On the QCD phase diagram

Lisa Marie Haas University of Heidelberg

arXiv:0908.0008 [Braun, LMH, Marhauser, Pawlowski], work in progress [Braun, LMH, Pawlowski]

ERG 2010, Corfu

Motivation & Results

Motivation

credits: GSI Darmstadt

Method

Renormalisation Group flows

- continuum formulation
- incorporate full dynamics
- fermions straightforward
 - no sign problem
 - chiral fermions
 - bound states via dynamical hadronisation

 \rightarrow complementary to lattice

functional RG flow:
$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right) - \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right) + \frac{1}{2} \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right) + \frac{1}{2} \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)$$

Quark confinement & chiral symmetry breaking at imaginary μ

Chiral phase transition

symmetry of matter sector of QCD for $m_q = 0$

order parameter: chiral condensate $\langle \bar{\psi}\psi \rangle$

$$\langle \bar{\psi}\psi \rangle = \begin{cases} 0 & T > T_{c,\chi} \\ > 0 & T < T_{c,\chi}. \end{cases}$$

Deconfinement phase transition

Symmetry of gauge sector of QCD: center symmetry Z_3 for SU(3)

symmetry present in the limit of static quarks ($m_q \rightarrow \infty$)

order parameter: Polyakov loop ϕ

$$\phi = \frac{1}{N_c} \operatorname{Tr} \mathcal{P} e^{i \int_0^{1/T} dt \langle A_0 \rangle} = \begin{cases} > 0 & T > T_{c, \text{conf}} \\ 0 & T < T_{c, \text{conf}}. \end{cases}$$

imaginary chem. pot. $heta=-\mathrm{i}\mu/2\pi T$, $N_f=2$, chiral limit

imaginary chem. pot. $heta=-\mathrm{i}\mu/2\pi T$, $N_f=2$, chiral limit

imaginary chem. pot. $\theta = -i\mu/2\pi T$, $N_f = 2$, chiral limit

imaginary chem. pot. $\theta = -i\mu/2\pi T$, $N_f = 2$, chiral limit

imaginary chem. pot. $heta=-\mathrm{i}\mu/2\pi T$, $N_f=2$, chiral limit

imaginary chem. pot. $\theta = -i\mu/2\pi T$, $N_f = 2$, chiral limit

confining properties: full momentum dependence of ghost & gluon propagator

J. Braun, H. Gies, J. M. Pawlowski '07

Roberge-Weiss periodicity & p.t.

$$\theta = -\mathrm{i}\mu/2\pi T:$$

 $QCD_{\theta} = QCD_{\theta+\theta_z}$ periodic

where $\theta_z = 0, 1/3, 2/3$ for SU(3)

quantities related to effective action: show same periodicity (RW periodicity) e.g. $\langle \bar{\psi}\psi \rangle$

 QCD_{θ} : smooth until $\theta = 1/6$, then shows discontinuity: Polyakov loop RW phase transition

Order parameters

 $\theta = 0$:

J. Braun, LMH, F. Marhauser, J. M. Pawlowski '09

 $T_{\text{conf},cr} \simeq T_{\chi,cr}$

Order parameters

 $\theta = 0$:

J. Braun, LMH, F. Marhauser, J. M. Pawlowski '09

 $T_{\text{conf},cr} \simeq T_{\chi,cr}$

J. Braun, LMH, F. Marhauser, J. M. Pawlowski '09

 T_{conf} and T_{χ} lie close together, end in critical point (RW phase transition)

coinciding T_{cr} result from interplay of quantum fluctuations & are not adjusted by hand compatible with lattice:

Kratochvila et al '06; Wu et al '06

PNJL model agrees if 8-quark interaction is adjusted:

Dual order parameters

C. Gattringer '06; F. Synatschke, A. Wipf, C. Wozar '07; F. Bruckmann, C. Hagen, C. Gattringer '08; C. S. Fischer '09; C. S. Fischer, J. Mueller '09; imaginary chemical potential -----> J. Braun, LMH, F. Marhauser, J. M. Pawlowski '09

Observable \mathcal{O}_{θ} : transforms non-trivially under center transformations $z = e^{2\pi i \theta_z}$ with $\theta_z = 0, 1/3, 2/3$ for SU(3)

is an oder parameter for confinement

$$\tilde{\mathcal{O}} = \int_0^1 \, d\theta \, e^{-2\pi i \theta} \mathcal{O}_\theta$$

 $\tilde{\mathcal{O}}$ sensitive w.r.t. center transformations $\tilde{\mathcal{O}} \to z \tilde{\mathcal{O}}$ e.g. dual density $n_{\theta} \sim \int \langle \bar{\psi} \gamma_0 \psi \rangle_{\theta}$

Order parameters

J. Braun, LMH, F. Marhauser, J. M. Pawlowski '09

 $T_{\text{conf},\Phi} = T_{\text{conf},\tilde{n}} \longrightarrow \text{consistency check}$

Quark confinement & chiral symmetry breaking at real μ

The phase diagram $N_f=2$, chiral limit

The phase diagram $N_f=2$, chiral limit

J. Braun, LMH, J. M. Pawlowski, work in progress

The phase diagram $N_f=2$, chiral limit

J. Braun, LMH, J. M. Pawlowski, work in progress

Summary & Outlook

Summary

phase diagram $N_f = 2$: imaginary chemical potential

Roberge-Weiss periodicity

$$T_{\text{conf},cr} \simeq T_{\chi,cr}$$

Summary & Outlook

Summary

phase diagram $N_f = 2$: imaginary chemical potential

Summary & Outlook

Summary

phase diagram $N_f = 2$: imaginary chemical potential

Outlook

extend to $N_f = 2 + 1$: real chemical potential

Additional slides

Gauge invariance

F. Marhauser, J. M. Pawlowski '08

Polyakov gauge: $A_0 = A_0^c(\vec{x})\sigma_3$

Critical temperatures

$$N_f = 2$$

J. Braun, LMH, F. Marhauser, J. M. Pawlowski '09

$$T_{\mathrm{conf},cr} \simeq T_{\chi,cr}$$

$$N_f = 2 + 1$$

compatible with Karsch et al '08 $T_{conf,cr} \simeq T_{\chi,cr}$

compatible with Fodor et al '08

 $175 \,\mathrm{MeV} \simeq T_{\mathrm{conf},cr} > T_{\chi,cr} \simeq 150 \,\mathrm{MeV}$