#### Asymptotic analysis of 4d spinfoam models

#### Winston J. Fairbairn

School of Mathematical Sciences Nottingham University



Corfu - September, 14th 2009

< A >

4 3 6 4 3

## Introduction

- A spinfoam model is a discretised functional integral usually constructed using:
  - A triangulation of the spacetime manifold ('foam')
  - Local variables ('spins')
  - Local amplitudes for the simplexes of the triangulation
- Main problem: how do spinfoam models relate to low energy physics?
- Key step: study the asymptotics (semi-classical limit) of the amplitude for the 4-simplexes
- Talk based on joined work with JW Barrett, RJ Dowdall, H Gomes, F Hellmann, and R Pereira

- 4 同 6 4 日 6 4 日 6

Outline 4-simplex amplitudes for SU(2) BF and QG Asymptotic formulae

Proof of the asymptotic results (Lorentzian QG)

#### (1) 4-simplex amplitudes for SU(2) BF and QG

#### 2 Asymptotic formulae

Proof of the asymptotic results (Lorentzian QG)

伺 ト イ ヨ ト イ ヨ ト

## Boundary state space for the Ooguri and EPRL models

- Let  $\sigma$  be a 4-simplex and consider the Lie group  ${
  m SU}(2)$
- Consider the assignments
  - k: triangles  $\rightarrow$  Irrep(SU(2))  $\cong$  { $k, k \in \mathbb{N}/2$ }
- One can then associate to each tetrahedron a state

$$\Psi \in \mathcal{H}_{tet} = \mathrm{Inv}_{\mathrm{SU}(2)}(k_1 \otimes ... \otimes k_4)$$

• The state space for the boundary of  $\sigma$  yields

$$\mathcal{H}_{\partial\sigma} = \bigotimes_{\mathrm{tet}} \mathcal{H}_{\mathrm{tet}},$$

• The amplitude for a 4-simplex  $\sigma$  is given by a map

$$A_{\sigma}:\mathcal{H}_{\partial\sigma}\to\mathbb{C}$$

### Geometry of the boundary: coherent states

- Space  $\bigoplus_k \mathcal{H}_{ ext{tet}}$ : quantum tetrahedron [Barbieri 98; Baez, Barrett 99]
- Parametrisation of  $\mathcal{H}_{tet}$ : coherent states
- A coherent state for the direction **n** and spin k is a unit vector  $\xi$  in k defined up to a phase and satisfying  $(\mathbf{J} \cdot \mathbf{n}) \xi = ik \xi$
- Coherent tetrahedron [Livine, Speziale 07]

$$\Psi = \int_{\mathrm{SU}(2)} dX \, X \, \xi_1 \, \otimes ... \otimes X \, \xi_4 \quad \in \mathcal{H}_{\mathrm{tet}}$$



• Coherent triangulated 3-manifold described by a state:

$$\Psi(k,\mathbf{n}) = \bigotimes_{\mathrm{tet}} \Psi,$$

together with a canonical choice of phase (Regge-like)

Amplitude for the Ooguri model [Ooguri - 92; Baez - 99; Livine, Speziale - 07]

- Ingredients:
  - SU(2) anti-linear structure  $J : \mathbb{C}^2 \to \mathbb{C}^2$ ;  $(z_0, z_1) \mapsto (-\bar{z_1}, \bar{z_0})$
  - $\bullet\,$  Hermitian inner product  $\langle,\rangle$  on  $\mathbb{C}^2$
- If a = 1,...,5 labels the five tetrahedra of ∂σ, the couple ab labels the triangle shared by tetrahedra a and b
- Let  $\Psi(k_{ab}, \mathbf{n}_{ab})$  be a coherent state for  $\partial \sigma$
- The amplitude  $A_\sigma(\Psi)\in\mathbb{C}$  is given by

$$15j(k_{ab},\mathbf{n}_{ab}) = \int_{\mathrm{SU}(2)^5} \prod_a dX_a \prod_{a < b} \langle J\xi_{ab}, X_a^{-1}X_b \xi_{ba} \rangle^{2k_{ab}},$$

where  $\xi \in \mathbb{C}^2$  is a coherent state in the fundamental representation

#### Amplitude for the Euclidean EPRL model [Engle, Livine, Pereira, Rovelli - 08]

- QG with Immirzi  $\gamma \neq \mathbf{0}$
- Model based on  $G = \mathrm{SU}(2) imes \mathrm{SU}(2)$ ,  $\mathsf{Irrep}(G) = \{(j_+, j_-)\}$
- Idea: the boundary representation k is mapped to the highest or lowest diagonal SU(2) subgroup factor of  $(j_+, j_-)$

$$\phi: k 
ightarrow \left(rac{1}{2}(1+\gamma)k, rac{1}{2}|1-\gamma|k
ight) \subset \mathsf{Irrep}({\mathcal G})$$

