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Prelude

• QCD: a central issue in the Standard Model (SM) 

• Weak interaction asymmetries: CP-violation under intensive study

• Test subtler properties of SM

• Hope to see signatures of Physics beyond SM

• Experiments (strange sector): CERN, FNAL, ...

• Experiments (bottom sector): CERN, DESY, FNAL, KEK, ...

• Experiments (charm sector): Frascati, FNAL, KEK

• Theory: Dortmund, Dubna, Lund, Montpelier, Munich, Rome, Taipei, Trieste, Valencia, ...

• Main difficulty: control of strong interaction effects at low energies (non-perturbative 

QCD) 



Flavour QCD basics



CP-violation in the Standard Model

• Arises through the interaction of charged matter (current) and gauge bosons:

W
+
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+
µ + W

−
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µ

Current:

J+
µ = Ū γL

µ VCKM D = (ū c̄ t̄) γL
µ





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




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



Interaction:

W+
µ Ūγ

µ
LVCKMD + W−

µ D̄γ
µ
LV

†
CKMU

Cabibbo-Kobayashi-Maskawa matrix

3 × 3

VCKM

, unitary matrix with 4 physical parameters

NB: CP-conservation (2 generations) implies VCKM ∈ R



The CKM matrix

• 2 X 2 matrix: Cabibbo sector

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





Vud ≈ Vcs = cos θC Vus ≈ −Vcd = sin θC

• 3rd column: Bottom sector

Vcb ≈ −Vts Vtb ≈ 1

• If Cabibbo matrix & Bottom column accurately known, we are done, PROVIDED 
the SM is the whole story

• Poorest accuracy is due to hadronic NP-effects



The Cabibbo sector

• No CP violation in the 2X2 submatrix

• Beta-decays:

• Kaon semileptonic decays

• QCD  low energy effects:  WME 

d
u

W_
K !!!!!!!!!!!!!!!!!!!!!

s u

D K

c s

p

d

c

Vud = 0.9740 ± 0.0005

Vus = λ = 0.2256 ± 0.0022

〈π|Jµ|K〉



The Unitarity Triangle

• Wolfenstein parametrization of VCKM (good to O(λ4))

• λ = sin(θC) ≈ 0.22

• Unitarity: [3RD row]✝ × [1st col] implies phaenomenologically useful relation:

VCKM =





1 −

λ
2

2
λ Aλ3(ρ − iη)

−λ 1 −

λ
2

2
Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1





VudV
∗

ub = Aλ3(ρ + iη)

VcdV
∗

cb = −Aλ
3

VtdV
∗

tb = Aλ3[1 − (ρ + iη)]

VudV
∗

ub + VcdV
∗

cb + VtdV
∗

tb = 0

In terms of  Wolfenstein parameters:

ρ = ρ(1 − λ2/2)

η = η(1 − λ2/2)
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•several processes to check UT

•“Gold plated” decay Bd →J/Ψ + Ks gives 
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ΔS=2 transitions: εK
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Lattice basics



Lattice themes

• discretization of spacetime and QCD length scales

• hadron masses and WME from the lattice

• lattice actions, fermion doubling

• renormalization & improvement

• heavy flavours on the lattice

• HQET, NRQCD



Lattice basics
• Regularize QCD by discretizing space-time: 

• hypercube with lattice spacing a (UV cutoff) ...

• ... and linear extension L (IR cutoff)

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• PI is now well-defined for bare theory and can be computed; we can do 
experimental QCD at finite UV cutoff 



Lattice basics
• Regularize QCD by discretizing space-time: 

• hypercube with lattice spacing a (UV cutoff) ...

