

\[
\frac{\Omega'_{\chi} h^2}{(\Omega_{\chi} h^2)^{no\, source}} = \left(1 + \int_{x_f}^{x_0} \frac{\Gamma(x)}{H x} \, dx - \frac{1}{J} \int_{x_f}^{x_0} J(s) \left(\int_{x_f}^{s} \frac{\Gamma(x)}{H x} \, dx \right) \, ds \right) \times \left(\frac{g'_{eff,f}}{g_{eff,f}} \right)^{\frac{1}{2}}
\]

\[
J \equiv \int_{x_0}^{x_f} \langle v\tilde{\sigma} \rangle' \, dx, \quad J(x) \equiv \frac{\langle v\tilde{\sigma} \rangle'}{x^2}
\]

\(x_f = m/T_f\), freezeout, typically \(x_f \approx 20\) (neutralino DM)
\(x_0 = m/T_0\), \(T_0 =\) today (CMB, 2.7 K)
Modification in effective d.o.f. g'_{eff} due to modified equilibrium distributions

$$
\rho = \frac{g}{(2\pi)^3} \int \ll n\omega_r \gg d^3\vec{p}
$$

$$
\begin{align*}
\ll n\omega_r \gg &\equiv \prod_j \frac{1}{\sigma_j \sqrt{2\pi}} \int_{-\infty}^{\infty} dr_j \ll n\omega \gg_r \exp\left(-\frac{r_j^2}{2\sigma_j^2}\right), \\
\ll n\omega \gg_r &= \frac{\omega_r}{\exp(\beta(\omega_r - \mu)) + \xi}
\end{align*}
$$

$\omega_r = \text{energy in the presence of foam}$

$$
\begin{align*}
g'_{\text{eff}} &= g_{\text{eff}} + \frac{30}{\pi^2\sigma^2} \left(\frac{2\pi^4}{189} \sum_i g_{i,b} \left(\frac{T_{i,b}}{T}\right)^4 T_{i,b}^2 + \frac{793.92}{\pi^2} \sum_j g_{j,f} \left(\frac{T_{j,f}}{T}\right)^4 T_{j,f}^2 \right)
\end{align*}
$$

$$
\begin{align*}
g_{\text{eff}} &= \sum_i g_{i,b} \left(\frac{T_{i,b}}{T}\right)^4 + \frac{7}{8} \sum_j g_{j,f} \left(\frac{T_{j,f}}{T}\right)^4
\end{align*}
$$
Modification in effective d.o.f. g'_{eff} due to modified equilibrium distributions

$$
g'_{\text{eff}} = g_{\text{eff}} + \frac{30}{\pi^2} \sigma^2 \left(\frac{2\pi^4}{189} \sum_i g_{i,b} \left(\frac{T_{i,b}}{T} \right)^4 T_{i,b}^2 + \frac{793.92}{\pi^2} \sum_j g_{j,f} \left(\frac{T_{j,f}}{T} \right)^4 T_{j,f}^2 \right)
$$

$$
\frac{\Omega' h_0^2}{(\Omega h_0^2)_{\text{no source}}} \approx \left[1 + 207.38 g_s^2 \frac{m_s^2}{M_s^2} x_f^{-2} \left(\sum_{i=1}^3 \Delta_i^2 \right) \right]^{1/2} \left[1 + g_s^2 \frac{m_s^2}{M_s^2} x_f^{-2} \left(\sum_{i=1}^3 \Delta_i^2 \right) \left(1 + 6 x_0^{-1} \right) \right]
$$

$x_f = T_f / m$, freezeout, typically $x_f \approx 0.05$

$x_0 = T_0 / m$, $T_0 = \text{today (CMB, 2.7 K)}$

$\Delta^2 = g_s^2 \sigma^2 / M_s^2$
Modification in effective d.o.f. g'_{eff} due to modified equilibrium distributions

$$g'_{\text{eff}} = g_{\text{eff}} + \frac{30}{\pi^2} \sigma^2 \left(\frac{2\pi^4}{189} \sum_i g_{i,b} \left(\frac{T_{i,b}}{T} \right)^4 T_{i,b}^2 + \frac{793.92}{\pi^2} \sum_j g_{j,f} \left(\frac{T_{j,f}}{T} \right)^4 T_{j,f}^2 \right)$$

