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I NUOVO CIMENTO VorL. XVI, N. 4 16 Maggio 1960

The Axial Vector Current in Beta Decay ().

M. GELL-MANN (**)

Uollége de France and Ecole Normale Supérieure - Paris (***)

M. LEvY

Faculte des Sciences, Orsay, and Keole Normale Supérieure - Paris (**)

(ricevuto il 19 Febbraio 1960)

Summary. — In order to derive in a convincing manner the formula of
Goldberger and Treiman for the rate of charged pion decay, we consider

the possibility that the divergence of the axial vector current in B-decay
F ] e ncleon

I l1eld
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THE AXIAL VECTOR CURRENT IN BETA DECAY 717

Yet we have evidence that the weak interactions are symmetrical be-
tween V' and .1, particularly their apparent equality of strength and the fact
that for the leptons, which have no strong couplings, the weak coupling is
just y.(1+v,).

5. — The ¢ model.

We have another example of a theory in which eq. (5) holds, if we take a
Lagrangian for the strong interactions that is essentially one proposed by
ScHWINGER (**) and then for the axial veetor current the form suggested by
POLKINGHORNE (V7).

Again, for simplicity, we restrict ourselves to nucleons and pions only,
except that we introduce (following ScHWINGER) a new scalar meson g, with
isotopic spin zero. It has strong interactions, and thus might easily have
escaped observation if it is much heavier than =, so that it would disintegrate
immediately into two pions. It would appear experimentally as a resonant
state of two pions with J=0, I =0,

We take for our Lagrangian the following one, which leads to a renor-
malizable theory of the strong interactions:

B6) L= —Nlyd+ my— gyl + v mp) )N — (’_f)' T
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Sigma models

T o>T

S= J do'Gj(¢) x d¢/
>

V2¢ = 29  + 0¢/T /0K = 0

S = ,ﬂ—zj de {nwaﬂx"eﬁ(xmyxf Yo } +f
) ox
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i) The mass-scale 1 shows that the model typically will be
non-renormalizable for d > 3 but renormalizable and classically
conformally invariant in d = 2.

ii) We have not included a potential for X and thus excluded
Landau-Ginsburg models.

i) There is also the possibility to include a Wess-Zumino term.
We shall return to this when discussing d = 2

iv) From a quantum mechanical point of view it is useful to think
of Gj(X) as an infinite number of coupling constants:

Gj(X) = G + GJ X + ...

v) Classically, it is more rewarding to emphasize the geometry
and think of Gj(X) as a metric on the target space 7. This is
the aspect we shall be mainly concerned with.
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vi) The invariance of the action S under Diff(T):
X' = X"(X), Gj(X) = Grp(X')

(field-redefinitions from the point of view of the field theory on
Y), implies that the sigma model is defined by an equivalence
class of metrics. N.B. This is not a symmetry of the model since
the “coupling constants” also transform. It is an important
property, however. Classically it means that the model is
extendable beyond a single patch in 7, and quantum
mechanically it is needed for the effective action to be
well-defined.
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Supersymmetry

The algebra depends on the dimension d and the number N of
supersymmetries. In d = 4 we have

{Q2,Q8} =26 (1" C)apPy + CapZ® + (15C)ap Y

Q2 are translation-invariant spinors that satisfy a Majorana
reality condition and transform under some internal symmetry
group G < U(N) (corresponding to the index a).

Weyl-spinors and N = 1:
{Qom 5&} = 2/'50@
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Just like, e.g., translations are represented by differential
operators acting on functions on Minkowski space

Ip®(x) = i[¢" Py, ®(x)] ,
P, =id,,

supersymmetry transformations may be represented by
differential operators acting on functions on superspace:

Sa®(x,0) = i[e*Qn + & Q 4, D(x,0)]

where

. 1.4 ~ a1
Qa216a+§9 0aa, Qa—laa+§9 é’aa.

_0_
o2 -
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Covariant derivatives

{Da, D &} = 2i0ng

(D,Q}=1{D,Q} = {D,Q} = {D,Q} =0

1 O pU
Da:aa+léa aaa, Da—aa‘i‘lée aaa,

Using these we may impose covariant constraints. E.g.,
chirality:

Dd(ﬁ:O:DaQ_s‘
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SUSY sigma models

Ex. (d =2,N = (2,2) chiral fields)

{Dy, Dg} = 2i003

$(2) —> ¢(2.0) :

X=9¢|, Va=Dug|, F=D
S— f dzdzD?D? K (¢, $)

_ fdde(&X Gy (X, X)X + ..)
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where
Gyx(X, X) = dxoxK(X, X)