• ... and linear extension L (IR cutoff)

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• PI is now well-defined for bare theory and can be computed; we can do 
experimental QCD at finite UV cutoff 

• scales (e.g. hadron masses) must satisfy

L -1 << mH << a -1

• must also ensure

ΛQCD << a -1

• [N.B. ΛQCD  ∼ 300 MeV ]



Practical difficulties
• suppose computers can tackle a ∼ 0.04 fm and L ∼ 2 fm; i.e. L/a ∼ 50 lattice sites

• we have O(504) degrees of freedom

• a -1 ∼ 5 GeV and L -1 ∼ 100 MeV

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• OK for strange and charm mesons

• scales (e.g. hadron masses) must satisfy

L -1 << mH << a -1

• must also ensure

ΛQCD << a -1

• [N.B. ΛQCD  ∼ 300 MeV ]



Practical difficulties
• present day computers can tackle a ∼ 0.04 fm and L ∼ 2 fm

• we have O(504) degrees of freedom

• a -1 ∼ 5 GeV and L -1 ∼ 100 MeV

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• “Goldstone” mesons mπ ∼150 MeV afflicted by finite volume effects

• scales (e.g. hadron masses) must satisfy

L -1 << mH << a -1

• compute in range ms/8 < mq < ms/2 and 
extrapolate to light quark values

• use functional form suggested by χPT in the 
extrapolation

• ensure mH L > 4



Practical difficulties
• present day computers can tackle a ∼ 0.04 fm and L ∼ 2 fm

• we have O(504) degrees of freedom

• a -1 ∼ 5 GeV and L -1 ∼ 100 MeV

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• heavy mesons mB ∼5 GeV afflicted by finite size effects

• scales (e.g. hadron masses) must satisfy

L -1 << mH << a -1

• compute in range mc < mq < 1.5 mc and 
extrapolate to bottom quark values

• using results suggested by HQET or NRQCD 
interpolate charm up to bottom region



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• the formalism is set up in Euclidean space-time; i.e.  i S   → - Slatt

• this ensures real & bounded exponential factor

• correlation function can be computed numerically (Monte Carlo weighted averages)

• use exp[- Slatt ] as probability weight to generate a configuration ensemble

• compute observable on this ensemble

• process characterized by statistical error; this is the least source of worry

• “easily” controlled by increasing  configuration ensemble Nconf (NB: ε ∼ 1 / √ Nconf )



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• the formalism is set up in Euclidean space-time; i.e.  i S   → - Slatt

• this ensures real & bounded exponential factor

• correlation function can be computed numerically (Monte Carlo weighted averages)

• use exp[- Slatt ] as probability weight to generate a configuration ensemble

• compute observable on this ensemble

• how does this work with Grassmann (fermionic) variables?



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• lattice (bare QCD) action in general has the form:

Slatt = a4
∑

{

[FµνFµν ]latt + ψ̄[ /Dlatt + m]ψ
}

• integrate Grassmann degrees of freedom:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµ exp[−Sglue] det[ /Dlatt+m] Q̃(x1, · · · , xn)

• the non-local determinant is the costly part



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• lattice (bare QCD) action in general has the form:

Slatt = a4
∑

{

[FµνFµν ]latt + ψ̄[ /Dlatt + m]ψ
}

• integrate Grassmann degrees of freedom:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµ exp[−Sglue] det[ /Dlatt+m] Q̃(x1, · · · , xn)

• the non-local determinant corresponds to internal fermion loops (sea quarks)



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• lattice (bare QCD) action in general has the form:

Slatt = a4
∑

{

[FµνFµν ]latt + ψ̄[ /Dlatt + m]ψ
}

• integrate Grassmann degrees of freedom:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµ exp[−Sglue] det[ /Dlatt+m] Q̃(x1, · · · , xn)

• popular shortcut is to set det[Dlatt+m]=1; i.e. sea quarks are infinitely heavy. 

• This is the QUENCHED APPROXIMATION which has been a principal source of 
uncontrolled errors until recently



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• lattice (bare QCD) action in general has the form:

Slatt = a4
∑

{

[FµνFµν ]latt + ψ̄[ /Dlatt + m]ψ
}

• integrate Grassmann degrees of freedom:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµ exp[−Sglue] det[ /Dlatt+m] Q̃(x1, · · · , xn)

• we are currently at the end of the quenched era, in the middle of Nf=2 and   
Nf=2+I, aiming at Nf=2+1+1

• Nf=2 and   Nf=2+I are the so-called partially quenched lattice theories



• How do we obtain matrix elements and hadronic masses (i.e. bare low energy 
quantities)?

