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Supersymmetry and supergravity
� supersymmetry

Bosons and fermions
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Wess, Zumino

⇒ gauge theory contains gravity: Supergravity
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� commutator gives general 

coordinate transformations
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To a main tool in superstring theory

� Philosophy of the 70’s: a symmetry should 
be gauged

� Now supergravity is not seen as a 
fundamental theory, but as a basic tool in 
applications of superstring theory.applications of superstring theory.



Present day supergravity

� The AdS/CFT developped to models for quark-gluon 
plasma and non-perturbative QCD in general based on 
duality with supergravity solutions

� Phenomenological models based on  compactifications 
on Calabi-Yau

� Since 2000: many cosmological models using CMB:

- models use supergravity limit of string theory

→ often string theory-inspired supergravity. 

(but not all sugra theories are presently related to a string 
theory)

� Supergravity has also e.g. black holes, cosmic string 
solutions, domain walls, Randall-Sundrum scenarios, …



1. Scalar fields and symmetries: 

1.1 Poincaré group



1.2 Other symmetries and 

currents



2. The Dirac field



3. Clifford algebras and spinors

� Determines the properties of 

- the spinors in the theory

- the supersymmetry algebra

� We should know� We should know

- how large are the smallest spinors in each 
dimension

- what are the reality conditions

- which bispinors are (anti)symmetric 
(can occur in superalgebra)



3.1 The Clifford algebra in 

general dimension



3.2 Supersymmetry and 

symmetry of bi-spinors (intro)
� E.g. a supersymmetry on a scalar is a symmetry 

transformation depending on a spinor ε: 

� For the algebra we should obtain a GCT� For the algebra we should obtain a GCT

� Then the GCT parameter 
should be antisymmetric in the spinor parameters

Thus, to see what is possible, we have to know the 

symmetry properties of bi-spinors

ξξξξµµµµ



3.2 Spinors in general dimension

Majorana conjugate

� with anticommuting

spinors

Since symmetries of spinor bilinears are important for

supersymmetry, we use 

the Majorana conjugate to define ¸.



10
=11



Spinor indices

NW-SE

convention



Reality and charge conjugation

Complex conjugation can be replaced by charge 

conjugation, an operation that acts as complex conjugation 

on scalars, and has a simple action on fermion bilinears. 

For example, it preserves the order of spinor factors.



3.3 Majorana spinors

� A priori a spinor ψ has 2Int[D/2] (complex) components

� Using e.g. ‘left’ projection PL = (1+γ*)/2 

‘Weyl spinors’ PL ψ= ψ                if D is even (otherwise trivial)

� In some dimensions (and signature) there are reality conditions 

ψ =ψC = B−1 ψ*

see e.g.: AVP: ‘Tools for supersymmetry’, hep-th/ 9910030

ψ =ψC = B−1 ψ*

consistent with Lorentz algebra: ‘Majorana spinors’

� consistency requires t1 = -1.



Other types of spinors

� If t_1=1: Majorana condition not consistent

� Define other reality condition with even number of spinors:

� ‘Symplectic Majorana spinors’

� In some dimensions Weyl and Majorana can be combined, e.g. 

reality condition for Weyl spinors: ‘Majorana-Weyl spinors’



� Dependent on signature. 

Here: Minkowski

Dim Spinor min.# comp

2 MW 1

3 M 2

4 M 4

5 S 8

Possibilities  for susy depend on the

properties of irreducible spinors

in each dimension

Here: Minkowski

� M: Majorana

MW: Majorana-Weyl

S: Symplectic

SW: Symplectic-Weyl

5 S 8

6 SW 8

7 S 16

8 M 16

9 M 16

10 MW 16

11 M 32



Majorana OR Weyl fields in D=4

� Any  field theory of a Majorana spinor field ª
can be rewritten in terms of a Weyl field PLª and 

its complex conjugate.