<= 7T carries Kahler Geometry

[ Susy o0 models < Geometry of 7 |

d= | 6 4 2 | Geometry
N=|1 2 4 | Hyperkahler
N= 1 2 | Kahler

N= 1 | Riemannian

(Odd dimensions have the same structure as the even
dimension lower.)
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Complex Geometry

Complex structure: J : TM © J? = —1

Projectors: 74 := 5 (1 +iJ)

Nl

Nijenhuis: N (J)

0 < mng[mu,mv]=0
Hermitean Metric: J!GJ = G
Kahler: VJ=0, G5 = d,05K(z,2)

Hyperkahler: JA,A=1,2,3 JAJB = 4B 4 ABCYC
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Hyperkahler

S— Jd4xD2D2K(¢, %)
Extra, non-manifest SUSY:
5¢' = D2(EQY), 64 = D2(eQY) .

Invariance of the action and closure of the algebra (on-shell) iff
the following J represent a Hyperkahler geometry:

0o Q. 0 Q.
M _ [ Y 2 @) _ - j
J _(Q’-. o> J (—iQ’-. 0)
/ /
isi 0
@ _ [ % _,
- (5 )
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Back to bosonic:

S= f dxd,0' Gj(p)ote .

50" = Mka(¢) = [k, ] = Lok’ .

Under such a transformation the action varies as
6S = f dxd, o' Lk Gj(p) "¢/ .

It is thus an invariance of the action if it is an isometry

,CAkG,'j =0.
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Algebra

0
K.
Addl
We may gauge the isometry using minimal coupling

0,0 — 0,0 — ALKl = (8, — Alkn)d' = V68,

[Ka, kg] = CABCkC , ka=

S J XV, G(&) VI .

Extremizing this action w.r.t. A yields a new sigma model on the
space of orbits of the gauge group:
A"

szfdxaw’(e,, H 8K,k ) o)

where
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SUSY quotient

Such a quotient yields a new sigma model with a new target
space. But we need to preserve additional structure such as
SUSY.

Ex. Flat space, (i=1,2)
S— Jd“xDZDZK(@E) _ Jd“xDZquﬁ"qE’
Isometry:
50" = iz 5 = —iNG'

Gauged action:

S = Jd“xDZDZ(gi)"d?"eV —cV)
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Extremizing:

Quotient potential:

K c(ln <¢I¢I) + 1) =cIn(1+¢)+ ...,

c

where
C=9¢"/¢?.
K is the potential for the Fubini-Study metric on CP'.
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HKQ

In the example the Kahler geometry of the original model was
inherited by the quotient geometry. It is much more difficult to
preserve hyperkahler geometry. This requires gauging a
tri-hnolomorphic isometry and performing a quotient which
respect to the complexified action of this isometry. The latter
point arises already in the Kahler quotient just illustrated:

The general formula is

N _ _ 1 .
K(6,8) - K(6.6,V) = K(6,4) + L dte—1V) v
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(D) Hyperkdhler Quotients

Suppose finally that M*" is a hyperkdhler manifold having a metric g and
covariantly constant complex structures I, J, K which behave algebraically like
quaternions:

P=J2=K?=—1, W=-JI=K etc. (3.25)

G°-orbit

G -orbit

who)

Fig. 3. The orbits of the group G and of its complexification G. G acts on x~*(0) and M is the
quotient space corresponding to this action. The same space is obtained if one considers the
extension of u~*(0) by exp(IX) and takes the quotient by G¢
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Summary and conclusions part |

e Supersymmetric sigma models provide a powerful tool to
probe complex geometry.

e The more supersymmetries, the more specialized geometry
e N=2 in d=4 has a hyperkahler target space.

« Gauging isometries and taking a quotient leads to new
models.

¢ The hyperkahler reduction is suggested to us by superspace.
« Additional supersymmetries, when examined at the (2, 2)
level, lead to interesting new structures on the target space.
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Sigma models in d=2

The (1,1)-D-algebra:

DA = idy

S = szme_ (D+cpi(G,']'+B,'j)D_<pj).

The (1,1) analysis by Gates Hull and Rocek gives:

Susy | (0,0)(1,1) | (2,2) (2,2) (4,4) (4.4)
Bgd G, B G G,B G G, B
Geom Riem. Ké&hler | biherm. | hyperk. | bihyperc.
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The (1,1)-D-algebra:

DE = idy

S = Jd2xD+ID> (ID)+goi(G,]-+B;j)ID),<pj).