• In the  $\gamma < 1$  case, for a boundary state  $\Psi(k_{ab}, \mathbf{n}_{ab})$ :

$$A_{\sigma}(k_{ab}, \mathbf{n}_{ab}) = \int_{G^5} \prod_{a} dX_a^+ dX_a^- \prod_{a < b} \langle J\xi_{ab}, (X_a^+)^{-1} X_b^+ \xi_{ba} \rangle^{2j_{ab}^+} \\ \times \langle J\xi_{ab}, (X_a^-)^{-1} X_b^- \xi_{ba} \rangle^{2j_{ab}^-}$$

• Rem:  $A_\sigma$  is an 'unbalanced' square of the 15j ( $\gamma < 1$ )

Amplitude for the Lorentzian EPRL model [Engle, Livine, Pereira, Rovelli - 08]

- Model based on  $G = SL(2, \mathbb{C})$ , Irrep $(G) = \{(n, p), n \in \mathbb{Z}/2, p \in \mathbb{R}\}$
- Idea: the boundary representation k is identified with the lowest SU(2) subgroup factor of the (n, p) representation

$$\phi: \mathbf{k} \to (\mathbf{k}, \gamma \mathbf{k}) \subset \mathsf{Irrep}(\mathbf{G})$$

• For a boundary state  $\Psi(k_{ab}, \mathbf{n}_{ab})$ :

$$A_{\sigma}(k_{ab}, \mathbf{n}_{ab}) = \int_{G^{5}} \prod_{a} dX_{a} \,\delta(X_{5}) \prod_{a < b} P_{ab},$$
  
where  
$$P_{ab} = c_{ab} \int_{\mathbb{CP}^{1}} \Omega_{z} \langle X_{a}^{\dagger} z, X_{a}^{\dagger} z \rangle^{-1 - ip_{ab} - k_{ab}} \langle X_{a}^{\dagger} z, \xi_{ab} \rangle^{2k_{ab}}$$
$$\times \langle X_{b}^{\dagger} z, X_{b}^{\dagger} z \rangle^{-1 + ip_{ab} - k_{ab}} \langle J\xi_{ba}, X_{b}^{\dagger} z \rangle^{2k_{ab}},$$
  
with a in  $\mathbb{C}^{2}$  and  $\Omega_{a}$  the standard two form on  $\mathbb{C}^{2}$ . (0)

with z in  $\mathbb{C}^2$  and  $\Omega_z$  the standard two-form on  $\mathbb{C}^2 - \{0\}$ 

# Asymptotic results

- Assumption: the boundary data is Regge-like and the phase of the boundary state is the canonical phase
- For large spins k:
  - If boundary data is that of an Euclidean 4-simplex  $\sigma_E$ :
    - Ooguri :  $A_{\sigma} \sim ae^{iS_E} + be^{-iS_E}$
    - Euclidean EPRL :  $A_{\sigma} \sim c \cos \gamma S_E + a e^{iS_E} + b e^{-iS_E}$
    - Lorentzian EPRL :  $A_{\sigma} \sim ae^{iS_E} + be^{-iS_E}$
  - If boundary data is that of a Lorentzian 4-simplex  $\sigma_L$ :
    - Ooguri :  $A_{\sigma} \sim 0$
    - Euclidean EPRL :  $A_{\sigma} \sim 0$
    - Lorentzian EPRL :  $A_{\sigma} \sim c e^{i \gamma S_L} + c' e^{-i \gamma S_L}$
- The Regge action

$$S = \sum_{a < b} k_{ab} \Theta_{ab}, \quad \Theta_{ab}$$
 dihedral angle,

is noted  $S_E$  (resp.  $S_L$ ) for a simplex  $\sigma_E$  (resp.  $\sigma_L$ )

### Stationary phase framework

• The 4-simplex amplitude can be re-expressed as

$$A_{\sigma} = \int_{(\mathrm{SL}(2,\mathbb{C}))^5} \delta(X_5) \prod_a dX_a \int_{(\mathbb{CP}^1)^{10}} \prod_{a < b} \Omega_{ab} e^{S}$$

• The action S for the asymptotic problem is given by

$$S[X,z] = \sum_{a < b} k_{ab} \ln \frac{\langle Z_{ab}, \xi_{ab} \rangle^2 \langle J\xi_{ba}, Z_{ba} \rangle^2}{\langle Z_{ab}, Z_{ab} \rangle \langle Z_{ba}, Z_{ba} \rangle} + i p_{ab} \ln \frac{\langle Z_{ba}, Z_{ba} \rangle}{\langle Z_{ab}, Z_{ab} \rangle},$$

where the notations  $Z_{ab}$  and  $Z_{ba}$  are used as a shorthand for

$$Z_{ab} = X_a^{\dagger} z_{ab}$$
 and  $Z_{ba} = X_b^{\dagger} z_{ab}, \quad \forall a < b$ 

 The asymptotics of A<sub>σ</sub> can therefore be studied using (extended) stationary phase methods

## Critical points: I.

- The asymptotic formula is dominated by the critical points of S, i.e., stationary points for which  $\operatorname{Re} S$  is a maximum
- The real part of the action is negative

$$\operatorname{Re} S = \sum_{a < b} k_{ab} \ln \frac{|\langle Z_{ab}, \xi_{ab} \rangle|^2 |\langle J \xi_{ba}, Z_{ba} \rangle|^2}{\langle Z_{ab}, Z_{ab} \rangle \langle Z_{ba}, Z_{ba} \rangle} \leq 0$$

