F-theory @ Korfu

Martijn Wijnholt Max Planck Institute (AEI)

Plan:

Brief recap of F-theory

Brief review of Grand Unified Models

Elliptic fibrations for F-theory SU(5) models

Matter curves

Yukawa couplings

Breaking the GUT group/DT splitting

Right-handed neutrinos

Proton decay

Quick review:

F-theory = non-perturbative (in g_s) description of IIb with 7-branes

Axio-dilaton
$$\tau = a + ie^{-\varphi}$$
 \implies "Elliptic fibration" $y^2 = x^3 + fx + g$
7-branes \implies Discriminant locus $\Delta \sim 4f^3 + 27g^2 = 0$
U(1) gauge fields \implies Zero modes of $C_3 \sim (B_{RR} - \tau B_{NS}) \wedge dz + c.c$

Non-abelian gauge symmetry \implies Singularities of elliptic fibration

 \Rightarrow Kodaira classification

$$\boldsymbol{M}_{10} = \boldsymbol{R}^{1,3} \times \boldsymbol{B}_3$$

Picture of discriminant locus (i.e. intersecting 7-branes) in B_3 , to set the notation.

Kodaira classification: $y^2 = x^3 + fx + g$

ord(f)	ord (g)	$ord(\Delta)$	fiber type	singularity type
≥ 0	≥ 0	0	smooth	_
0	0	n	In	An-1
≥ 1	1	2	II	-
1	≥ 2	3	III	Al
≥ 2	2	4	IV	A2
2	\geq 3	n + 6	I*n	Dn+4
≥ 2	3	n + 6	I*n	Dn+4
\geq 3	4	8	IV *	<i>E6</i>
3	\geq 5	9	III*	E7
4	5	10	H^*	E8

Note: exceptional groups!

7-branes intersect over "matter curves" $\implies 6d$ hyp

Fluxes on 7-branes

6d hypermultiplets

 $\Rightarrow \qquad \text{Hypers yield } 4d \text{ chiral fields}$

Net chiral
$$=\frac{1}{2\pi} \int_{\Sigma} F_1 - F_2$$

Brief Intro to Grand Unified Models.

One of the strongest hints for a new fundamental scale at 10¹⁶ GeV:

 \implies All three gauge forces seem to unify!

> Points to a unified gauge theory at the "GUT scale"

Many other hints (eg. neutrino masses, charge quantization, 3rd gen Yukawas, ...)

Quick review of Grand Unified group theory:

Ugly part in 4d models: breaking the GUT group. Other issues: unification with gravity, etc.

> This works more naturally if we have extra dimensions at the GUT scale

➤ "Kaluza-Klein" GUT.
Arises in string theory (M/F/Heterotic)

$$SU(5) \subset SO(10) \implies 16_m = 10 \oplus \overline{5}_m \oplus 1 \qquad 10_h = 5_u \oplus \overline{5}_d$$

F-theory GUT models

We focus on SU(5) GUTs. Pick a suitable B_3 , eg. $B_3 = CP^3$

Want five D7-branes wrapped on divisor z=0 in B_3 . Eg. $B_3 = CP^3$, then $z = \text{degree } 1 \implies \{z=0\} = CP^2$ $z = \text{degree } 2 \implies \{z=0\} = CP^1 x CP^1$

Elliptic fibration over B_3 with I_5 singularity along z=0.

$$y^2 = x^3 + fx + g$$

Kodaira classification says:

 $\Delta = 4f^3 + 27g^2 \sim z^5$, $f \sim z^0$, $g \sim z^0$, otherwise (almost) generic.

 \implies General expression is given by

$$y^{2} = x^{3} + b_{0}z^{5} + b_{2}xz^{3} + b_{3}yz^{2} + b_{4}x^{2}z + b_{5}xy$$

Here we used the "Tate form" -- can be rewritten in Weierstrass form if desired.

