Search for new physics in rare charm processes

S.Fajfer

Physics Department, University of Ljubljana and Institute J. Stefan Ljubljana, Slovenia

in collaboration with I. Doršner, J. F. Kamenik and N. Košnik; 0906.5585

Univerza v Ljubijani Fakulteta za matematiko in fiziko

RTN network FLAVIAnet

Corfu Summer Institute, 30 Aug.- 20 Sept. 2009

Outline

> Rare charm decays ——> experimental results

 f_{D_s} puzzle: lattice – experiment in $D_s \rightarrow l \nu_l$

Are there any correlations between NP in $~D_s \to l \nu_l~$ and $~D \to \mu^+ \mu^-$?

>Leptoquarks mediated tree level processes

➢general approach , GUT SU(5) and proton decay

•SM allowed (charged current)

≻LFV

Summary

Lepton flavor violating processes

$$\begin{split} \mathsf{D} &\to e^+\mu^- < \ 8.1 x 10^{-7} \ \ \mathsf{D}^+ &\to \mathsf{K}^+ e^-\mu^+ < \ 3.7 x 10^{-6} \\ \mathsf{D}_s^+ &\to \mathsf{K}^+ e^-\mu^+ < \ 3.6 x 10^{-6} \ \Lambda_c^+ &\to p e^-\mu^+ < \ 7.5 x 10^{-6} \end{split}$$

Model	${\cal B}_{D^0 o\mu^+\mu^-}$
Standard Model (SD)	$\sim 10^{-18}$
Standard Model (LD)	$\sim \text{several} \times 10^{-13}$
Q = +2/3 Vectorlike Singlet	$4.3 imes 10^{-11}$
Q = -1/3 Vectorlike Singlet	$1 \times 10^{-11} \ (m_S/500 \ { m GeV})^2$
Q = -1/3 Fourth Family	$1 \times 10^{-11} \ (m_S/500 \ { m GeV})^2$
Z' Standard Model (LD)	$2.4 imes 10^{-12} / (M_{Z'}({ m TeV}))^2$
Family Symmetry	$0.7 \ 10^{-18}$ (Case A)
RPV-SUSY	$1.7 imes 10^{-9} \ (500 \ { m GeV}/m_{{ ilde d}_k})^2$

Petrov , CHARM 2009

disagreement between experimental and lattice result

lattice and experiment are in agreement

Are there any correlations between NP in
$$\begin{subarray}{c} D o l
u_l \ D \ \hline D o \mu^+ \mu^- \ ? \end{subarray}$$

 $D_s^+ \rightarrow \mu^+ \nu$ and two $D_s^+ \rightarrow \tau^+ \nu$ measurements statistically independent: combine

from P. Onysi, CHARM (2009)

The f_{D_s} puzzle introduced new possibility: NP effects in charged charm meson leptonic decays.

Dobrescu and Kronfeld (2008) have suggested that charged Higgs or scalar leptoquarks can explain the lattice-experiment discrepancy.

We consider all possible renormalizable leptoquark interactions with SM matter fields.

Leptoquarks

arise naturally in unification theories, Pati-Salam, *R*-parity violating SUSY (squarks), extended technicolor, compositeness models

Experimentally they have been searched directly:

Single production at $e^{\pm}p \rightarrow e^{\pm}p$ experiments (HERA, ZEUS)

 \Rightarrow Constraints in the coupling-mass plane

False indication for on-shell production in HERA *ep* scattering (1997)

Lower bound on mass from D0,CDF $\sim 230-250~{\rm GeV}$ for leptoquarks coupled to 1st or 2nd generation

DØ Collaboration

arXiv: 0907.1048

(first generation)

hep-ex/0601047

(second generation)

$$(\mathbf{3}, \mathbf{3}, -1/3), (\mathbf{\overline{3}}, \mathbf{2}, -7/6) \text{ and } (\mathbf{3}, \mathbf{1}, -1/3)$$

only doublet is "genuine" leptoquark

SU(5) embedding

Matter fields :

$$\begin{aligned} &\mathbf{10_i}(=(\mathbf{1},\mathbf{1},\mathbf{1})_{\mathbf{i}} \oplus (\overline{\mathbf{3}},\mathbf{1},-\mathbf{2/3})_{\mathbf{i}} \oplus (\mathbf{3},\mathbf{2},\mathbf{1/6})_{\mathbf{i}} = (\mathbf{e_i^C},\mathbf{u_i^C},\mathbf{Q_i})) \\ &\overline{\mathbf{5}}_i(=(\mathbf{1},\mathbf{2},-\mathbf{1/2})_{\mathbf{i}} \oplus (\overline{\mathbf{3}},\mathbf{1},\mathbf{1/3})_{\mathbf{i}} = (\mathbf{L_i},\mathbf{d_i^C})) \\ &\text{where } Q_i = (u_i \quad d_i)^T \text{ and } L_i = (\nu_i \quad e_i)^T. \end{aligned}$$

up quark (down quark and charged lepton) masses originate from the contraction of

