Flavour Physics in the Littlest Higgs Model with T-Parity: Effects in the  $K, B_{d/s}$  and Dsystems

Stefan Recksiegel

TU München

Corfu Summer Institute, September 2009





# Contents

- Introduction
- The LHT model
- Flavour observables: Constraints and NP effects
- $D\bar{D}$  oscillations in LHT
- Conclusions

- Blanke, Buras, Poschenrieder, S.R., Tarantino, Uhlig, Weiler, JHEP 0701, 066 (2007), hep-ph/0610298 (LHT flavour basics, long)
- Blanke, Buras, S.R., Tarantino, Uhlig, Phys. Lett. B 657, 81 (2007)  $(D\overline{D} I)$
- Bigi, Blanke, Buras, S.R., JHEP **07**, 097 (2009), arXiv:0904.1545 ( $D\bar{D}$  II)
- Blanke, Buras, Duling, S.R., Tarantino, arXiv:0906.5454 (LHT flavour update)

## Introduction

Major problem in the SM: Gauge Hierarchy !

Top-loop corrections make Higgs mass unstable,  $\Delta m_{H}^{2} = -\frac{|\lambda_{t}|^{2}}{8\pi^{2}} \left[\Lambda_{UV}^{2} + \ldots\right]$ 

Expect  $m_H \rightarrow m_{\text{Planck}}$  or incredible fine-tuning.

#### One possible solution:

E.g. SUSY, cancel top-loop with stop-loop,  $\Delta m_H^2 = 2 \frac{|\lambda_s|^2}{16\pi^2} \left[ \Lambda_{UV}^2 + \ldots \right]$ 



н

Or, lower the Planck mass with extra dimensions, or ...

Or: Little Higgs !

# The Little Higgs Model(s)

Arkani-Hamed, Cohen, Georgi '01

Why little Higgs ? (Why not ?)

Interesting physics with very few (c.f. SUSY !) new parameters.

Give experimental physicists other signatures to look for.

Effects in some observables complementary to SUSY, UED, ...

#### Little Higgs idea:

Higgs Boson is **pseudo-Goldstone** boson of a spontaneously broken global symmetry. Gauge and Yukawa couplings break the symmetry explicitly, but every **single coupling** conserves enough of the symmetry to keep Higgs massless.

 $\rightarrow$  Radiative corrections only logarithmically divergent at one loop.

Common to all Little Higgs models:

New heavy weak gauge bosons, scalars, top partner T at TeV scale.

Similar phenomenology  $\rightarrow$  most people study Littlest Higgs Model

## The Littlest Higgs Model

Arkani-Hamed, Cohen, Katz, Nelson '02

Higgs boson is pseudo-Goldstone boson from global symmetry breaking of a global SU(5) to a global SO(5) at scale  $f \sim \mathcal{O}(\text{TeV})$ . Mechanism for symmetry breaking unspecified  $\rightarrow$ Littlest Higgs model is an effective theory valid up to  $\Lambda \sim 4\pi f$ . 14 Nambu-Goldstone bosons from symmetry breaking: SM Higgs, new  $W_H^{\pm}$ ,  $Z_H$ ,  $A_H$ , scalar triplet  $\Phi$ , also heavy partner for top, T. In the original Littlest Higgs, custodial SU(2) is broken already at tree level  $\rightarrow$  electroweak precision observables demand  $f \gtrsim 2-3$  TeV.  $\Rightarrow$  Small (10-20%) effects in Flavour Physics.

More interesting: Littlest Higgs with T parity (LHT).

# The Littlest Higgs Model with T parity (LHT)

Cheng, Low '03

Littlest Higgs with a discrete symmetry ("T parity"): All new particles (except  $T_+$ ) are odd, all SM particles are even.

 $\Rightarrow$  No contributions by T odd particles at tree level

(Cancellation of divergences still works: loop effect !)

 $\Rightarrow f \sim 1 \,\text{TeV}$  (or even lower) OK!

This gives us:

- three doublets of "mirror quarks" (T odd, heavy)
- three doublets of "mirror leptons" (T odd, heavy)
- T odd  $T_{-}$  in addition to T even  $T_{+}$ .
- Potentially large effects in the Flavour sector ☺
  (Although raison d'être is gauge hierarchy, not flavour !)
- (Dark matter candidate)

## Particle content of the LHT model

|              | T-even sector                                         | T-odd sector                          |
|--------------|-------------------------------------------------------|---------------------------------------|
| gauge bosons | $egin{array}{llllllllllllllllllllllllllllllllllll$    | $W_H^{\pm}, Z_H, A_H$                 |
| fermions     | SM quarks<br>top partner T <sub>+</sub><br>SM leptons | mirror quarks<br>T_<br>mirror leptons |
| scalars      | Higgs doublet $\boldsymbol{H}$                        | scalar triplet $\Phi$                 |