\[
\frac{\Omega'_{\chi} h_0^2}{(\Omega_{\chi} h_0^2)_{\text{no source}}} \approx \left[1 + 207.38 g_s^2 \frac{m^2}{M_s^2} x_f^{-2} \left(\sum_{i=1}^{3} \Delta_i^2 \right) \right]^{1/2} \left[1 + g_s^2 \frac{m^2}{M_s^2} \left(\sum_{i=1}^{3} \Delta_i^2 \right) (1 + 6 x_0^{-1}) \right]
\]

$x_f = T_f / m$, freezeout, typically $x_f \approx 0.05$

$x_0 = T_0 / m$, $T_0 =$ today (CMB, 2.7 K)

$\Delta^2 = g_s^2 \pi^2 / M_s^2$

Significant ($\sim 10^{-3}$) for TeV scale M_s and m, can be constrained from WMAP data...

If DM is neutralino in SUSY models can be constrained by collider tests (LHC...)
Modification in effective d.o.f. g'_{eff} due to modified equilibrium distributions

\[
g'_{eff} = g_{eff} + \frac{30}{\pi^2} \bar{\sigma}^2 \left(\frac{2\pi^4}{189} \sum_i g_{i,b} \left(\frac{T_{i,b}}{T} \right)^4 T_{i,b}^2 + \frac{793.92}{\pi^2} \sum_j g_{j,f} \left(\frac{T_{j,f}}{T} \right)^4 T_{j,f}^2 \right)
\]

\[
\frac{\Omega' \chi h_0^2}{(\Omega \chi h_0^2)_{\text{no source}}} \simeq \left[1 + 207.38 g_s^2 \frac{m^2}{M_s^2} x_f^{-2} \left(\sum_{i=1}^{3} \Delta_i^2 \right) \right]^{1/2} \left[1 + g_s^2 \frac{m^2}{M_s^2} \left(\sum_{i=1}^{3} \Delta_i^2 \right) (1 + 6 x_0^{-1}) \right]
\]

$\Delta_i^2 = g_s^2 \frac{m_i^2}{M_s^2}$

$x_f = T_f / m$, freezeout, typically $x_f \approx 0.05$

$x_0 = T_0 / m$, T_0 today (\sim CMB, 2.7 K)

Significant ($\sim 10^{-3}$) for TeV scale M_s and m, can be constrained from WMAP data...

If DM is neutralino in SUSY models can be constrained by collider tests (LHC...)

Corfu 2010

N.E. Mavromatos
OTHER EFFECTS OF D-FOAM
CPT may be Violated in D-particle Foam models but only through Target-space effective (low-energy) Decoherence, induced by stochastic quantum metric fluctuations ...

Tests in Particle Interferometers: EPR correlation modifications...
Conclusions

- MAGIC, FERMI … (?) observations indicate that high energy photons arrive later than lower-energy ones… H.E.S.S. compatible

- Source Effect or Propagation in Quantum Gravity Medium? Or both?

- There is a (unique?) string model of D-particle space-time foam reproducing the effect, using time delays proportional to photon energy (or MDR with linear QG scale suppression), consistent with all other tests of Lorentz invariance. No birefringence…

- Beyond Local EFT!? (stringy uncertainties, intermediate string formation)

- Very important: Improve on statistics … Find other flares, GRBs and check the energy dependence of photon arrival times: Very High Energy γ-ray Astronomy very exciting prospects for the near future… UHE Cosmic Rays, cosmic neutrinos

- Foam effects in Dark Sector: Dark Energy contributions, Dark Matter abundancies modification

- Also Particle Interferometry (Neutral Meson factories) may provide complementary test of such fundamentally new physics…(CPTV)
Outlook…

On the Theoretical Side: Develop Foam Models to incorporate realistic standard model phenomenology and get agreement with current cosmology: intersecting brane models to get Standard Model Group, calculate and analyse effects of foam on CMB, Universe Dark Sector…

On the experimental side: increase statistics of observations, luckily one should observe short GRBs at various red-shifts, which will allow falsification of models for $n^*(z)$ density of foam.

