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• continuum formulation

• incorporate full dynamics

• fermions straightforward
• no sign problem
• chiral fermions
• bound states via dynamical hadronisation

functional RG flow: ∂tΓk[φ] = 1

2
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2

complementary to lattice



Quark	 confinement	 &	 chiral	 
symmetry	 breaking	 at	 imaginary	 µ



Chiral	 phase	 transition

macroscopic states
dofs: hadrons

broken      symmetryχ

phase

transition

symmetry of matter sector of QCD for 

order parameter:    chiral condensate �ψ̄ψ�

�ψ̄ψ� =
�

0 T > Tc,χ

> 0 T < Tc,χ.

mq = 0

microscopic states
dofs: q, q, g

    symmetryχ



Deconfinement	 phase	 transition

Symmetry of gauge sector of QCD:

center symmetry Z3   for SU(3)

mq →∞symmetry present in the limit of static quarks (             )

order parameter: Polyakov loop φ

φ =
1

Nc
TrP ei

R 1/T
0 dt �A0� =

�
> 0 T > Tc,conf

0 T < Tc,conf.
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FIG. 1: Momentum dependence of the gluon (left panel) and ghost (right panel) 2-point functions at vanishing temperature.
We show the FRG results from Ref. [8] (black solid line) and from lattice simulations from Ref. [6] (red points).

ZC(p2 → 0) → 0 it can be shown that there is a unique
scaling solution, [31, 32]. Then the two exponents are
related and obey the sum rule

0 = κA + 2κC +
4 − d

2
, (9)

in d dimensional spacetime [4, 28, 31]. Possible solutions
are bound to lie in the range κC ∈ [1/2 , 1], see [28]. For
the truncation used in most DSE and FRG computation,
we are led to

κC = 0.595... and κA = −1.19... , (10)

being the value for the optimised regulator [5]. The reg-
ulator dependence in FRG computations leads to a range
of κC ∈ [0.539 , 0.595], see [5]; for a specific flow, see [33].
These results entail the KOGZ confinement scenario: the
gluon is infrared screened, whereas the ghost is infrared
enhanced with κC > 1/2.

In turn it can be shown that for non-vanishing ZC(0)
the gluon propagator tends to a constant in the infrared,
p2ZA(p2) → m2, for related work see e.g. [8, 34, 35, 36,
37, 38, 39]. Note that the gluon propagator then does
not correspond to the propagator of a massive physical
particle. Instead, we observe clear indications for posi-
tivity violation in the numerical solutions for the gluon
propagator related to gluon confinement, [8, 41]. Still the
gluon decouples from the dynamics as does a massive par-
ticle, hence the name decoupling solution. The value of
ZC seems to be bounded by its perturbative value from
above, and the gluon mass parameter is bounded from be-
low [8]. The qualitative infrared behaviour is then given
by the infrared exponents

κA = −1 , and κC = 0 . (11)

We emphasise that even though the infrared exponents
for the scaling solution (10) and the decoupling solution
(11) are rather different, the propagators do only differ
in the deep infrared. It has been suggested in [8] that

the infrared boundary condition is directly related to the
global part of the gauge fixing, and hence to different
resolutions of the Gribov problem. Indeed in [29] the
infrared boundary condition has been implemented di-
rectly as a global completion of the gauge fixing. Note
also, that for Landau gauge Yang-Mills with standard
local BRST invariance the requirement of global BRST
singles out the scaling solution. The existence of such
a formulation on the lattice has been shown recently in
[42]. In summary the results are affirmative for the above
interpretation and are supported by results in the strong-
coupling limit [30] for different implementations of lattice
Landau gauge.

In turn, it has been also shown in a series of works
that an infrared condition also is present in Landau gauge
Yang-Mills with the horizon function, e.g. [35, 36, 37, 38].
The latter introduces an explicit (or soft) breaking of
BRST invariance as it restricts the functional integral
to the first Gribov region. Still this does not fix global
gauge degrees of freedom as also the first Gribov region
contains infinite many gauge copies. The possibility of a
scaling solution in this framework hints at the validity of
Zwanziger proposal: full BRST invariance is recovered in
the thermodynamic limit if the path integral is restricted
to the fundamental modular domain with only one gauge
copy.