• Consider the lattice correlation function:

• the states |s> are those with the quantum numbers of Q(x)

• ms are the corresponding hadronic masses; mG the ground state

• < 0 | Q | G > is the vacuum-to-G  bare WME of operator Q

• higher excited states (same quantum numbers) drop out in the large-t limit

CQ(t) =
∑

!x

< 0| Q(x) Q(0) |0 >

∼
∑

s

< 0| Q(0) |s > < s| Q(0) |0 > exp[−mst]

→ | < 0| Q(0) |G > |2 exp[−mGt] + · · ·

From correlation functions to hadron masses and matrix elements



• How do we obtain matrix elements and hadronic masses (i.e. bare low energy 
quantities)?

• Consider the lattice correlation function:

CQ(t) =
∑

!x

< 0| Q(x) Q(0) |0 >

∼
∑

s

< 0| Q(0) |s > < s| Q(0) |0 > exp[−mst]

→ | < 0| Q(0) |G > |2 exp[−mGt] + · · ·

From correlation functions to hadron masses and matrix elements

• example: the operator Q is the charged axial current

• the state |G> is the charged pion;  mG →  mπ

• the matrix element defines the pion decay contant

Q → A0 = ūγ0γ5d

< 0 | A0 |π >= fπ mπ



• How do we obtain matrix elements and hadronic masses (i.e. bare low energy 
quantities)?

• Consider the lattice correlation function:

CQ(t) =
∑

!x

< 0| Q(x) Q(0) |0 >

∼
∑

s

< 0| Q(0) |s > < s| Q(0) |0 > exp[−mst]

→ | < 0| Q(0) |G > |2 exp[−mGt] + · · ·

From correlation functions to hadron masses and matrix elements

• masses and matrix elements are computed from first principles in a model 
independent way

• the computation is clean in principle, but systematic errors abound (see later)



• How do we obtain matrix elements and hadronic masses (i.e. bare low energy 
quantities)?

• Consider the lattice correlation function:

CQ(t) =
∑

!x

< 0| Q(x) Q(0) |0 >

∼
∑

s

< 0| Q(0) |s > < s| Q(0) |0 > exp[−mst]

→ | < 0| Q(0) |G > |2 exp[−mGt] + · · ·

From correlation functions to hadron masses and matrix elements

0 t

NB: gluon and sea quarks not drawn



Renormalization and improvement

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g0
2(a) )

• must renormalize them in order to get continuum physics

• UV cutoff is present at all stages of a computation and it is gradually increased

< f | QR(µ) |i > = lim
a→0

[

ZQ(aµ, g2

0) < f | Q(g2

0) |i > + O(a)
]
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< f | QR(µ) |i > = lim
a→0

[

ZQ(aµ, g2

0) < f | Q(g2

0) |i > + O(a)
]

bare WME depends on 
bare coupling and masses

renormalized WME 
depends on dressed 

coupling, masses
and scale

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g0
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Renormalization and improvement

< f | QR(µ) |i > = lim
a→0

[

ZQ(aµ, g2

0) < f | Q(g2

0) |i > + O(a)
]

bare WME depends on 
bare coupling and masses

renormalized WME 
depends on dressed 

coupling, masses
and scale

renorm. constant 
diverges logarithmically 

with a

continuum limit obtained 
gradually by successive 

simulations

discretization effects due 
to cutoff finiteness 

contaminate all 
computations

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g0
2(a) )

• must renormalize them in order to get continuum physics

• UV cutoff is present at all stages of a computation and it is gradually increased



Renormalization and improvement

• lattice renormalization can be done either in PT or non-perturbatively (NP)

• lattice PT is tedious and badly convergent; at say LO, it introduces large O(g0
4) 

errors in ZQ

• NP methods introduce O(a) discretization errors is ZQ ; as also the bare 
WME has O(a) effects, this is preferable to PT

• better still: attempt to “help” continuum extrapolation by reducing all 
discretization errors to O(a2) [Symanzik impr.; “automatic” impr. ...]

< f | QR(µ) |i > = lim
a→0

[

ZQ(aµ, g2

0) < f | Q(g2

0) |i > + O(a)
]

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g0
2(a) )

• must renormalize them in order to get continuum physics

• UV cutoff is present at all stages of a computation and it is gradually increased



Lattice actions



• the problem is general: for any lattice fermion action (free massless case)

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) =0

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously



• the problem is general: for any lattice fermion action (free massless case)

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) =0

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

• Wilson fermions: introduce irrelevant (D=5) operator in the action, which breaks chiral 
symmetry, recovered in the true continuum limit. 

