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Introduction

A spinfoam model is a discretised functional integral usually
constructed using:

A triangulation of the spacetime manifold (‘foam’)
Local variables (‘spins’)
Local amplitudes for the simplexes of the triangulation

Main problem: how do spinfoam models relate to low energy
physics?

Key step: study the asymptotics (semi-classical limit) of the
amplitude for the 4-simplexes

Talk based on joined work with JW Barrett, RJ Dowdall, H
Gomes, F Hellmann, and R Pereira

Winston J. Fairbairn Asymptotic analysis of 4d spinfoam models



Outline
4-simplex amplitudes for SU(2) BF and QG

Asymptotic formulae
Proof of the asymptotic results (Lorentzian QG)

1 4-simplex amplitudes for SU(2) BF and QG

2 Asymptotic formulae

3 Proof of the asymptotic results (Lorentzian QG)

Winston J. Fairbairn Asymptotic analysis of 4d spinfoam models



Outline
4-simplex amplitudes for SU(2) BF and QG

Asymptotic formulae
Proof of the asymptotic results (Lorentzian QG)

Boundary state space for the Ooguri and EPRL models

Let σ be a 4-simplex and consider the Lie group SU(2)

Consider the assignments

k : triangles→ Irrep(SU(2)) ∼= {k , k ∈ N/2}

One can then associate to each tetrahedron a state

Ψ ∈ Htet = InvSU(2)(k1 ⊗ ...⊗ k4)

The state space for the boundary of σ yields

H∂σ =
⊗

tet

Htet,

The amplitude for a 4-simplex σ is given by a map

Aσ : H∂σ → C
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Geometry of the boundary: coherent states

Space
⊕

k Htet: quantum tetrahedron [Barbieri - 98; Baez, Barrett - 99]

Parametrisation of Htet: coherent states

A coherent state for the direction n and spin k is a unit vector
ξ in k defined up to a phase and satisfying (J · n) ξ = ik ξ

Coherent tetrahedron [Livine, Speziale - 07]

Ψ =

∫
SU(2)

dX X ξ1 ⊗ ...⊗ X ξ4 ∈ Htet

Coherent triangulated 3-manifold described by a state:

Ψ(k ,n) =
⊗

tet

Ψ,

together with a canonical choice of phase (Regge-like)
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Amplitude for the Ooguri model [Ooguri - 92; Baez - 99; Livine, Speziale - 07]

Ingredients:

SU(2) anti-linear structure J : C2 → C2; (z0, z1) 7→ (−z̄1, z̄0)
Hermitian inner product 〈, 〉 on C2

If a = 1, ..., 5 labels the five tetrahedra of ∂σ, the couple ab
labels the triangle shared by tetrahedra a and b

Let Ψ(kab,nab) be a coherent state for ∂σ

The amplitude Aσ(Ψ) ∈ C is given by

15j(kab,nab) =

∫
SU(2)5

∏
a

dXa

∏
a<b

〈Jξab,X−1
a Xb ξba〉2kab ,

where ξ ∈ C2 is a coherent state in the fundamental
representation
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Amplitude for the Euclidean EPRL model [Engle, Livine, Pereira, Rovelli - 08]

QG with Immirzi γ 6= 0

Model based on G = SU(2)× SU(2), Irrep(G ) = {(j+, j−)}
Idea: the boundary representation k is mapped to the highest
or lowest diagonal SU(2) subgroup factor of (j+, j−)

φ : k →
(

1

2
(1 + γ)k ,

1

2
|1− γ|k

)
⊂ Irrep(G )

In the γ < 1 case, for a boundary state Ψ(kab,nab):

Aσ(kab,nab) =

∫
G5

∏
a

dX+
a dX−a

∏
a<b

〈Jξab, (X+
a )−1X+

b ξba〉2j+ab

×〈Jξab, (X−a )−1X−b ξba〉2j−ab

Rem: Aσ is an ‘unbalanced’ square of the 15j (γ < 1)

Winston J. Fairbairn Asymptotic analysis of 4d spinfoam models



Outline
4-simplex amplitudes for SU(2) BF and QG

Asymptotic formulae
Proof of the asymptotic results (Lorentzian QG)

Amplitude for the Lorentzian EPRL model [Engle, Livine, Pereira, Rovelli - 08]

Model based on G = SL(2,C),
Irrep(G ) = {(n, p), n ∈ Z/2, p ∈ R}
Idea: the boundary representation k is identified with the
lowest SU(2) subgroup factor of the (n, p) representation

φ : k → (k , γk) ⊂ Irrep(G )

For a boundary state Ψ(kab,nab):

Aσ(kab,nab) =

∫
G5

∏
a

dXa δ(X5)
∏
a<b

Pab,
where

Pab = cab

∫
CP1

Ωz 〈X †a z ,X †a z〉−1−ipab−kab〈X †a z , ξab〉2kab

×〈X †bz ,X †bz〉−1+ipab−kab〈Jξba,X
†
bz〉2kab ,

with z in C2 and Ωz the standard two-form on C2 − {0}
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Asymptotic results

Assumption: the boundary data is Regge-like and the phase of
the boundary state is the canonical phase

For large spins k :