In summary a consistent picture has emerged with
nicely relates all current results. The confirmation of
this picture certainly would provide further insight to
the confinement mechanism. For the present work, we
simply note that the scaling solution is singled out by
global BRST invariance which allows the construction
of a physical Hilbert space from gauge fixed correlation
functions. Nonetheless, the whole one-parameter family
provides consistent gauge-fixed correlation functions of
Yang-Mills theory and physical observables should be in-
sensitive to the parameter choice. In the present work,
we can test this statement.

We proceed by extending the Landau-gauge propa-
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gluon decouples from the dynamics as does a massive par-
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ZC(p2 → 0) → 0 it can be shown that there is a unique
scaling solution, [31, 32]. Then the two exponents are
related and obey the sum rule

0 = κA + 2κC +
4 − d

2
, (9)

in d dimensional spacetime [4, 28, 31]. Possible solutions
are bound to lie in the range κC ∈ [1/2 , 1], see [28]. For
the truncation used in most DSE and FRG computation,
we are led to

κC = 0.595... and κA = −1.19... , (10)

being the value for the optimised regulator [5]. The reg-
ulator dependence in FRG computations leads to a range
of κC ∈ [0.539 , 0.595], see [5]; for a specific flow, see [33].
These results entail the KOGZ confinement scenario: the
gluon is infrared screened, whereas the ghost is infrared
enhanced with κC > 1/2.

In turn it can be shown that for non-vanishing ZC(0)
the gluon propagator tends to a constant in the infrared,
p2ZA(p2) → m2, for related work see e.g. [8, 34, 35, 36,
37, 38, 39]. Note that the gluon propagator then does
not correspond to the propagator of a massive physical
particle. Instead, we observe clear indications for posi-
tivity violation in the numerical solutions for the gluon
propagator related to gluon confinement, [8, 41]. Still the
gluon decouples from the dynamics as does a massive par-
ticle, hence the name decoupling solution. The value of
ZC seems to be bounded by its perturbative value from
above, and the gluon mass parameter is bounded from be-
low [8]. The qualitative infrared behaviour is then given
by the infrared exponents

κA = −1 , and κC = 0 . (11)

We emphasise that even though the infrared exponents
for the scaling solution (10) and the decoupling solution
(11) are rather different, the propagators do only differ
in the deep infrared. It has been suggested in [8] that

the infrared boundary condition is directly related to the
global part of the gauge fixing, and hence to different
resolutions of the Gribov problem. Indeed in [29] the
infrared boundary condition has been implemented di-
rectly as a global completion of the gauge fixing. Note
also, that for Landau gauge Yang-Mills with standard
local BRST invariance the requirement of global BRST
singles out the scaling solution. The existence of such
a formulation on the lattice has been shown recently in
[42]. In summary the results are affirmative for the above
interpretation and are supported by results in the strong-
coupling limit [30] for different implementations of lattice
Landau gauge.

In turn, it has been also shown in a series of works
that an infrared condition also is present in Landau gauge
Yang-Mills with the horizon function, e.g. [35, 36, 37, 38].
The latter introduces an explicit (or soft) breaking of
BRST invariance as it restricts the functional integral
to the first Gribov region. Still this does not fix global
gauge degrees of freedom as also the first Gribov region
contains infinite many gauge copies. The possibility of a
scaling solution in this framework hints at the validity of
Zwanziger proposal: full BRST invariance is recovered in
the thermodynamic limit if the path integral is restricted
to the fundamental modular domain with only one gauge
copy.

In summary a consistent picture has emerged with
nicely relates all current results. The confirmation of
this picture certainly would provide further insight to
the confinement mechanism. For the present work, we
simply note that the scaling solution is singled out by
global BRST invariance which allows the construction
of a physical Hilbert space from gauge fixed correlation
functions. Nonetheless, the whole one-parameter family
provides consistent gauge-fixed correlation functions of
Yang-Mills theory and physical observables should be in-
sensitive to the parameter choice. In the present work,
we can test this statement.