 10_i and 10_j ($\overline{5}_j$) with 5- and/or 45-dimensional Higgs representation. $10 \times 10 = \overline{5} \oplus \overline{45} \oplus \overline{50}$ and $10 \times \overline{5} = 5 \oplus 45$.

Most general renormalizable set of Yukawa coupling contractions with $~{\bf 5_H}~{\rm and}~{\bf 45_H}$ is

$$V = Y_{5^*}^{ij} \mathbf{10}_i^{\alpha\beta} \overline{\mathbf{5}}_{\alpha j} \mathbf{5}_{H\beta}^* + Y_5^{ij} \epsilon_{\alpha\beta\gamma\delta\epsilon} \mathbf{10}_i^{\alpha\beta} \mathbf{10}_j^{\gamma\delta} \mathbf{5}_H^\epsilon + Y_{45^*}^{ij} \mathbf{10}_i^{\alpha\beta} \overline{\mathbf{5}}_{\delta j} \mathbf{45}_{H\alpha\beta}^{*\delta} + Y_{45}^{ij} \epsilon_{\alpha\beta\gamma\delta\epsilon} \mathbf{10}_i^{\alpha\beta} \mathbf{10}_j^{\zeta\gamma} \mathbf{45}_{H\zeta}^{\delta\epsilon},$$

mass matrices

$$\begin{split} M_D &= \left(Y_{5^*}^T v_5^* + 2Y_{45^*}^T v_{45}^*\right) / \sqrt{2}, \\ M_E &= \left(Y_{5^*} v_5^* - 6Y_{45^*} v_{45}^*\right) / \sqrt{2}, \\ M_U &= \left[4(Y_5^T + Y_5) v_5 - 8(Y_{45}^T - Y_{45}) v_{45}\right] / \sqrt{2}, \end{split}$$

where $\langle 5_{H}^{5} \rangle = v_{5}/\sqrt{2}$, $\langle 45_{H1}^{15} \rangle = \langle 45_{H2}^{25} \rangle = \langle 45_{H3}^{35} \rangle = v_{45}/\sqrt{2}$ and $|v_{5}|^{2} + |v_{45}|^{2} = v^{2}$ ($v = 247 \,\text{GeV}$). Y_{5*}, Y_{45*}, Y_{5*} and Y_{45} are arbitrary 3×3 Yukawa matrices.

Higgs in 5 $M_E^T = M_D$ Higgs in 45 $M_E^T = -3M_D$ $M_E^T = -3M_D$ Proton decay and triplet, doublet and singlet of LQ

triplet
$$\Delta_3=(3,3,-1/3)$$

It cannot couple to quark – quark pair even via mixing with Higgs doublet and other Higgs states.

singlet
$$\Delta_5 = ({f 3},{f 1},-{f 1}/{f 3})$$

 $\begin{array}{cccc} 10-10-45_{H} & & & \\ & & & \\ & & & \\ 10-\overline{5}-45^{*}_{H} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} \text{lepton-quark pair coupling with the LQ triplet, if only this} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \text{lepton-quark pair coupling with the LQ triplet, if only this} \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & &$

Contraction of 10, 10 and 45 can lead to proton decay, but SUSY SU(5) GUT sufficiently suppresses proton decay.

rotations are assigned to down-type quarks and neutrions $Y_{LQ} \equiv U^{\dagger} X$

$$Y_{LQ} \equiv U^{\dagger}X \qquad (V_{CKM} = U^{\dagger}D)$$

$$d' = V_{CKM}d$$
 $\nu' = V_{PMNS}\nu$
quark-mass eigen states: $Y'_{LQ} \equiv X'E$ $(V_{PMNS} = E^{\dagger}N)$

$$(Q_1, Q_2, Q_3) = \begin{pmatrix} u & c & t \\ d' & s' & b' \end{pmatrix}, \ \begin{pmatrix} d' & s' & b' \end{pmatrix} = \begin{pmatrix} d & s & b \end{pmatrix} V_{\text{CKM}}^T$$

