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ḟπ −H

]
, H =

1
2

(
π2 − ∂if∂if −

λ

2
f4

)

f̈ + ∂i∂if = λf3 ⇒ f̂(r, #x) =
√

8
−λ

b

b2 + r2 + #x2
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AND BOUNDARY THEORIES ARE IN THE SAME REGIME (I.E. D-

INSTANTONS/YM INSTANTONS IN ADS5/CFT4).
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✓  RELATED TO RICCI-FLOW ?(1ST-ORDER EQUATIONS)

Tuesday, September 8, 2009



✓  RELATED TO RICCI-FLOW ?(1ST-ORDER EQUATIONS)

✓  INTIMATELY RELATED TO THE WELL-KNOWN STOCHASTIC 

QUANTIZATION RESULT: TOPOLOGIGAL YANG-MILLS/ CHERN-SIMONS. 

THIS ARISES FROM THE BRST GAUGE FIXING OF THE TOPOLOGICAL 

“GAUGE” INVARIANCE. IT IS A GENERALIZATION OF THE STOKES 

FORMULA.
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“GAUGE” INVARIANCE. IT IS A GENERALIZATION OF THE STOKES 

FORMULA.

D. MANSI & A. MAURI: TO APPEAR
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BULK (ADS)THEORY

BOUNDARY THEORY

BULK (ADS)THEORY

NON-RELATIVISTIC
“LIFSCHITZ” LIMIT

PERTURBATIVE LIMIT

STRONG COUPLINGWEAK-COUPLING

INSTANTONS

INSTANTONS

THE HOLOGRAPHIC WEB

HOLOGRAPHY - STOCHASTIC QUANTIZATION
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