We proceed by extending the Landau-gauge propa-
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being the value for the optimised regulator [5]. The reg-
ulator dependence in FRG computations leads to a range
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enhanced with κC > 1/2.

In turn it can be shown that for non-vanishing ZC(0)
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p2ZA(p2) → m2, for related work see e.g. [8, 34, 35, 36,
37, 38, 39]. Note that the gluon propagator then does
not correspond to the propagator of a massive physical
particle. Instead, we observe clear indications for posi-
tivity violation in the numerical solutions for the gluon
propagator related to gluon confinement, [8, 41]. Still the
gluon decouples from the dynamics as does a massive par-
ticle, hence the name decoupling solution. The value of
ZC seems to be bounded by its perturbative value from
above, and the gluon mass parameter is bounded from be-
low [8]. The qualitative infrared behaviour is then given
by the infrared exponents
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We emphasise that even though the infrared exponents
for the scaling solution (10) and the decoupling solution
(11) are rather different, the propagators do only differ
in the deep infrared. It has been suggested in [8] that

the infrared boundary condition is directly related to the
global part of the gauge fixing, and hence to different
resolutions of the Gribov problem. Indeed in [29] the
infrared boundary condition has been implemented di-
rectly as a global completion of the gauge fixing. Note
also, that for Landau gauge Yang-Mills with standard
local BRST invariance the requirement of global BRST
singles out the scaling solution. The existence of such
a formulation on the lattice has been shown recently in
[42]. In summary the results are affirmative for the above
interpretation and are supported by results in the strong-
coupling limit [30] for different implementations of lattice
Landau gauge.

In turn, it has been also shown in a series of works
that an infrared condition also is present in Landau gauge
Yang-Mills with the horizon function, e.g. [35, 36, 37, 38].
The latter introduces an explicit (or soft) breaking of
BRST invariance as it restricts the functional integral
to the first Gribov region. Still this does not fix global
gauge degrees of freedom as also the first Gribov region
contains infinite many gauge copies. The possibility of a
scaling solution in this framework hints at the validity of
Zwanziger proposal: full BRST invariance is recovered in
the thermodynamic limit if the path integral is restricted
to the fundamental modular domain with only one gauge
copy.

In summary a consistent picture has emerged with
nicely relates all current results. The confirmation of
this picture certainly would provide further insight to
the confinement mechanism. For the present work, we
simply note that the scaling solution is singled out by
global BRST invariance which allows the construction
of a physical Hilbert space from gauge fixed correlation
functions. Nonetheless, the whole one-parameter family
provides consistent gauge-fixed correlation functions of
Yang-Mills theory and physical observables should be in-
sensitive to the parameter choice. In the present work,
we can test this statement.
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not correspond to the propagator of a massive physical
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tivity violation in the numerical solutions for the gluon
propagator related to gluon confinement, [8, 41]. Still the
gluon decouples from the dynamics as does a massive par-
ticle, hence the name decoupling solution. The value of
ZC seems to be bounded by its perturbative value from
above, and the gluon mass parameter is bounded from be-
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rectly as a global completion of the gauge fixing. Note
also, that for Landau gauge Yang-Mills with standard
local BRST invariance the requirement of global BRST
singles out the scaling solution. The existence of such
a formulation on the lattice has been shown recently in
[42]. In summary the results are affirmative for the above
interpretation and are supported by results in the strong-
coupling limit [30] for different implementations of lattice
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In turn, it has been also shown in a series of works
that an infrared condition also is present in Landau gauge
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The latter introduces an explicit (or soft) breaking of
BRST invariance as it restricts the functional integral
to the first Gribov region. Still this does not fix global
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contains infinite many gauge copies. The possibility of a
scaling solution in this framework hints at the validity of
Zwanziger proposal: full BRST invariance is recovered in
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that lattice calculations have no error in Tc. However, the lat-
tice calculation [41] has about 10 % error in determining Tc,
as mentioned in subsection III A. This 10 % error should be
added to the original small error; this 10 % error will be shown
later in Fig. 6. The PNJL result (solid curve) of set A agrees
with the lattice one (crosses) within the error bars. The phase
diagram has a periodicity of 2π/3 in θ. This is called the
Roberge and Weiss (RW) periodicity [36]. The phase diagram
is also θ even, because so is χΦ. On the dot-dashed line going
up from an endpoint (θRW, TRW) = (π/3, 1.09Tc), the quark
number density n and the phase φ of the Polyakov loop are
discontinuous in the PNJL calculations [34, 35]. This is called
the RW phase transition line. The lattice data [4, 8] on φ are
also discontinuous on the line, as shown later in Fig.7. Thus,
the PNJL result is consistent with the lattice results [4, 8] also
for the location of the RW phase transition line.
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Fig. 4: Phase diagram on the θ–T plane. The solid curve represents
the deconfinement phase transition, while the dot-dashed line does
the RW phase transition predicted by the PNJL calculation with set
A. Lattice data are taken from Ref. [8].