Exciting Times for Astro-Particle Physics fundamental symmetries tests expected?
D-particle Recoil Formalism

σ-Model 1st Quantized Formalism

Recoil Velocity u_i as Constant Electric Field Background

$$\nu_D^{imp} = \frac{1}{2\pi \alpha'} \int_D d^2 z \epsilon_{\alpha\beta} \partial^\beta \left([u_i X^0] \Theta (X^0) \partial^\alpha X^i \right) =$$

$$\frac{1}{4\pi \alpha'} \int_D d^2 z (2u_i) \epsilon_{\alpha\beta} \partial^\beta X^0 \left[\Theta_\varepsilon (X^0) + X^0 \delta_\varepsilon (X^0) \right] \partial^\alpha X^i$$

$$u_i = g_s \frac{(\Delta \vec{k})_i}{M_g}$$
D-particle Recoil Formalism

σ-Model 1st Quantized Formalism

Recoil Velocity u_i as Constant Electric Field Background

$$
\nu_D^{imp} = \frac{1}{2\pi\alpha'} \int_D d^2 z \, \epsilon_{\alpha\beta} \partial^\beta \left([u_i X^0] \Theta (X^0) \partial^\alpha X^i \right) =
$$

$$
\frac{1}{4\pi\alpha'} \int_D d^2 z \, (2u_i) \epsilon_{\alpha\beta} \partial^\beta X^0 \left[\Theta_\varepsilon (X^0) + X^0 \delta_\varepsilon (X^0) \right] \partial^\alpha X^i
$$

B-field deformation, $B_{0i} = u_i$

$$
\nu_i = g_s \frac{(\Delta \vec{k})_i}{M_s}
$$
Induced (Finsler-type) Non-Commutativity (N.C.)

Mixed world-sheet Boundary Conditions

$$g_{\mu\nu} \partial_n X^\nu + B_{\mu\nu} \partial_\tau X^\nu \big|_{\partial D} = 0$$

Neumann Dirichlet, $B_{0i} \sim u_i$ (D-particle recoil velocity)

World-sheet 1st quantization leads to N.C. (induced by recoil here)

$$[X^1, t] = i\theta^{10}, \quad \theta^{01}(= -\theta^{10}) \equiv \theta = \frac{1}{u_c \sqrt{1 - \tilde{u}^2}}$$

$$\tilde{u}_i \equiv \frac{u_i}{u_c} \text{ and } u_c = \frac{1}{2\pi\alpha'}$$

But of Finsler type (i.e. momentum dependent)

$$u_i = g_s \frac{(\Delta \tilde{k})_i}{M_s}$$

Seiberg-Witten
Seiberg, Susskind, Toumbas

NEM, arXive:0906.2712
Induced (Finsler) Space-Time Metric

World-Sheet Propagator in the presence of recoil background

\[\langle X^\mu(\tau)X^\nu(0) \rangle = -\alpha' g_{\text{open}, \text{electric}}^{\mu\nu} \ln \tau^2 + i \frac{\theta^{\mu\nu}}{2} \epsilon(\tau) \]

Implies Finsler-type target-space metric

\[
\begin{align*}
g_{\text{open}, \text{electric}}^{\mu\nu} &= (1 - \tilde{u}_i^2) \eta_{\mu\nu}, \quad \mu, \nu = 0, 1 \\
g_{\text{open}, \text{electric}}^{\mu\nu} &= \eta_{\mu\nu}, \mu, \nu = \text{all other values},
\end{align*}
\]

and effective string coupling

\[g_s^{\text{eff}} = g_s \left(1 - \tilde{u}^2\right)^{1/2} \]
Induced (Finsler) Space-Time Metric

World-Sheet Propagator in the presence of recoil background

\[\langle X^\mu(\tau)X^\nu(0) \rangle = -\alpha' g_{\text{open, electric}}^{\mu\nu} \ln \tau^2 + i \frac{\theta_{\mu\nu}}{2} \epsilon(\tau) \]