The (1,1) analysis by Gates Hull and Rocek gives:

Susy |(0,0) (1,1) | (2,2) (2,2) (4.4) (4,4)
Bgd G,B G G,B G G, B
Geom Riem. Kahler | biherm. | hyperk. | bihyperc.
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Ansatz for the extra supersymmetries:
0p' = € D + €YD
Invariance of the action and closure of the algebra requires the
geometry to be bi-hermitean:
Sy =
JoGJ+) = G
N(Ji+y) =0

VL, =0, TH=r"+G'H, H:=dB

H ~ Hlsyda
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Generalized Complex Geometry

Complex structure:
J:MeT*Mo  J%=-1

“Nijenhuis”:

Ne(J) =0 <= MN[Niu,Nyvlc=0
where

u=(U,§, v=(V,p

1
[U, V]C = [Uv V] + 'CUP - 'CVS - éd(ZUP - ZV&)

The automorphisms of this courant bracket are
diffeomorphisms and b-transforms:

eP(U,&) = (U,e+ib), db=0.



In a coordinate basis (dx, dx) a b-transform acts on 7 as

follows:
10 1 0
(59)7(% 7).
In such a basis, the natural pairing

< (U,8),(V,p) >=wp +1v§

is represented by the matrix

= (19)

A final requirement ofn GCG is that

JIT7 =1

Ulf Lindstrém Superspace is smarter



Generalized Kéhler geometry

Generalized Ké&hler:
3 (J1,72) 5 [J1,72] =0
G=-NT, G2=1
Ex. Kahler (w = GJ):

J 0 0 —w! (0 G
n=(o ) 2=(27%5) o-(a %)
GKG « Bi-Hermitean (the G-map):

j(172) —
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General description of GKG

So Bi-Hermitean and GKG data are equivalent. But what is the
most general description? Again, superspace has the answer.

The description should be (2,2) symmetric, as we know from
GHR. They found the complete description of ker[J, J._] but
its complement was not described.

The kernel corresponds to the target space geometry of a

sigma model with chiral and twisted chiral (2, 2)-superfields.
The complement is coordinatized by semi-chiral fields.
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(2,2) superspace

The (2,2)-D-algebra:
{Ds,Ds} = 2i0y

Reduction to (1,1):

1 _
Dy :=—(Ds+D
+ \@( + +)
i
=—(Dsy—-D
Qi \/é( + +)
The (1,1)-D-algebra:
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(2,2) superfields

Chiral fields ¢:
Di¢p=0=D.p=0
Twisted chiral fields y:
D.x=D xy=0=D,y=D 1=0
Left/Right semi-chiral fields X, 5:
DX, =0=D,X,=0
DXg=0=DXgz=0

These are all the fields needed.
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Complex linear fields X 4:
D.D_¥4=0=D,D_%5=0
Dual to chiral fields
Complex twisted linear fields X, :
D.D ¥, =0=D.D ¥ =0

Dual to twisted chiral fields
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N=(1,1) content

Define:

(8

¢Z=(g>=>@+¢=JD+¢

Chiral fields:

Twisted chiral fields:
. X _
X = ( % ) = Qix = £JD+x

Read off the non-manifest second susy by projecting to the 6,
independent part.
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Semi-chiral fields:

Xyr = XyRl,  Yi—/re = QeXyR|

X _
XR = < )-(L/R ), Vi py = ( YL/t >

L/R YL /R+
Q: X, =JD, X, Q Xgp=JD Xg

and

QV,_=JdDV,_, QV,_=-id-X,

Q*wl‘?-‘r = J]D)*w:q-i-? Q+wFi+ = —i04+Xg

The W’s are auxiliary fermions.
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Relation to GKG

*

S = JdZXDZDZK(d)v(EaX?X)XL/FDXL/FI’)
R szx (04e/(Gy + B +...)

In(1,1):

Sy =-1, N =0, [Js),Jo]#0,
J(ti)GJ(i) = G, H= d((:+)LU(+) = —d(c’;)ch(_)
A complete description of GKG.
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The dependence on the generalized Kahler potential is
non-linear (for simplicity consider semi-schiral fields only): E.g.,

Jo = J 0 g ( KjKe KP:Crp
(+) KRLCLL KRLjKLR »Y(=) 0 j

where
. i 0 .
.I:<0 _I)a C::[jaK]’ KRLKLR:1'
Only a symplectic form Q depends linearly on the Hessian of K:
B 0 Kir
Q- ( . ) .

The metric and B-field depend non-linearly:

G=Q[Jy),Jdol. B=Q{Jy),J)}
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Generating function

There are two special sets of Darboux coordinates for the
symplectic form Q. One set, (X, Y),), is also canonical
coordinates for J ;) and the other set, (XA, Yg) is canonical
coordinates for J._y. The symplectomorphism that relates the
two sets of coordinates has thus a generating function. This
generating function is in fact the generalized Ké&hler-potential
K(XL xA).