The general SU(5) model:

$$y^{2} = x^{3} + b_{0}z^{5} + b_{2}xz^{3} + b_{3}yz^{2} + b_{4}x^{2}z + b_{5}xy$$

(Note this locally looks like an E $_8$ ALE space \rightarrow E $_8$ Higgs bundle story)

Let's check this yields the expected form of the discriminant.

$$f \sim (b_5^2 + 4zb_4)^2 - 24(z^2b_5b_3 + 2z^3b_2)$$

$$g \sim -(b_5^2 + 4zb_4)^3 + 36(b_5^2 + 4zb_4)(z^2b_5b_3 + 2z^3b_2) - 216(z^2b_3^2 + 4z^5b_0)$$

$$\Delta \sim z^5 b_5^4 R + z^6 b_5^2 (...) + z^7 (...)$$

For later use, define $R = b_0 b_5^2 - b_2 b_3 b_5 + b_4 b_3^2$

Precisely as required by Kodaira: $\Delta \sim z^5$, $f \sim z^0$, $g \sim z^0$.

Five 7-branes wrapped on z=0 additional 7-branes.

The matter curves

Let's call $\{z=0\}$ the "SU(5) brane."

The SU(5) brane intersects additional "flavour" 7-branes over the matter curves.

What kind of hypermultiplets do we get on the matter curves?

Matter curves defined by $\{z = 0\} \cap \{\Delta' = 0\}$ $\Delta' = \frac{\Delta}{z^5}$

 \implies We find two matter curves: $\{z = R = 0\}$

 $\{z = b_5 = 0\}$

First consider $\{z = R = 0\}$

From earlier expressions, $\Delta \sim z^6$, $f \sim z^0$, $g \sim z^0$.

 \implies According to the Kodaira, this is type I_6 (i.e. an SU(6) ADE singularity).

$$Adj(SU(6)) = 35 = Adj(SU(5)) \oplus 5 \oplus \overline{5} \oplus 1 \qquad SU(6) = \left(\frac{SU(5) \mid 5}{\overline{5}}\right)$$

"off-diagonal" pieces give gauge representation of hypermultiplet.

So we get a hypermultiplet in the fundamental of SU(5) over this intersection.

 \implies Call this matter curve

$$\Sigma_5 = \{z = R = 0\}$$

Next consider $\{z = b_5 = 0\}$

From earlier expressions, $\Delta \sim z^7$, $f \sim z^2$, $g \sim z^3$.

 \implies According to the Kodaira, this is type I_1^* (i.e. an SO(10) ADE singularity).

 $Adj(SO(10)) = 45 = Adj(SU(5)) \oplus 10 \oplus 10 \oplus 1$

So we get a hypermultiplet in the anti-symmetric of SU(5) over this intersection.

Call this matter curve Σ

$$\Sigma_{10} = \{ z = b_5 = 0 \}$$

<u>Summary so far:</u> $M_{10} = R^{1,3} \times B_3$

It follows from the Kodaira classification that all SU(5) models look like this locally.

Charged matter appears `automatically.'

Fluxes: lots

Universal:
$$N = \frac{1}{2\pi} \int_{\Sigma_{10}} F = (\frac{1}{2} + n) (5c_1(S) + [\Sigma_{10}]) \cap_S [\Sigma_{10}]$$

Given this general picture, what can we say about:

Yukawas (top, down)

GUT breaking, doublet/triplet splitting

Neutrinos

Proton decay?

Yukawas in SU(5) models:

$$10_m \cdot 10_m \cdot 5_h \Longrightarrow$$
 up type $10_m \cdot \overline{5}_m \cdot \overline{5}_h \Longrightarrow$ down type

Wave function overlap:

$$\lambda_{ijk} = \int_{S} Tr(\varphi_i \psi_j \psi_k) \implies \text{Localized at intersections of } \Sigma_5 \text{ and } \Sigma_{10}.$$

$$\underline{Claim:} \quad \{b_4 = b_5 = 0\} \implies \text{up} \qquad y^2 = x^3 + b_0 z^5 + b_2 x z^3 + b_3 y z^2 + b_4 x^2 z + b_5 x y$$

$$\{b_3 = b_5 = 0\} \implies \text{down}$$

$$\underline{Case \{b_4 = b_5 = 0\}} \implies E_6 \text{ singularity} \implies \text{local configuration in } 8d E_6 \text{ gauge theory}$$

 λ_{ijk} inherited from $\int_{7-brane} Tr_{E_6}(\Psi A \Psi)$ E₆ broken to $SU(5) \ge U(1)_a \ge U(1)_b$

 $Ad(E_6) = 78 \supset 10_{1,1} \oplus 10_{-1,1} \oplus 5_{0,-2} \implies Tr(78^3) \to 10_{1,1} \cdot 10_{-1,1} \cdot 5_{0,2}$

Similarly { $b_5 = b_3 = 0$ } \implies SO(12) singularity \implies down type

GUT breaking.