� Conversely, any theory involving the  chiral field � Conversely, any theory involving the  chiral field 

Â=PLÂ and its conjugate ÂC=PRÂC can be 

rephrased as a Majorana equation if one defines 

the Majorana field ª =PLÂ +PRÂ C.

� Supersymmetry theories in D=4 are formulated 

in both descriptions in the physics literature.



4. The Maxwell and Yang-Mills Gauge 

Fields

4.1 Abelian



4.2. Electromagnetic duality

coupling constants or functions of scalars

Vector field strengths are in 2m – symplectic vectors

For consistency: 

should be symmetric

Invariance under Gl(2m,R)



4.3 Non-abelian gauge symmetry

� Simplest: act by matrices and

� Gauge fields for any generator

� Curvatures

Are the field strengths F 

� Gauge transformations commutators



5. The free Rarita-Schwinger field



Degrees of freedom

• on-shell degrees of freedom : number of helicity states

• off-shell degrees of freedom : 

number of field components − gauge transformations.

SO(D-1) SO(D-2)



Rarita-Schwinger, more details



On-shell Degrees of freedom 

by initial conditions

� On-shell= nr. of helicity states

� count number of initial conditions, divide by 2.

� E.g. scalar: field equation ∂¹∂
¹Á =0.� E.g. scalar: field equation ∂¹∂ Á =0.

Initial conditions Á(t=0,xi) and ∂0Á (t=0,xi)

� Dirac: first order: determines time derivatives: 

4 initial conditions: 2 dof on shell

� PS: ∂i∂iÁ =0 gives Á=0, since we consider 

∂i∂i=k2.



On-shell Degrees of freedom 

massless Rarita-Schwinger



6. N=1 Global supersymmetry in D=4

� Classical algebra



6.2. The chiral multiplet

� Transformation under SUSY

� Algebra

� Simplest action

� Potential term



The algebra

• A transformation is a parameter times a generator

• Calculating a commutator• Calculating a commutator bosonic 



6.3. Susy gauge thoeries

� Gauge multiplet (in WZ gauge)



Susy gauge theories



6.4 Extended supersymmetry



Spin content of representations of 

supersymmetry with maximal spin smax � 2.



7. Differential geometry

7.1 Scalars, vectors, tensors



7.2 The algebra and calculus of 

differential forms



7.3 The metric and frame field 

on a manifold



7.4 Hodge duality of forms



7.5 p-form gauge fields

� they are all gauge fields

� Degrees of freedom: 
off-shell: as antisymmetric tensor in SO(D-1)

(massive representation)

on-shell:  as antisymmetric tensor in SO(D-2)

(massless representation)

e.g. 2-index antisymm. tensor D=4:

• off-shell: SO(3): (3�2)/2=3 components: as vector

• on shell: SO(2):          1 component: as scalar



Dualities

Satisfies Bianchi identity

� n- tensor leads to (n+1)-field strength

And usually a field equation

� dual- field strength is (D-n-1)

� Is field strength of D-n-2 tensor

� dual- field strength is (D-n-1)

Field equation becomes Bianchi

in 4 dim: (n=2) Antisymmetric tensor $ scalar (n=0)

(n=1) vector (electric) $ vector (magnetic)



Dualities

� n-tensor dual to (d-n-2) -tensor

in 4 dim: (n=2) Antisymmetric tensor $ scalar (n=0)

(n=1) vector (electric) $ vector (magnetic)

� Electric – magnetic dualities in 4 Electric – magnetic dualities in 4 

dimensions play important role.



7.6 Connections and covariant 

derivatives



Torsion



7.7 Curvature tensor



7.8 The nonlinear ¾-model

M
spacetime

φ i(x)

gµν(x)
guv(φ)φi(x) and gµν(x)

are variables in the

supergravity action

φ i

xµ

φ i(x)

induced metric gij(φ)(∂µφ i)(∂νφ j)|φ=φ(x)

appears in action 

gij(φ) is part of 

the definition 

of the model



Symmetries of target space



8. The first and second order 

formulations of general relativity
8.1 Second order formalism for gravity 

and bosonic matter



8.2 Second order formalism for 

gravity and fermions



8.3 The first order formalism for 

gravity and fermions



9. N=1 pure supergravity in 4 

dimensions

� Local ²

� N=1 supergravity in D=4 only frame field and gravitino.