The lattice simulations [4, 8] point out that Tc(σ) agrees
with Tc(Φ) within numerical errors in the entire region 0 ≤
θ ≤ 2π/3. We then take the case of θ = π/3 to consider this
point. It is predicted by the lattice simulations that Tc(σ) and
Tc(Φ) are located in the region between two vertical gray lines
of Fig. 5. Panel (a) shows σ and |Φ| as a function T/Tc and
panel (b) does χσ and χΦ as a function T/Tc. The green (blue)
curves represent results of the PNJL calculations with set A
(B). The eight-quark interaction hardly shifts the peak position
of χΦ, i.e. Tc(Φ), from the value 1.09Tc. The peak position is
consistent with the lattice result shown by the region between
two vertical gray lines. In contrast, the eight-quark interaction
largely shifts the peak position of χσ , i.e. Tc(σ), from 1.53Tc

to 1.24Tc, but the shifted value still deviates from Tc(Φ) =
(1.1 ± 0.05)Tc, that is, the lattice data near θ = π/3 [4, 8]
shown by the region between two vertical gray lines.

In order to solve this problem, we introduce the vector-type
four-quark interaction

− Gv(q̄γµq)2 (18)

and add it to the PNJL Lagrangian L; see Ref. [35] for the de-
tail of this formulation. As mentioned in Ref. [35], the phase

structure in the real chemical potential region is quite sensi-
tive to the strength of the coupling Gv. It is then important to
determine the strength, but it has not been done yet. Since the
vector-type interaction does not change the pion mass and the
pion decay constant at T = µ = 0 and the chiral condensate
and the Polyakov loop at T ≥ 0 and µ = 0, we can simply
add the interaction to set B. As Gv increases from zero, Tc(σ)
goes down toward Tc(Φ), while Tc(Φ) moves little. When
Gv = 4.673 GeV−2, Tc(σ) gets into the region between the
vertical gray lines. We adopt this strength of Gv. This set is
shown as set C in Table II.
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Fig. 5: T dependence of (a) the normalized chiral condensate and
the absolute value of the Polyakov loop and (b) the susceptibilities
χσ (right scale) and χΦ (left scale) at θ = π/3. In panel (a), σ
(|Φ|) is denoted by the dashed (solid) curve. In panel (b), χσ (χΦ) is
denoted by the dashed (solid) curve. The PNJL calculations are done
with three parameter sets of A, B and C and these are distinguished
by using different colors, green, blue and red, respectively.