Ideas:

4d mechanism	4d adjoints
xd mechanisms	<pre>{ U(1)_Y fluxes Discrete Wilson lines Abelian Higgs fields</pre>

$\underline{U(1)}_{Y}$ fluxes

From mass term $[A, \langle A_{V} \rangle]^{2}$, non-commuting gauge bosons get KK scale masses.

The commutant of $U(1)_{y}$ in SU(5) is the SM gauge group, $SU(3) \ge SU(2) \ge U(1)_{y}$.

$$\implies$$
 Turn on $F_y \neq 0$ on 7-brane

This breaks SU(5) to the Standard model.

No doublet/triplet splitting problem (no GUT group in 4d, hence no 4d colour triplet partner)

Small issue with coupling to RR axions (resolved)

$U(1)_{\rm Y}$ fluxes (continued)

Easy to use, but some small blemishes:

* universal piece of heavy threshold corrections pushes away from unification (non-universal pieces more variable)

* KK scale is lowered compared to GUT scale

 \implies Dim 5 proton decay must be forbidden

* SO(10) models have exotics

Alternative: internal discrete Wilson lines

(Work in progress, to appear)

* $\langle F_Y \rangle = 0$ but $\langle A_Y \rangle \neq 0$

* requires $\pi_1(S) \neq 1$ (where S is the cycle wrapped by the 7-brane)

* Harder to use, but 3 generation models can be constructed

Right handed (Majorana) neutrinos

Small neutrino masses naturally explained by see-saw mechanism:

$$LH_{u}N + mN^{2}$$
Large mass $m \implies$ Integrate out N

$$\implies \frac{1}{m}LH_{u}LH_{u} \qquad \text{``Weinberg operator''}$$

$$\implies M_{neutrino} \sim M_{weak}^{2} / m$$

Note: Dominant contribution from lightest modes

Lightest singlets with such couplings \implies complex structure moduli (b_i).

 $y^{2} = x^{3} + b_{0}z^{5} + b_{2}xz^{3} + b_{3}yz^{2} + b_{4}x^{2}z + b_{5}xy$

These moduli get masses due to fluxes (OK) or D3-instantons (probably not OK; but may depend on moduli stabilization scenario).

If couplings are absent, use heavier modes (eg. KK modes).

Proton decay

<u>Dim 4:</u> 10_m

$$0_m \cdot 5_m \cdot 5_m$$

Factorize matter curve:

$$R \sim (\alpha b_3 + \beta b_5)(\gamma b_3 + \delta b_5) = 0$$

$$\overline{5}_m \qquad \overline{5}_h$$

Higgs/matter propagate on different pieces of $\Sigma_5 \implies$ dangerous couplings absent

Extra U(1) symmetry? Eg. $U(1)_{B-L}$

<u>Dim 5:</u>

Proton decay (continued)

To forbid, consider further factorization:

Probably need these curves non-intersecting \rightarrow also no classical mu-term Alternatively, if M_{KK} large enough, consider these interesting possible signatures $p \rightarrow K^+ \overline{v}$

Dim 6: Slight enhancement of
$$p \to \pi^0 e_L^+$$
 $\mathcal{M} \sim -\alpha_{GUT} \operatorname{Log}(\alpha_{GUT}) \frac{J_{10}^{\mu} J_{10,\mu}}{M_{GUT}^2}$

<u>Mu-problem: similar</u> $5_{H_u} \cdot \overline{5}_{H_d} \cdot 1 \rightarrow H_u H_d S$ S= complex structure modulus

Tune complex structure moduli (fluxes?), put on different pieces of Σ_5 , instantons, or use U(1) symmetry.

Outlook on F-theory:

- * New arena for model building
- * Combines advantages of type IIb (localized branes) and heterotic (GUT structures)
- * GUT breaking is nicer than 4d models

→ Use fluxes or discrete Wilson lines

- * Fairly constrained \implies underlying E_8 structures
- * Variation of F-theory methods can also be applied to M-theory models on G₂
- * Still issues with SUSY breaking, strong CP, flavour, ...
- * As usual, much depends on finding a controlled model of moduli stabilization