We use parameterization

$$Y_{LQ}^{q\ell} = y_{LQ}^{\ell}(\sin\phi, \cos\phi)$$

$$d' = \cos \theta_c d + \sin \theta_c s, s' = -\sin \theta_c d + \cos \theta_c s$$
$$V_{us} = -V_{cd} = \sin \theta_c = 0.225$$

(good approximation – to neglect effects of the third generation)

If the Y_{LQ} matrix had all rows, except for the *q*-th one, set to zero, which would correspond to leptoquark coupling *only* to u_q , one would still get nonzero couplings to all three left-handed down-quarks.

$$\sum_{i=1,2,3} |\mathcal{A}_i|^2 \sim \sum_{i=1,2,3} V_{PMNS}^{ji} V_{PMNS}^{li*} = \delta^{jl}$$

(equivalent to the absence of neutrino mixing!)

Triplet leptoquarks

$$\mathcal{L}_3 = Y_3^{ij} \,\overline{Q_i^c} i\tau_2 \,\boldsymbol{\tau} \cdot \boldsymbol{\Delta}_3^* L_j + \text{h.c.}$$

arbitrary 3x3 matrix

Leptoquark triplet

$$\begin{array}{c} \Delta_3^{-4/3} \\ \Delta_3^{-1/3} \\ \Delta_3^{2/3} \\ \Delta_3^{2/3} \end{array}$$

$$\tilde{Y}_{3}^{q\ell} \equiv \begin{cases} Y_{3}^{q\ell} & ; \ q = u, c, t, \\ (V_{CKM}^{T} Y_{3})^{q\ell} & ; \ q = d, s, b. \end{cases}$$

 $\tilde{Y}_{3}^{s\tau}\tilde{Y}_{3}^{s\mu*}, \ \tilde{Y}_{3}^{d\tau}\tilde{Y}_{3}^{d\mu*} \text{ and}$ $Y_{3}^{u\tau}Y_{3}^{u\mu*} = (\cos\theta_{c}\tilde{Y}_{3}^{d\tau} + \sin\theta_{c}\tilde{Y}_{3}^{s\tau})(\cos\theta_{c}\tilde{Y}_{3}^{d\mu*} + \sin\theta_{c}\tilde{Y}_{3}^{s\mu*})$

these couplings are not independent

We consider contributions to following processes:

$$\pi_{\mu/\tau} \equiv Br(\tau \to \pi\nu)/Br(\pi \to \mu\nu)$$

(also for K)

$$\begin{array}{c} \tilde{\tau} \rightarrow \eta \mu \\ \text{constraints} \end{array} \right\} \begin{array}{c} \tilde{Y}_{3}^{s\tau} \tilde{Y}_{3}^{s\mu*}, \quad \tilde{Y}_{3}^{d\tau} \tilde{Y}_{3}^{d\mu*} \\ Y_{3}^{u\tau} Y_{3}^{u\mu*} = (\cos \theta_{c} \tilde{Y}_{3}^{d\tau} + \sin \theta_{c} \tilde{Y}_{3}^{s\tau})(\cos \theta_{c} \tilde{Y}_{3}^{d\mu*} + \sin \theta_{c} \tilde{Y}_{3}^{s\mu*}) \\ \pi_{\mu/\tau} \end{array}$$

In triplet LQ scenario one needs one of the measured decay widths $D_s
ightarrow \ell
u$

to reproduce
$$Br(D_s \to \tau \nu) = 0.0561(44)$$

and using lattice result $f_{D_s} = 241(3)$ MeV $\int \sqrt{\delta_3^\tau} \approx 0.002$ GeV⁻¹

$$\delta_{3}^{\tau} \equiv \frac{Y_{3}^{c\tau} \cdot \tilde{Y}_{3}^{s\tau}}{V_{cs} m_{\Delta_{3}}^{2}} \qquad (y_{3}^{\tau})^{2} \sin \phi \cos \phi (-\tan \theta_{c} + \tan \phi) / m_{\Delta_{3}}^{2}$$
SM correction two solutions

to satisfy
$$\,D o au
u_ au\,\,{
m and}\,\,\pi_{\mu, au}\,\,$$
 one needs either:

- 1. leptoquarks couple only to s but not to d quark $\tan \phi \approx \tan \theta_c \quad (\tilde{Y}_3^{d\tau} \approx 0)$ and sizable $Y_3^{u\tau} \longrightarrow K_{\mu,\tau}$
- 2. leptoquarks couple only to c but not to u quark $\sin \phi \approx 0$ $(Y_3^{u\tau} = 0)$ sizable $\tilde{Y}_3^{d\tau}$

$$\begin{cases} K^+ \to \pi^+ \nu \bar{\nu} \\ Br(\tau \to K\nu) / Br(K \to \mu\nu) \end{cases}$$

$$Br(D \to \mu\nu) = 3.8(4) \times 10^{-4} \text{ agrees with SM}$$

If $\tilde{Y}_3^{s\tau}$ sizable, then $\tilde{Y}_3^{s\mu} \sim 0$ from $\tau \to \eta \mu$ decay width

additional constraint comes from $K_L \rightarrow \mu^+ \mu^-$

Combining these two constraints a triplet explanation is completely excluded!

Our assumption:

Leptoquark multiplet are nearly degenerate

We require :
➤ all the measured constraints to be satisfied within one standard deviation (at 68 %C.L.)
➤ for the upper we use 90% C.L. limit

Combined bounds on triplet LQ parameters in two-generation case.

We consider constraints coming from

$$D_s \to l\nu_l$$
$$D^0 \to \mu^+ \mu^-$$
$$K_L \to \mu^+ \mu^-$$

 $\eta\mu$

1 and LFV

the couplings of left-handed down and up type quarks are misaligned

$$\begin{split} \tilde{Y}_{2L}^{q\ell} &\equiv (V_{CKM}^{\dagger}Y_{2L})^{q\ell} \text{ for } q = d, s, b \\ \hline D^{0} &\rightarrow \mu^{+}\mu^{-} \\ \hline Y_{2R}^{c\mu}Y_{2L}^{u\mu*} &= Y_{2R}^{c\mu}(\cos\theta_{c}\tilde{Y}_{2L}^{d\mu*} + \sin\theta_{c}\tilde{Y}_{2L}^{s\mu*}) \\ \hline \overline{u} \\ \hline Y_{2L}^{c\mu}Y_{2L}^{u\mu*} &= (\cos\theta_{c}\tilde{Y}_{2L}^{s\mu} - \sin\theta_{c}\tilde{Y}_{2L}^{d\mu})(\cos\theta_{c}\tilde{Y}_{2L}^{d\mu*} + \sin\theta_{c}\tilde{Y}_{2L}^{s\mu*}) \\ \hline \text{The measurement of } D &\rightarrow \mu\nu \quad \text{directly constraints} \quad \tilde{Y}_{2L}^{d\mu} \\ \hline \text{For the numerical analysis we use parameterization:} \\ \hline \tilde{u} \\ \hline \end{array}$$

С

-

$$Y_{2L}^{s\mu} = y_{2L}^{\mu} \cos \phi \qquad Y_{2L}^{d\mu} = y_{2L}^{\mu} \sin \phi$$

chosen $Y_{2R}^{u\mu} = 0$ $Y_{2R}^{c\mu} = y_{2R}$

we vary
$$y_{2L}^{\mu}$$
 and y_{2R}^{μ} keeping fixed $y_2^{\mu} = \sqrt{y_{2L}^{\mu}y_{2R}^{\mu}}$

(keep in mind that first generation ($\pi_{\mu/ au}$) is strongly constrained)

Combined bounds on the doublet LQ.

-no strong experimental bound on FCNC in up sector involving tau (doublet leptoquarks do not contribute to $s \to d
u ar
u$)

$$\delta_{2}^{\ell} \equiv \frac{m_{D_{s}}^{2}}{m_{\ell}(m_{c} + m_{s})} \frac{Y_{2R}^{c\ell*} \tilde{Y}_{2L}^{s\ell}}{V_{cs}^{*} m_{\Delta_{2}}^{2}}$$

$$\tau \to \eta^{(\prime)} \mu \sim \left| \tilde{Y}_{2L}^{s\tau} \tilde{Y}_{2L}^{s\mu*} \right|^2$$

perturbative treatment for couplings

 $\delta_2^{LFV} = |Y_{2L}^{s\tau} Y_{2L}^{*s\mu}| / m_{\Delta_2}^2$

$$|Y_{2L,R}^{ij}| < \sqrt{4\pi}$$

$$\begin{split} m_{\Delta_2} &< \sqrt{4\pi \, \delta_2^{LFV} / |\delta_2^\mu \delta_2^\tau|} \\ \text{with present bound} \\ Br(\tau \to \eta \mu) &< 6.5 \times 10^{-8} \text{ at } 90 \,\% \text{ C.L.} \end{split}$$