� We need in general a specific type of spinor. 

Here Majorana.Here Majorana.

� First part of calculation is universal.

� The approach below is most easily extended to 

N>2, D=4 and to higher dimension, 

while the superconformal approach is better suited to the 

derivation and understanding of matter couplings.



9.1 The universal part of supergravity



The universal part of supergravity:  

susy invariance

Use Bianchi and symmetry of Ricci tensor, and everything cancels. 

Notice that the calculation involves an intimate mix of the key properties of

Riemannian geometry and Dirac algebra!



9.2 Supergravity in the 

first order formalism
� Beyond linear order it is complicated. Look for simplifications.

� First order formalism. ! independent.

� We will obtain a physical equivalent second order action, since we 

find torsion! 

Thus different!Thus different!



9.3 The 1.5 order formalism



The 1.5 order formalism

Second term vanishes !

± ! can be neglected in the variation of the action

if ! takes the value ! (e,Ã) determined by its field equation.

Procedure:Procedure:

1. Use the first order form of the action  S[e,!,Ã] and the

transformation rules ± e, ±Ã with connection ! unspecified.

2. Ignore the connection variation and calculate

3. Substitute ! (e,Ã) in the result, which must vanish for a

consistent supergravity theory.



9.4 Local supersymmetry of N=1, 

D=4 supergravity



9.5 The algebra of local 

supersymmetry

This is a covariant general coordinate transformation.



The algebra of local 

supersymmetry, II

� On Ã¹: more complicated. Fierzing. 

Only modulo equations of motion. 

‘closes only on-shell’. ‘on-shell multiplet’: see 

2+2 dof, while off-shell 6+12 dof.2+2 dof, while off-shell 6+12 dof.

� ‘off-shell multiplet’: adding auxiliary fields. 

Works for N = 1, D=4. Not general.

� Important  for the coupling of chiral and gauge 

multiplets to supergravity. 

We will obtain a set of auxiliary fields for N = 1, 

D=4 supergravity later.



10. D=11 supergravity

� Extensions after N = 1, D=4:

- couple to chiral and gauge multiplets

- extended susy

- higher dimensions

� E.g. D=10: low-energy limits of string theory

� In general complicated, but D=11 (largest one) 

is simple

� Reduces to N = 8, D=4



10.1 Dimensional reduction from D=11

� In fact: full dimensional reduction e.g. (D+1)-dim. fields 

on (MinkowskiD £ S1 ) gives Fourier modes, massive.

� Now only parts independent of extra dimensions. 

massless→massless. 

Is a consistent truncation on circles. (field equations of Is a consistent truncation on circles. (field equations of 

omitted fields are satisfied by truncation).

� D=11 is the maximal dimension: to show this we consider 

M11! M4 £ T7, and show that we get to N=8, D=4.

� Any higher dimension has larger spinors: 

cannot fit in N=8, D=4.

Hence would need spin 5/2. 

No consistent interactions known in Minkowski space.



D=11 theory, first ideas

� Putative D=11 theory: we expect that it contains 

graviton and gravitino.  

Start with ¡M,  M=0,…,10:   32£ 32 matrices

Gravitino is ªM ® a in which 

®=1,2,3,4 is a 4-dim. spinor index 

a=1…,8  is the index on which the 7-dim. gammas act:

8 gravitinos (¹ ® a) + 56 spin ½ (i ® a). 

All fermions of N=8 !



10.2 The field content of D=11supergravity

� We already know a lot. 

Graviton: ½D(D-3)=44. 

Gravitino: 128. 

Missing 84 bosonic

� We saw also p-forms with                components.� We saw also p-forms with                components.