• The maximality condition  $\operatorname{Re} S = 0$  leads to one spinor equation for each triangle *ab*, *a* < *b*,

$$(X_{a}^{\dagger})^{-1}\xi_{ab} = \frac{\|Z_{ba}\|}{\|Z_{ab}\|} e^{i\theta_{ab}} (X_{b}^{\dagger})^{-1} J\xi_{ba},$$
(1)

where  $\theta_{ab}$  is a phase, and  $\parallel Z \parallel^2 = \langle Z, Z \rangle$ 

## Critical points: II.

- The other critical point equations are obtained by evaluating the first variation of the action S w.r.t the variables (X, z) on the motion (1)
- For the spinor variables  $(\bar{z}_{ab}, z_{ab})$ , this leads to the equation

$$X_{a}\xi_{ab} = \frac{\|Z_{ab}\|}{\|Z_{ba}\|} e^{i\theta_{ab}} X_{b} J\xi_{ba},$$
(2)

and its complex conjugate for each triangle *ab* 

• For the SL(2, C) variables X<sub>a</sub>, we obtain one equation for each tetrahedron a

$$\sum_{b:b\neq a} k_{ab} \mathbf{n}_{ab} = 0, \tag{3}$$

where  $\mathbf{n} \in \mathbb{R}^3$  is the unit vector corresponding to the coherent state  $\xi$  (i.e.  $\langle \xi, \mathbf{J}\xi \rangle = \frac{i}{2}\mathbf{n}$ )

#### Geometry of the critical points: null vectors

- Idea : use the identification between spinors and null vectors
  - Let γ : ℝ<sup>3,1</sup> → ℍ be the isomorphism between ℝ<sup>3,1</sup> and the space of 2 × 2 hermitian matrices ℍ (det γ(x) = −η(x,x))
  - Call  $\mathbb{H}^+_0$  the subset defined by

$$\mathbb{H}_0^+ = \{h \in \mathbb{H} \mid \det h = 0, \text{ and } \operatorname{Tr} h > 0\}$$

The isomorphism  $\gamma$  identifies the future null cone  ${\cal C}^+$  with  $\mathbb{H}^+_0$   $\bullet$  Therefore, using

$$\zeta: \mathbb{C}^2 \to \mathbb{H}_0^+, \quad z \mapsto \zeta(z) = z \otimes z^\dagger,$$

one can construct a map  $\iota:\mathbb{C}^2\to \mathit{C}^+\subset\mathbb{R}^{3,1}$ 

• The map  $\iota$  associates the two null vectors

$$\iota(\xi)=rac{1}{2}(1,{\sf n})$$
 and  $\iota(J\xi)=rac{1}{2}(1,-{\sf n})$ 

to the coherent state  $\boldsymbol{\xi}$ 

#### Geometry of the critical points: bivectors

• To each  $\xi_{ab}$ , one can associate the space-like bivector

$$b_{ab} = 2 * \iota(J\xi_{ab}) \wedge \iota(\xi_{ab}) = * \begin{bmatrix} 0 & \mathbf{n}_{ab} \\ -\mathbf{n}_{ab} & 0 \end{bmatrix},$$

where the star  $\ast$  is the Hodge operator on  $\Lambda^2(\mathbb{R}^{3,1})$ 

• Construct ten space-like bivectors by rotating the b<sub>ab</sub>'s :

$$B_{ab} = k_{ab} \, \hat{X}_a \otimes \hat{X}_a \, b_{ab}$$

• The critical point equations (1), (2), (3) reduce to

$$B_{ab} = -B_{ba}$$
 and  $\sum_{b:b \neq a} B_{ab} = 0$ 

Bivectors constructed as such and satisfying these equations (almost) determine a geometric 4-simplex [Barrett, Crane - 98, 00]

# The Regge action

• On all critical points, the action S yields

$$S = i \sum_{a < b} p_{ab} \ln \frac{\|Z_{ba}\|^2}{\|Z_{ab}\|^2} + 2k_{ab} \theta_{ab}$$

• The dihedral angle associated to the triangle *ab* is defined as

$$\cosh \Theta_{ab} := |N_a \cdot N_b| = \cosh r_{ab}, \quad e^{r_{ab}} = \frac{\|Z_{ba}\|^2}{\|Z_{ab}\|^2}$$

where  $N_a = X_a X_a^{\dagger}$ 

- $\bullet\,$  The angle  $\theta_{ab}$  vanishes with the canonical phase choice
- Thus, the action yields

$$S = i\gamma \sum_{a < b} k_{ab} \, \Theta_{ab} = i\gamma S_{\text{Regge}}$$

• Second term in asymptotic formula: parity related solution

## Conclusion

- We have analysed the asymptotic properties of the Ooguri and EPRL models, in both Euclidean and Lorentzian signatures
- All 4-simplex amplitudes are asymptotic to functions of the Regge action
- Unexpected result: this is also the case for BF theory
- We need to go beyond one simplex and look at the asymptotics of the whole state sums