 $D_s \rightarrow \tau \nu$

free parameters can be chosen as an overall amplitude δ and two angles: (ϕ, ω)

$$\begin{split} \tilde{Y}_{1L}^{s\mu} &= y_1^{\mu} \sin \omega, \ Y_{1R}^{c\mu} = y_1^{\mu} \cos \omega \cos \phi \text{ and} \\ Y_{1R}^{u\mu} &= y_1^{\mu} \cos \omega \sin \phi \end{split}$$

bound from perturbation approach: $y_1^{\mu} < \sqrt{4\pi}$

numerical fit $(y_1^{\mu}, \omega, \phi)$ to above constraints constraints leads to

 \succ exp. result for $Br(D_s \rightarrow \mu\nu)$ cannot be reproduced within one standard deviation without violating any other constraints.

 \succ but, due to the lack of exp. information on FCNC in up sector, leaves the verdict on singlet leptoquark in $D_s \to \tau \nu$ open.

Rare decay
$$[D^+ o \pi^+ \mu^+ \mu^-]$$

Experimentally:
$$\mathcal{B}(D^+
ightarrow \pi^+ \mu^+ \mu^-) < 3.9 imes 10^{-6}$$

this includes contributions of ho, ω, ϕ resonances

SM long distance contributions almost saturate this result.

$$\mathcal{A}_{V}^{\text{LD}} = \frac{a_{V}}{q^{2} - m_{V}^{2} + im_{V}\Gamma_{V}} \bar{u}(k_{-}) \not p v(k_{+}) \begin{array}{l} \text{Parameters } a_{V} \text{ fitted to } \mathcal{B} \text{ of resonant mode} \\ D^{+} \to \pi^{+}V \to \pi^{+}\mu^{+}\mu^{-} \end{array}$$

Result: resonant branching fraction

$$\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)_{\rm res} = (1.8 \pm 0.2) \times 10^{-6}$$

S.F. and N. Kosnik (2009), S.F., N.K. and S. Prelovsek (2007)

$$\begin{split} \mathcal{L}_{\rm eff}(c \to u\ell^+\ell^-) &= \frac{1}{8M_{\tilde{d}^2}} \left[C_{\ell c}^{L*} C_{\ell u}^L \, (\bar{u}c)_{V-A} (\bar{\ell}\ell)_{V-A} + C_{\ell c}^{R*} C_{\ell u}^R \, (\bar{u}c)_{V+A} (\bar{\ell}\ell)_{V+A} \right. \\ &+ C_{\ell c}^{L*} C_{\ell u}^R \left(\frac{1}{2} \, (\bar{u}\sigma^{\mu\nu}c) (\bar{\ell}\sigma_{\mu\nu}(1-\gamma_5)\ell) - (\bar{u}c)_{S-P}(\bar{\ell}\ell)_{S-P}) \right) \\ &+ C_{\ell c}^{R*} C_{\ell u}^L \, \left(\frac{1}{2} (\bar{u}\sigma^{\mu\nu}c) (\bar{\ell}\sigma_{\mu\nu}(1+\gamma_5)\ell) - (\bar{u}c)_{S+P}(\bar{\ell}\ell)_{S+P}) \right) \right] \end{split}$$

From $D^+ \rightarrow \pi^+ \mu^+ \mu^-$ we find constraints on the two combinations

$$\frac{|C_{\mu c}^{L(R)} C_{\mu u}^{L(R)}|}{(M_{\tilde{d}}/{\rm TeV})^2} < 0.19, \qquad \frac{|C_{\mu c}^{L(R)} C_{\mu u}^{R(L)}|}{(M_{\tilde{d}}/{\rm TeV})^2} < 0.16,$$

one of which is also present in $D^0 \rightarrow \mu^+ \mu^-$ (helicity-lifted):