� We need 3-form AMNP .  (Cremmer-Julia)

� Further check by reducing: 



10.3 Construction of the action 

and transformation rules
Ansatz

Initially torsion free. 

Graviton-gravitino system as our `universal‘ calculation.

Then check ± S/ Ã F∂ $. After integrations by parts, Bianchi identities 

and °-matrix algebra: a and b determined in terms of c:



Constructing the D=11 action



The Chern-Simons term



Final result



10.4 The algebra of D=11 supergravity



11. General gauge theory

� For matter-coupled theories we need more 

advanced methods.

� Sharpen knives and refine and extend concepts 

used before. used before. 

Formalize manipulations, covariant derivatives.

� Will see how postulated supergravity 

transformations are determined by Poincaré 

supersymmetry algebra.



11.1 Symmetries acting on fields

� Rigid symmetries

� Local symmetries (gauge symmetries)

� Symmetries of the action

There are also: Symmetries acting on parameters:

sigma model symmetries, e.g. changing Kähler potential

Symmetries of the action

� Symmetries of field equations

� Symmetries of solutions



Symmetries 

� In this chapter: symmetries that leave action 

invariant.

� Continuous, infinitesimal: Lie algebra.

� Extend: structure functions.

� General treatment: 

spacetime, internal symmetries and susy.



11.1.1 Global symmetries



for the Poincaré group



for susy



The nonlinear ¾-model and 

Killing symmetries.



11.1.2. Local symmetries and gauge fields

� Gauge theory

Theories of gravity: Distinguish between coordinate indices ¹,º,½,… and local frame 

indices a,b,c….

We now use M[ab] and Pa to denote the generators of local Lorentz transformations and 

translations. There are some subtleties for local translations. 

Good and bad. 1) Apply to susy on e¹
a. Gives ansatz from before.

2) Puzzling: ±P Ã¹® =0.  (Also for other fields).
Need to modify the present setup before we can apply it to gravitational theories.



11.1.3. Modified symmetry algebras: 
soft algebra

� When extra gauge symmetries, gauged by the vector 

multiplets, the derivatives become covariant

Not mathematical Lie algebra

The algebra is ‘soft’: 

structure constants become structure functions. 

Modified Jacobi identities

For a solution: become again constants. 

Leads to e.g. AdS or central charges.



Zilch symmetries and open algebras

Therefore: transformations not uniquely determined.

First principles: Symmetry: S,i±(²)Á i=0 

Thus: S,ij±(²1)Á i±(²2)Áj+S,i± (²2)±(²1)Á i=0. ,ij 1 2 ,i 2 1

Taking the commutator, the first term vanishes by symmetry, 

and the second term says that the commutator defines a symmetry.

But may include Zilch symmetries:

‘Closed on-shell’ or ‘open algebra’

If basis without second term: 

‘closed off-shell’, or ‘closed algebra'.



11.2 Covariant quantities

� Terminology: gauge fields ↔matter fields. 

� For the latter

do not involve derivatives of the gauge parameters.

A covariant quantity is a local function that transforms

under all local symmetries with no derivatives of a under all local symmetries with no derivatives of a 

transformation parameter.

Note for below: special care needed for local translations. 

Will be discussed afterwards.



Covariant derivatives and curvatures

is a covariant quantity.

Stronger: Gauge transformations and covariant derivatives 

commute on fields on which the algebra is off-shell closed.commute on fields on which the algebra is off-shell closed.

is a covariant quantity.



11.3 Gauged spacetime translations



11.3.1 Gauge transformations for the 

Poincaré group



11.3.2. Covariant derivatives and  

general coordinate transformations

There is a problem

1. Remove gct from the sum over all symmetries: 

all the others are called ‘standard gauge transformations’.

2. We will always impose the constraint R¹º(P
a)=0

3. We replace translations with 

‘covariant coordinate transformations’ 



11.3.3 Covariant derivatives and 

curvatures in a gravity theory

� Some gauge fields have extra (non-gauge) terms

� E.g.