Figure 6 shows the phase diagram of the chiral phase tran-
sition determined by Tc(σ). Green, blue and red curves are
results of the PNJL calculations with sets A, B and C, respec-
tively. In the entire region 0 ≤ θ ≤ 2π/3, the eight-quark in-
teraction moves Tc(σ) down from the green dashed curve (set
A) to the blue one (set B). However, the blue dashed curve
still overshoots the lattice result (symbols) with 10 % error
near θ = π/3. The vector-type interaction makes the blue
dashed curve go down to the red one (set C) that is consistent
with the lattice result [8]. Thus, the PNJL calculations with
set C can reproduce the lattice result [4, 8] that Tc(σ) coin-
cides with Tc(Φ) within numerical errors in the entire region
0 ≤ θ ≤ 2π/3.
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Fig. 6: Phase diagrams of the chiral phase transition in the imagi-
nary chemical potential region calculated with three parameter sets
are presented by dashed curves; green, blue and red ones are results
of the PNJL calculations with set A, B and C, respectively. Lattice
data [8] are shown with 10% error that Tc has [41]. The decon-
finement phase transition curves (solid curves) are also shown for
comparison.

Figure 7(a) shows θ dependence of the phase φ of Φ for
four cases of T/Tc = 0.97, 1.01, 1.04 and 1.10; each case
is distinguished by using different colors. The PNJL results
(curves) well simulate the lattice data [4, 8] (symbols). It is
found from both the results that φ is continuous at θ = π/3 in
the low-T side T ≤ TRW = 1.09Tc, but it is discontinuous at
θ = π/3 in the high-T side T > TRW. Hence, the RW phase
transition takes place at T > TRW = 1.09Tc and θ = π/3.
Figure 7(b) shows T dependence of φ for five cases of

θ/(π/3) = 0, 0.4, 0.8, 1.0 and 1.2. The PNJL results
(curves) well reproduce the lattice data [4, 8] (symbols). For
θ < π/3 the phase φ tends to zero as T increases, while for
θ > π/3 it does to −2π/3 as T increases. When θ = π/3,
the RW phase transition takes place at T > TRW = 1.09Tc

and then the phase φ is singular there, so that the pink line
terminates at T = TRW. In the high-T limit, the region (I)
−π/3 < θ < π/3 has φ = 0 and the region (II) π/3 < θ < π
does φ = −2π/3. Thus, the region (II) is a Z3 image of the
region (I), and the region (III) π < θ < 5π/3 is another Z3

image of the region (I).

C. Thermal system with real chemical potential

In this subsection, we predict the phase diagram in the real
µ region by using the PNJL model. In Fig. 8, panels (a)-(c)
represent results of the PNJL calculations with sets A, B and
C, respectively. Panel (c) is the most reliable result, since the
PNJL result of set C is consistent with the lattice result [4, 8]
in the imaginary chemical potential region. Comparing the
three panels, we find that the vector-type four-quark interac-
tion and the scalar-type eight-quark interaction give sizable
effects on the phase structure. In particular for the critical
endpoint E, the eight-quark interaction shifts point E to larger
T and smaller µ, and the vector-type interaction moves it in
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Fig. 7: Phase φ of the Polyakov loop as a function of (a) θ and (b) T .
Lattice data [4, 8] are plotted by symbols. Curves represent results
of PNJL calculations with set A. In panel (b), five cases (red, green,
blue, pink and light blue) from top to bottom represent results of
θ/(π/3) = 0, 0.4, 0.8, 1.0 and 1.2, respectively. The pink line
terminates at T = TRW = 1.09 Tc, since φ is singular at T > TRW

in the case of θ = π/3.

the opposite direction. On the red solid curve between point
E and point D both the first-order chiral and deconfinement
phase transitions take place simultaneously. The light-blue
dot-dashed curve moving up from point I represents the RW
phase transition of first order, and point I is the critical end-
point. The green dashed curve between point H and point E
means the crossover chiral phase transition and the blue solid
curve between point I and point E does the crossover decon-
finement phase transition. Point F (G) is a crossing point be-
tween the dashed (solid) curve and the µ = 0 line. Positions
of points D–I are summarized in Table III. In panel (c), the
pink dotted curve represents the lower bound of the location
µE/TE of the critical endpoint E that the LQCD analyses of
Ref. [45] predict. The position of point E in the case of param-
eter set C is consistent with the results of the LQCD analyses.

IV. SUMMARY

We have tested the reliability of the PNJL model, compar-
ing the model result with lattice data in the imaginary chem-
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