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \tau_{D_0} \frac{f_D^2 m_{D_0}^5}{256\pi m_c^2} \frac{|C_{\mu c}^L C_{\mu u}^R|^2 + |C_{\mu c}^R C_{\mu u}^L|^2}{M_{\tilde{d}}^4}$$

and from $\mathcal{B}(D^0 \to \mu^+ \mu^-)$ there is much stronger bound

$$\frac{|C_{\mu c}^{L(R)} C_{\mu u}^{R(L)}|}{(M_{\tilde{d}}/{\rm TeV})^2} < 0.032$$

This bound, applied to $\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)$ results in 9.4 × 10⁻⁸ $\to C_{\mu c}^{L(R)} C_{\mu u}^{R(L)}$ cannot be observed in $D^+ \to \pi^+ \mu^+ \mu^-$

Present experimental bound on the $D^0 \rightarrow \mu^+ \mu^-$ rate leads to the rate $D^+ \rightarrow \pi^+ \mu^+ \mu^-$ two order of magnitude smaller than the SM result.

- inclusion of Q = -1/3 weak-isosinglet scalar leptoquark leads to tree-level $c \rightarrow u \mu \mu$
 - $D^+ \rightarrow \pi^+ \mu^+ \mu^-$ sensitive to both $C_{\mu c}^{L(R)} C_{\mu u}^{L(R)}, C_{\mu c}^{L(R)} C_{\mu u}^{R(L)}$
 - $D^0 \rightarrow \mu^+ \mu^-$ only to helicity-unsuppressed $C^{L(R)}_{\mu c} C^{R(L)}_{\mu u}$
 - Bound from B(D⁰ → μ⁺μ⁻) renders D⁺ → π⁺μ⁺μ⁻ only sensitive to C^{L(R)}_{μc}C^{L(R)}_{μu}

Summary:

> Scalar leptoquarks cannot explain both $D_s \rightarrow l\nu$ decay widths, due to constraints coming from precision kaon, tau and D mesons.

➤ The triplet leptoquark is excluded from contributing to any of the widths.

Sizable contributions due to single right-handed down squark exchange in RPV supersymmetric models are also excluded.

> Leptoquark singlet is definitely excluded only from explaining the $D_s \to \mu \nu$ width.

 \succ The doublet contribution in $\ D^0 \to \mu^+ \mu^-$ is excluded with the new Belle bound.

Future perspective

Possible signatures of LQ in $D_s \to \tau \nu$

 $Br(J/\psi \rightarrow \tau^+ \tau^-)$ at the level of 10^{-11} (probably beyond the reach of BESIII) $Br(t \rightarrow c\tau^+ \tau^-)$ at the level of 10^{-5} (close to the limiting sensitivity of the LHC)

$$D^0 - \overline{D}^0$$
 and $K^0 - \overline{K}^0$ oscillations

Doublet leptoquarks

$$\begin{split} \mathcal{M}(D^{0} \leftrightarrow \bar{D}^{0}) &= \frac{1}{8\pi^{2}m_{\Delta_{2}}^{2}} \{ \Sigma_{l=\mu,\tau} (Y_{2L}^{cl}Y_{2L}^{ul*})^{2} (\bar{c}u)_{V-A} (\bar{c}u)_{V-A} + \\ & (Y_{2R}^{cl}Y_{2R}^{ul*})^{2} (\bar{c}u)_{V+A} (\bar{c}u)_{V+A}) \} \\ \\ \mathbf{u} \qquad \mathbf{\Delta}_{2} \qquad \mathbf{\bar{u}} \\ \\ \hline \mathbf{\bar{c}} \qquad \mathbf{\Delta}_{2} \qquad \mathbf{\bar{c}} \end{split}$$

$$\mathcal{M}(K^0 \leftrightarrow \bar{K}^0) = \frac{1}{8\pi^2 m_{\Delta_2}^2} \{ \Sigma_{l=\mu,\tau} (\tilde{Y}_{2L}^{dl} \tilde{Y}_{2L}^{sl*})^2 (\bar{s}d)_{V-A} (\bar{s}d)_{V-A} \}$$

 $Y_{2L}^{cl}Y_{2L}^{ul*} = (\cos\theta_c \tilde{Y}_{2L}^{sl} - \sin\theta_c \tilde{Y}_{2L}^{dl})(\cos\theta_c \tilde{Y}_{2L}^{dl*} + \sin\theta_c \tilde{Y}_{2L}^{sl*}).$