� Covariant curvature  

� The covariant quantities in gravity have flat indices:

� Gauge fields do not appear naked in covariant quantities: 

either in covariant derivative or in curvature.



12. Survey of supergravities



12.1 Minimal and extended 

superalgebras

� Minimal algebra

� Extension according to reality and Weyl 

D=5 (S)

� Extension according to reality and Weyl 

properties, e.g. D=4 (M)



Central charges

Central charges: other symmetries in {Q,Q}:

Haag-Lopuszanski-Sohnius, 1975

D=11: 

e.g. D=4, 

N=2: 

•The algebra gives limits on solutions. •The algebra gives limits on solutions. 

•The left-hand side can be written as QQy ,hence positive !

•Without central charges: 

solution with preserved supersymmetry, i.e. Q|soln> =0 

! mass zero. 

•With central charges: limit, typically Z2� M2. 

For preserved supersymmetry: bound saturated

BPS bound

BPS states



12.2 The R-symmetry group

� Supersymmetries may rotate under an 

automorphism group. E.g. for 4 dimensions:

� related by charge conjugation: 

� Jacobi identities [TTQ] : U forms a 

representation of T-algebra

� Jacobi identities [TQQ] :

� related by charge conjugation: 

→  forms U(N) group



R-symmetry groups

� Majorana spinors in odd dimensions: 

SO(N) (D=3,9)

� Majorana spinors in even dimensions: 

U(N) (D=4,8)

group that rotates susys:

U(N) (D=4,8)

� Majorana-Weyl spinors:  

SO(NL) � SO(NR) (D=2,10)

� Symplectic spinors: 

USp(N) (D=5,7)

� Symplectic Majorana-Weyl spinors: 

USp(NL) � USp(NR) (D=6)



12.3 Multiplets
� There is an argument that 

# bosonic d.o.f. = # fermionic d.o.f.,

based on {Q,Q}=P (invertible)

Q

� Should be valid for on-shell multiplets if eqs. of 

motion are satisfied:        e.g. z : 2,  χ : 2 ) 2+2

� for off-shell multiplets counting all components:

e.g. z : 2, χ : 4,  h : 2 ) 4+4



12.4 Supergravity theories: 

towards a catalogue

� basic theories and kinetic terms

� deformations and gauged supergravities



The map: dimensions and 

# of supersymmetries

d susy 32 24 20 16 12 8 4

11 M M

10 MW IIA IIB I

9 M N=2 N=1

8 M N=2 N=1

Strathdee,1987

8 M N=2 N=1

7 S N=4 N=2

6 SW (2,2) (2,1) (1,1) (2,0) (1,0)

5 S N=8 N=6 N=4 N=2

4 M N=8 N=6 N=5 N=4 N=3 N=2 N=1

SUGRA SUGRA/SUSY SUGRA SUGRA/SUSY

vector multiplets
vector multiplets +

multiplets up to spin 1/2tensor multiplet



Remarks

� 32 supersymmetries is maximal number for 

fermionic generators that square to translations. 

There may be others (e.g. special susy in the 

superconformal algebra).superconformal algebra).

� (4,0), (3,1) or (3,0) in 6 dimensions do not have 

a multiplet with a graviton

� Tensor is dual to vector in 5 dimensions, but 

non-Abelian theories can be different.

� N=3 susy  ´ N=4 susy     but not for sugra



Theories with 32 supersymmetries

� all in one multiplet, only on-shell known. 

Obtainable from d=11 (except IIB in d=10):  

fields in SO(9) reps: (44+84)+128

•E.g. :reduction to d=4:

spin #

2 1

3/2 8

1 28

1/2 56

0 70

•E.g. :reduction to d=4:



Theories with 16 supercharges

� Rigid supersymmetry is possible:

- vector multiplets: Abelian or non-Abelian

- tensor multiplets for (2,0) in D=6

� Supergravity theories� Supergravity theories

- with or without matter (vector, tensor) multiplets

- At the end the vectors in supergravity and in 
vector multiplets mix.