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 



• the problem is general: for any lattice fermion action (free massless case)

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) =0

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

• staggered fermions: dilute 16 spinorial degrees of freedom on hypercube points. Retain a 
reduced U(1) chiral symmetry. Loose “flavour transparency”



• the problem is general: for any lattice fermion action (free massless case)

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) = O(a)

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

• Ginsparg-Wilson fermions: break chirality mildly to O(a), give up strict locality; costly in 
practice. Known as overlap fermions



• the problem is general: for any lattice fermion action (free massless) case)

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) = O(a)

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

• Domain wall fermions:  An equivalent formulation to GW fermions: introduce a fifth 
dimension; the 4-D lattice is a hypersurface (a defect) where both chiralities merge. 
Fairly costly (computationally); chirality is recovered at infinitely large DW

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 



Renormalization



Hadronic renormalization scheme

• for simplicity consider a lattice theory with isospin symmetry and 3 flavours

• the 3 bare parameters are g0, mq = mu = md < ms 

• they run with the lattice spacing a in the RG sense

• the hadronic scheme renormalization conditions are simply stated: tune all 3 bare 
parameters so as to ensure that 3 physical quantities are fixed to their 
(experimentally) known values

a mP

m
exp
P

= a(g2
0 ;mq;ms)

a mπ

amP

=
m

exp
π

m
exp
P

a mK

amP

=
m

exp
K

m
exp
P
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Hadronic renormalization scheme

• for simplicity consider a lattice theory with isospin symmetry and 3 flavours

• the 3 bare parameters are g0, mq = mu = md > ms 

• they run with the lattice spacing a in the RG sense

• the hadronic scheme renormalization conditions are simply stated: tune all 3 bare 
parameters so as to ensure that 3 physical quantities are fixed to their 
(experimentally) known values

a mP

m
exp
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= a(g2
0 ;mq;ms)

a mπ
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m

exp
π

m
exp
P

a mK
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=
m

exp
K

m
exp
P

• all other physical quantities (hadronic masses) can now be predicted (i.e. computed) 
since QCD is a renormalizable theory

• predictions must be repeated at smaller couplings g0 i.e. smaller lattice spacings 
(asymptotic freedom)

• NB: this is explicitly non-perturbative and yields QCD mass spectrum



Hadronic renormalization scheme

• for simplicity consider a lattice theory with isospin symmetry and 3 flavours

• the 3 bare parameters are g0, mq = mu = md > ms 

• they run with the lattice spacing a in the RG sense

• the hadronic scheme renormalization conditions are simply stated: tune all 3 bare 
parameters so as to ensure that 3 physical quantities are fixed to their 
(experimentally) known values

a mP

m
exp
P

= a(g2
0 ;mq;ms)

a mπ

amP

=
m

exp
π

m
exp
P

a mK

amP

=
m

exp
K

m
exp
P

• all other physical quantities (hadronic masses) can now be predicted (i.e. computed) 
since QCD is a renormalizable theory

• predictions must be repeated at smaller couplings g0 i.e. smaller lattice spacings 
(asymptotic freedom)

• several “practical” problems have induced variants of this procedure



Quality Criteria
FLAG: Flavianet Lattice Averaging Group



Quality Criteria

• Lattice simulations performed by different groups involve different choices 
both at the level of formalism (lattice actions, number of sea flavours etc.) 
and at the level of resources (lattice volumes, quark masses etc.) 