(XL) YL) ~ K(XL7 XR) - (XR7 YR)

i 0 i 0
J<+>:<0—i) J<—>:(o —i)

This fact is a key ingredient in the proof that we have a
complete description or GKG.
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The roles of K

o K(¢, 0, x, x,XL/H,XL/R) is the superspace Lagrangian for a
(2,2) sigma model with Generalized Kahler target space
geometry.

o K(¢,6,x.X. X1/r. X1/g) is generalized Kahler potential for the
metric G and B-field

o For fixed chiral agd twisted chiral fields,
K(o, ¢, X, X, X/m, X1 R) generates symplectomorphisms.
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New vector multiplets

K(¢, 0. x: % X1/m, X1/R)
(Abelian) Isometries:
ks = i(05 — 03)
kpx = i(0p — 05 — 0x + J%)

kLR = f(aL — 51 — 5/? + a,—q)
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The corresponding gauged Lagrangians:

Ks(¢+ ¢ + V2, x)
Koy (@ + ¢+ VO x+ X+ VX5ip—d+x—%) + V.x)

Kx(XL + XL + VL,XR + XF; + VR, i(XL — XL + Xp — X,q) + V,,X)
with gauge transformations for the vectors;

SV4 = i(A — A)

SVX = i(A — A)

SV =A+A+A+A
SVHR = i(Aym — Auyr)
SV =N + N +Ng+Apg
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The invariant field strengths are the usual ones

W=iD_D.V¢ W =iD_D,V?
W = iD_D.VX, W =iD_D,Vx
and the new

F=_-D. D (V' +i(Vt+VFh)

 — %D+D,(V' iVt — VAY)

Reduction to (1,1). Non-abelian extensions. Applied to T-duality.
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T-duality

Kix(d+ o+ Vo x+x+ VX ilg—d+x—%)+ V)

1 1o -, 1.~ 1- =

0X R:

= V and V pure gauge. Plug back to find Ky, (¢, ¢, x, X)
sV, 6V:

= dy Ky, = X etc. Solve to give V(X, g, XLR),.....
Plug back to find K(X, g, X, g)

A similar relation starting from the gauged semi-chiral action
also displays the duality between (twisted) chiral and
semi-chiral models.
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Additional supersymmetry

The chiral sector, same as described for d = 4 above:

K — K(¢,9)

5¢% = & D3, ), 6% = €*Du3(4, )

On-shell algebra.
@i_ (5 O
J /‘( 0 —is2 )

mi_ (0 QF @i_( 0 —i9g
Jf_(Q o )0 YTl o
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The semi-sector:

K — K(X(,Xg,X(,XR)
The general situation not known at the (2, 2) level.
Linear tf:

0X, = i€+]]3)+ (XL + Xp+ %XR) + I'IQE_H_]),XL + I'/-{_16_]D,XL,

0Xp = ie D (Xp — (|62 — )X, + EEE1R)) — iret D, Xq
—ir et D, Xp,

Invariance:

Kis — Kiz —rKsp =
(|x[2 = 1)Ky + K12 —7K;3 = 0.

o
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{JJHJ*} - 2C,
—
(1 +0)|Ki2* + (1 = 0)|K;5[* = 2K;7Ky3.

Using the invariance condition we find:

c=—

EEES

Since ¢? > 1 is a constant we can form the following two local
product structures:

S = é(J_—i‘CJ_F), 82:1 5
c? —1

]
Ti=———[J, ], T? =1,
sz gl

such that the commutator algebra of (J., S, T) is SL(2,R).
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The structures (J;, S, T) preserve a metric of signature (2,2)
and this geometry of the target space is called neutral
hypercomplex.

When ¢? < 1, the corresponding construction yields a triple of
complex structures, the metric is positive definite and the
geometry hyperkahler.

The general case is presently under investigation, i.e.,
2d-dimensions and non-linear transformations. We do not
expect that it will give a constant ¢, but it seems to have other
interesting geometric properties related to Yano f-structures
P +f=0.
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Summary and conclusions part Il

o A complete description of GKG uses chiral, twisted chiral and
semi-chiral superfields.

e The generalized Kahler potential doubles as a (non-linear)
potential for the metric and B-field and as a generating function
of symplectomorphisms.

¢ New vector-multiplets are available for gauging an important
class of isometries.

¢ T-duality and quotients may be discussed in terms of these
multiplets.

e Global issues (bi-holomorphic gerbes...) can be addressed.

« Additional supersymmetries, when examined at the (2,2)
level, lead to interesting new structures on the target space.
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Back to the chiral complex linear duality:

S = szxozsz(z, ¥)

L§= Jd2x02D2 (K(5.,8) — ¢S — 38)
D S=0,0,0.5=0
- S

058 =058 =0 <= Ks=0,Kg=¢
K- 0S— 38 - K(6.9)
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