If boundary data is that of an Euclidean 4-simplex σE :
Ooguri : Aσ ∼ ae iSE + be−iSE

Euclidean EPRL : Aσ ∼ c cos γSE + ae iSE + be−iSE

Lorentzian EPRL : Aσ ∼ ae iSE + be−iSE

If boundary data is that of a Lorentzian 4-simplex σL:
Ooguri : Aσ ∼ 0
Euclidean EPRL : Aσ ∼ 0
Lorentzian EPRL : Aσ ∼ ce iγSL + c ′e−iγSL

The Regge action

S =
∑
a<b

kabΘab, Θab dihedral angle,

is noted SE (resp. SL) for a simplex σE (resp. σL)
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Stationary phase framework

The 4-simplex amplitude can be re-expressed as

Aσ =

∫
(SL(2,C))5

δ(X5)
∏
a

dXa

∫
(CP1)10

∏
a<b

Ωab eS

The action S for the asymptotic problem is given by

S [X , z ] =
∑
a<b

kab ln
〈Zab, ξab〉2〈Jξba,Zba〉2

〈Zab,Zab〉〈Zba,Zba〉
+ipab ln

〈Zba,Zba〉
〈Zab,Zab〉

,

where the notations Zab and Zba are used as a shorthand for

Zab = X †a zab and Zba = X †bzab, ∀a < b

The asymptotics of Aσ can therefore be studied using
(extended) stationary phase methods
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Critical points: I.

The asymptotic formula is dominated by the critical points of
S , i.e., stationary points for which Re S is a maximum

The real part of the action is negative

Re S =
∑
a<b

kab ln
|〈Zab, ξab〉|2|〈Jξba,Zba〉|2

〈Zab,Zab〉〈Zba,Zba〉
≤ 0

The maximality condition Re S = 0 leads to one spinor
equation for each triangle ab, a < b,

(X †a )−1 ξab =
‖ Zba ‖
‖ Zab ‖

e iθab (X †b )−1J ξba, (1)

where θab is a phase, and ‖ Z ‖2= 〈Z ,Z 〉
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Critical points: II.

The other critical point equations are obtained by evaluating
the first variation of the action S w.r.t the variables (X , z) on
the motion (1)

For the spinor variables (z̄ab, zab), this leads to the equation

Xa ξab =
‖ Zab ‖
‖ Zba ‖

e iθabXb J ξba, (2)

and its complex conjugate for each triangle ab

For the SL(2,C) variables Xa, we obtain one equation for
each tetrahedron a ∑

b:b 6=a

kabnab = 0, (3)

where n ∈ R3 is the unit vector corresponding to the coherent
state ξ (i.e. 〈ξ, Jξ〉 = i

2n)
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Geometry of the critical points: null vectors

Idea : use the identification between spinors and null vectors
Let γ : R3,1 → H be the isomorphism between R3,1 and the
space of 2× 2 hermitian matrices H (det γ(x) = −η(x , x))
Call H+

0 the subset defined by

H+
0 = {h ∈ H | det h = 0, and Tr h > 0}

The isomorphism γ identifies the future null cone C+ with H+
0

Therefore, using

ζ : C2 → H+
0 , z 7→ ζ(z) = z ⊗ z†,

one can construct a map ι : C2 → C+ ⊂ R3,1

The map ι associates the two null vectors

ι(ξ) =
1

2
(1,n) and ι(Jξ) =

1

2
(1,−n)

to the coherent state ξ
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Geometry of the critical points: bivectors

To each ξab, one can associate the space-like bivector

bab = 2 ∗ ι(Jξab) ∧ ι(ξab) = ∗
[

0 nab

−nab 0

]
,

where the star ∗ is the Hodge operator on Λ2(R3,1)

Construct ten space-like bivectors by rotating the bab’s :

Bab = kab X̂a ⊗ X̂a bab

The critical point equations (1), (2), (3) reduce to

Bab = −Bba and
∑

b:b 6=a

Bab = 0

Bivectors constructed as such and satisfying these equations
(almost) determine a geometric 4-simplex [Barrett, Crane - 98, 00]
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The Regge action

On all critical points, the action S yields

S = i
∑
a<b

pab ln
‖ Zba ‖2

‖ Zab ‖2
+ 2kab θab

The dihedral angle associated to the triangle ab is defined as

cosh Θab := |Na · Nb| = cosh rab, erab =
‖ Zba ‖2

‖ Zab ‖2

where Na = XaX
†
a

The angle θab vanishes with the canonical phase choice

Thus, the action yields

S = iγ
∑
a<b

kab Θab = iγSRegge

Second term in asymptotic formula: parity related solution

Winston J. Fairbairn Asymptotic analysis of 4d spinfoam models



Outline
4-simplex amplitudes for SU(2) BF and QG

Asymptotic formulae
Proof of the asymptotic results (Lorentzian QG)

Conclusion

We have analysed the asymptotic properties of the Ooguri and
EPRL models, in both Euclidean and Lorentzian signatures

All 4-simplex amplitudes are asymptotic to functions of the
Regge action

Unexpected result: this is also the case for BF theory

We need to go beyond one simplex and look at the
asymptotics of the whole state sums
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