• often this amounts to making different compromises which in turn 
introduces different systematic effects

• not all lattice results of a given quantity are directly comparable

• FLAG: a group of European lattice practitioners is making an effort to create 
a compilation of results on a few quantities, which critically summarize the 
state of the art

• FLAG members: G. Colangelo (Bern), S. Dürr (Jülich), A. Jüttner (Mainz),       
L. Lellouch (Marseilles), H. Leutwyler (Bern), V. Lubicz (Rome3), S. Necco 
(CERN), C. Sachrajda (Southampton), S. Simula (Rome3), T. Vladikas (Rome2), 
U. Wegner (Bern), H. Wittig (Mainz)



Quality Criteria

• a number of criteria have been fixed; these are somewhat subjective and 
time dependent

• criteria:

★ systematic error estimated in a satisfactory manner and under control

• a reasonable attempt at estimating systematic error; can be improved 

• no attempt or unsatisfactory attempt at controlling a systematic error



Quality Criteria

• chiral extrapolation:

★ Mπ,min < 250 MeV

• 250 MeV ≤ Mπ,min ≤ 400 MeV

• Mπ,min ≤ 400 MeV

NB: at least 3 points requested

• continuum extrapolation:

★ at least 3 lattice spacings, at least two below 0.1 fm

• 2 or more lattice spacings, at least one below 0.1 fm 

• otherwise

NB: action should be O(a)-improved; for non-improved actions an extra point 

is needed for each criterion



Quality Criteria

• finite volume effects (with Lmin > 2 fm ):

★ [Mπ  L ]min > 4 or at least 3 volumes

• [ Mπ L ]min > 3 and at least 2 volumes

• otherwise, and in any case if Lmin < 2 fm

• renormalization (where applicable):

★ non perturbative

• 2-loop perturbation theory

• otherwise

• renormalization group running (where applicable):

★ non perturbative

• otherwise



Form factor, decay 
constants and unitarity



Form factor, decay constants and unitarity

• unitarity: |Vud|2 + |Vus|2 + |Vub|2 = 1

• experiment: |Vub| = 3.93 (36) · 10−3

• Kaon decays: |Vus| f+(0) = 0.21661 (47)

form factor @ zero momentum 
transfer  K0  → π-  ν l+

∣∣∣∣∣
VusfK

Vudfπ

∣∣∣∣∣ = 0.27599 (59)

• 3 expressions, 4 unknowns; need one more input (e.g. Vud from nuclear β 
decays)

• lattice provides independent determinations of  fK / fπ and f+ (0)



most systematics 
OK

f+(0) = 0.964 (3) (4) (Nf = 2 + 1)
f+(0) = 0.956 (6) (6) (Nf = 2)

Form factor, decay constants and unitarity

NB: PRELIMINARY !!!!



most systematics 
OK

fK/fπ = 1.190 (2) (10) (Nf = 2 + 1)
fK/fπ = 1.210 (6) (17) (Nf = 2)

Form factor, decay constants and unitarity

NB: PRELIMINARY !!!!



Form factor, decay constants and unitarity
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f+(0)

LR 84
BT 03
JOP 04
CEEKPP 05
KN 08

nuclear β decay

RBC/UKQCD 07

ETM 08
QCDSF 07
RBC 06
JLQCD 05

SPQcdR 04

our estimate

semi-inclusive τ decay

N
f=2

N
f=0

N
f=3
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1.18

1.20

1.20
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FK/F
π
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QCDSF/UKQCD 07

MILC 04
NPLQCD 06
RBC/UKQCD 07
HPQCD/UKQCD 08
BMW 08
PACS-CS 08, 08B
ALVdW 08
MILC 09

our estimate

nuclear β decay
semi-inclusive τ decay

N
f=3

N
f=2

use these to extract 
CKM elements

|Vud|2 + |Vus|2 + |Vub|2 = 0.989 (20) Nf = 2 + 1

use Vud from β decays 
and f+ (0)

|Vud|2 + |Vus|2 + |Vub|2 = 0.9997 (7)

use Vud from β decays 
and fK / fπ

|Vud|2 + |Vus|2 + |Vub|2 = 1.0002 (10)



Quark Masses



Quark masses

• fundamental parameters of Standard Model

• X-sections & decay rates expressed in formulae with mcharm and mbottom

• knowing the quark mass values with good precision for all flavours is an 
important ingredient of  the flavour structure of the Standard Model

• cannot be measured experimentally

• can be calculated theoretically, using some input from hadronic physics

• they are quantities which run with the renormalization scale

• FLAG is centered on mud = 0.5 ( mup + mdown ) and  mstrange 

• 3 fundamental QCD quantities ( αS , mud , mstrange ) and lattice spacing a

• fix them through, say, mπ , fπ , mN , mK 

• FLAG is currently analyzing the lattice data; no averages issued yet

• PRELIMINARY !!!!!!!!!!!