� Model fixed by giving: 

- the number of multiplets 

- the gauge group.



Theories with 8 or 4 supercharges

� Theories are not any more determined by a number 
of discrete choices, 
but by arbitrary functions. 

� N=1 supergravity consists of : 

- pure supergravity: spin 2 + spin 3/2   (“gravitino”)

- gauge multiplets: spin 1 + spin ½ (“gaugino”)- gauge multiplets: spin 1 + spin ½ (“gaugino”)
vectors gauge an arbitrary gauge group  

- chiral multiplets: complex spin 0 + spin ½
in representation of gauge group

� E.g. chiral multiplets N=1, D=4

- arbitrary function K(z,z*) for kinetic terms

- potential determined by superpotential W(z)



Basic supergravities and deformations
� Basic supergravities: 

have only gauged supersymmetry and general coordinate 
transformations (and U(1)’s of vector fields). 
- No potential for the scalars. 

- Only Minkowski vacua.

� In any entry of the table there are ‘deformations’: � In any entry of the table there are ‘deformations’: 
without changing the kinetic terms of the fields, the 
couplings are changed. 
- Many deformations are ‘gauged supergravities’: 

gauging of a YM group,  introducing a potential.

- Produced by fluxes on branes 

- There are also other deformations 
(e.g. massive deformations, superpotential)



Deformations

� A basic supergravity theory can have different gaugings. 

E.g. N=8 :

- Cremmer-Julia: pure N=8, the 28vectors are in U(1)28. 

There is no potential. This is ‘ungauged supergravity’.

- de Wit-Nicolai: vectors gauge SO(8). - de Wit-Nicolai: vectors gauge SO(8). 

This generates a potential: ‘gauged supergravity’.

- later other possibilities SO(p,q,r) gaugings, …

� What are the most general possibilities ? 



Gauge symmetries: terminology
� Global ungauged susy: 

super-Poincaré group non gauged.

� Gauged supersymmetry: 

vector fields in matter multiplets gauge a Yang-Mills group. 

gauge group commutes with supersymmetry, but 

appears in commutator of 2 susys (soft algebra)appears in commutator of 2 susys (soft algebra)

� Supergravity ‘non-gauged’: 

gauged super-Poincaré group. 

No other gauged symmetries.

� ‘Gauged supergravity’:

vector fields gauge a Yang-Mills group. 

gauge group does notnot commute with supersymmetries 

(act partly as ‘R-symmetries’) 

appears in commutator of 2 susys (soft algebra)



Gauge group
� # generators = # vectors.

� Dropping trivial U(1) of Abelian vectors that do not act 
on other fields: 

# generators � # vectors

� This includes as well vectors in supergravity multiplet 
and those in vector multiplets (cannot be distinguished and those in vector multiplets (cannot be distinguished 
in general)

� The gauge group is arbitrary, but to have positive 
kinetic terms gives restrictions on possible non-
compact gauge groups.

� Gauge symmetries are part of the isometries of the 
scalar manifold. 
One has to identify: which part of the isometry group is 
gauged. This is done by the embedding tensor



Embedding tensor formalism

� The gauge group is a subgroup of the isometry group G, 

defined by an embedding tensor.   

all the rigid symmetries

determines which symmetries are gauged, and how: 

de Wit, Samtleben and Trigiante, 0507289

determines which symmetries are gauged, and how: 

e.g. also the coupling constants.

There are several constraints on the tensor.

Nicolai, Samtleben and Trigiante, 0010076

� More research is necessary to know all supergravities 
(even restricting to at most two spacetime derivatives 
in Lagrangian terms and Minkowski signature, …)

Cordaro, Frè, Gualtieri,Termonia and Trigiante, 9804056



12.5 General characteristics of an 

action



A full 

action



Structure of the action (D=4)

� (D=4) with fields of spin 2, 1, 0, 3/2, 1/2