Implies Finsler-type target-space metric

\[g_{\mu\nu}^{\text{open, electric}} = \left(1 - \tilde{u}_i^2\right) \eta_{\mu\nu}, \quad \mu, \nu = 0, 1 \]
\[g_{\mu\nu}^{\text{open, electric}} = \eta_{\mu\nu}, \quad \mu, \nu = \text{all other values} \]

and effective string coupling

\[g_s^{\text{eff}} = g_s \left(1 - \tilde{u}^2\right)^{1/2} \]
Induced (Finsler) Space-Time Metric

World-Sheet Propagator in the presence of recoil background

\[\langle X^\mu(\tau)X^\nu(0) \rangle = -\alpha' g_{\text{open},\text{electric}}^\mu\nu \ln \tau^2 + i \frac{\theta^\mu\nu}{2} \epsilon(\tau) \]

Implies Finsler-type target-space metric

Depends on Momentum Transfer due to momentum Conservation in D-particle Recoil

\[u_i = g_s \Delta k_i / M_s \]

and effective string coupling

\[g_s^{\text{eff}} = g_s \left(1 - \tilde{u}^2 \right)^{1/2} \]
Induced (Finsler) Space-Time Metric

\[p_\mu p_\nu g_{\mu\nu}^{\text{open,electric}} = 0 \]

Implies Finsler-type target-space metric

\[
\begin{align*}
g_{\mu\nu}^{\text{open,electric}} &= (1 - \tilde{w}_i^2) \eta_{\mu\nu} , \quad \mu, \nu = 0, 1 \\
g_{\mu\nu}^{\text{open,electric}} &= \eta_{\mu\nu} , \quad \mu, \nu = \text{all other values} ,
\end{align*}
\]

Notice that corrections to MDR due to metric are \textbf{Quadratically} suppressed by the string mass scale \(M_s \) in contrast to \textbf{time delays} due to stringy uncertainties which are \textbf{linear}.

\[\Delta t \sim \alpha' p^0 \]
Consequences for Neutral mesons EPR – correlators

\[|\psi > = \mathcal{N}\left(|K_S(k), K_L(-k) > - |K_L(k), K_S(-k) > \right) \]

Neutral Kaon, anti-Kaon mesons treated as indistinguishable particles, Bose-statistics applies

IF CPT Θ-operator WELL-DEFINED

Even if $[\Theta, H] \neq 0$
If foam, concept of anti-particle may be perturbatively modified, Neutral mesons no longer indistinguishable.
If foam, concept of anti-particle may be perturbatively modified, Neutral mesons no longer indistinguishable

\[|i> = \mathcal{N} \left(|K_S(\bar{k}), K_L(-\bar{k}) > - |K_L(\bar{k}), K_S(-\bar{k}) > \right) \]
\[+ \omega \left(|K_S(\bar{k}), K_S(-\bar{k}) > - |K_L(\bar{k}), K_L(-\bar{k}) > \right) \]

\[\omega = |\omega| e^{i\Omega} \]

IF CPT ILL-DEFINED (e.g. Stringy Foam)
If foam, concept of anti-particle may be perturbatively modified, Neutral mesons no longer indistinguishable particles, initial entangled state:

\[
|\psi \rangle = \mathcal{N} \left[\left(|K_S(\bar{K}), K_L(-\bar{K}) > - |K_L(\bar{K}), K_S(-\bar{K}) > \right) + \omega \left(|K_S(\bar{K}), K_S(-\bar{K}) > - |K_L(\bar{K}), K_L(-\bar{K}) > \right) \right]
\]

\[
\omega = |\omega| e^{i\Omega}
\]

\[
|\omega|^2 \sim \frac{\zeta^2 k^4}{M_{QG}^2 (m_1 - m_2)^2}, \Delta p \sim \zeta \rho \text{ (kaon momentum transfer)}
\]

If QCD effects, sub-structure in neutral mesons ignored, and D-foam acts as if they were structureless particles, then for \(M_{QG} \sim 10^{18} \text{ GeV (MAGIC)} \) the estimate for \(\omega \):

\[
|\omega| \sim 10^{-4} \ |\zeta|, \text{ for } 1 > |\zeta| > 10^{-2} \text{ (natural)}
\]

Not far from sensitivity of upgraded meson factories (e.g. DAFNE2)