Quark masses

Nf = 2+1

Nf = 2



Quark masses

Nf = 2

most systematics 
OK

ETM: mπ ∼ 300 MeV
ALPHA: mostly OK, but mπ ∼ 600 MeV



Quark masses

most systematics 
OK

MILC 07: mπ ∼ 240-300 MeV, mostly OK, 
BUT renorm. is 2-loop in 2007; was 1-loop in 2004 and that 
made a significant difference (cf. HPQCD/MILC/UKQCD)

Nf = 2+1



Quark masses

most systematics 
OK

RBC/UKQCD:  mπ ∼ 240-300 MeV, mostly OK (RI/MOM 
renormalization), but a ∼ 0.11 fm, Lmπ ∼3.3

Nf = 2+1



Quark masses

most systematics 
OK

PACS-CS:  mπ ∼ 160 MeV !!!
 but 1-loop PT renormalization, a ∼ 0.11 fm, Lmπ ∼2.3

systematic errors not estimated (total error underestimated)

Nf = 2+1



Quark masses

smaller errors because of lack of renormalization

renorm. not really 
there!



Quark masses

NB: perturbatively renormalized results are systematically 
lower than NP ones, irrespective of Nf

NB: PRELIMINARY !!!!

definitive plots (and averages) by the FLAG group to appear soon...



ΔS=2 transitions: BK



ΔS=2 transitions: BK

|εK| ≈ Cε B̂K Im{V
∗
tdVts} {Re{V

∗
cdVcs}[η1 S0(xc) − η3 S0(xc, xt)] − Re{V

∗
tdVts}η2 S0(xt)]}

   can also be expressed in terms of  K0 -  K0  mixing
dominant EW process is FCNC (2 W exchange)

d u,c,t s

s
-

d
-

u,c,t

W W
O

d s

s
-

d
-

indirect CP-violation

εK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
= [2.282(17) × 10−3] exp(iπ/4)



|εK| ≈ Cε B̂K Im{V
∗
tdVts} {Re{V

∗
cdVcs}[η1 S0(xc) − η3 S0(xc, xt)] − Re{V

∗
tdVts}η2 S0(xt)]}

   can also be expressed in terms of  K0 -  K0  mixing
dominant EW process is FCNC (2 W exchange)

d u,c,t s

s
-

d
-

u,c,t

W W
O

d s

s
-

d
-

indirect CP-violation
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from NLO PT (with QCD)
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ΔS=2 transitions: εK

|εK| ≈ Cε B̂K Im{V
∗
tdVts} {Re{V

∗
cdVcs}[η1 S0(xc) − η3 S0(xc, xt)] − Re{V

∗
tdVts}η2 S0(xt)]}

   can also be expressed in terms of  K0 -  K0  mixing
dominant EW process is FCNC (2 W exchange)

indirect CP-violation

εK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
= [2.282(17) × 10−3] exp(iπ/4)

long distance NP Put in NLO PT + Cabibbo angle + A + mc,t:

η̄(1.4 − ρ̄) B̂K ≈ 0.40
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|εK| =
A(KL → (ππ)I=0)
A(KS → (ππ)I=0)

exp
= [2.282(17) × 10−3] e
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lots of work still to be done
NB: situation much better in quenched approximation (still...)
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Conclusions
The lattice is a rigorously defined regularization of QCD (the only one?).

As such, it enables non-pertrubative computations at low energies, from 
first principles, without any model assumptions.

The price to pay is the presence of a plethora of systematic effects. They 
can be kept under control and are being systematically reduced.

 The control of these effects is not just the result of better hardware an 
software, but principally stems from a better theoretical understanding 
of non-perturbative QFT at fixed UV cutoff.

We are currently moving away from uncontrolled approximations 
(quenching) and approach a realistic situation of Nf = 2 + 1 + 1.  
Moreover, we are approaching the most “critical” areas of the QCD 
parameter space (chiral limit, heavy flavours).

The result of this progress is that lattice QCD is a mature field, capable 
of providing reliably some missing puzzles in Standard Model 
phenomenology.