New parameters in LHT:

- $f: \text{ NP scale } (\rightarrow M_{W_H}, \ldots), x_L: t-T \text{ mixing}$
- mirror quark masses:  $m_{H1}, m_{H2}, m_{H2}$
- mirror quark mixing matrix:  $V_{Hd}$   $\rightarrow$  three angles and **three** phases (less phases to rotate away !)
- (MFV if degenerate !)
- $(V_{Hu}^{\dagger}V_{Hd} = V_{CKM})$

• (9 mirror lepton parameters, c.f. mirror quarks)

"MFV" ?

### $Minimal \ Flavour \ Violation \leftrightarrow Non-MFV$

Buras et al. 01, D'Ambrosio et al. 02 Models are MFV if there are no new sources of Flavour Violation (i.e. only SM-Yukawa).

Examples of MFV:

- Universal extra dimensions (UED) (Appelquist, Cheng, Dobrescu)
- SUSY with universal soft-scalar masses and trilinear soft terms proportional to Yukawa couplings (squark, quark masses aligned)
- Little Higgs without T parity

Examples of non-MFV:

- General SUSY (squark mass matrices not aligned with quarks)
- Littlest Higgs with *T*-parity

LHT is not MFV, new particles contribute to FCNC processes, e.g.



(contributing to  $K\bar{K}$  mixing  $\rightarrow \Delta M_K, \epsilon_K^{(\prime)}$ )

LHT amplitudes  $\sim \sum_{i=u,c,t} \underbrace{\lambda_i^K F_i(m_i, m_{T^+}, \ldots)}_{\text{T even}} + \underbrace{\xi_i^K G_i(m_H^i, M_{W_H}, \ldots)}_{\text{T odd}}$ 

(No new operators !)

 $\rightarrow \text{Inami-Lim: } X_K = X_{\text{SM}} + X_{\text{even}} + \xi_i^K / \lambda_t^K X_{\text{odd}},$  $\lambda_t^K = V_{ts}^* V_{td} \text{ (CKM)}, \quad \xi_i^K = V_{Hd}^{*is} V_{Hd}^{id} \text{ (mirror quark mixing)}$ 

CKM hierarchy:  $1/\lambda_t^K \gg 1/\lambda_t^{B_d} \gg 1/\lambda_t^{B_s}$ ,

 $\rightarrow$  expect largest effects in K physics, but suitable  $\xi_i^j$  can produce large effects in  $B_d$ ,  $B_s$  !  $\rightarrow$  Interesting phenomenology expected in LHT, but

need to check experimental FCNC constraints very carefully !

Constraints that we studied:  $K\bar{K}$  mixing:  $\Delta M_K$ ,  $\mathcal{CP}$ :  $\epsilon_K$   $B\bar{B}$  mixing:  $\Delta M_{B_d}$ ,  $\Delta M_{B_s}$ , asymmetry:  $S_{J/\psi K_S}$  $(b \to s\gamma \text{ is not a problem, very moderate effects})$ 

We generate random points in the LHT parameter space, check these constraints and keep only points that fulfill all constraints. Input parameters are evenly distributed over their  $1\sigma$  ranges.

## Fine tuning ?

For arbitrary model parameters, LHT tends to break experimental constraints, most strongly  $\epsilon_K$ : (this plot: no  $\epsilon_K$  constraint)



 $\Delta_{\mathrm{BG}}(O) = \max\{\Delta_{\mathrm{BG}}(O, p_j)\}, \ \Delta_{\mathrm{BG}}(O, p_j) = \left|\frac{p_j}{O}\frac{\partial O}{\partial p_j}\right| \quad (\text{Barbieri,Giudice '87})$ 

 $\Rightarrow \epsilon_K$  typically  $\sim \mathcal{O}(10-100 \epsilon_K^{\text{exp}})$ , but no real fine tuning required. Some of the most spectacular points need no fine tuning at all.

### General results from LHT flavour study

 $K_L \to \pi^0 \nu \bar{\nu}$  against  $K^+ \to \pi^+ \nu \bar{\nu}$ :

(Very clean, excellent measure of  $\mathcal{CP}$  in Kaon system)



 $K_L \to \pi^0 \nu \bar{\nu}$  can be enhanced significantly ! (SM: black dot) Most data points lie on two axes: constant  $K_L \to \pi^0 \nu \bar{\nu}$  and parallel to the Grossmann-Nir bound  $\to$  operator structure

(Effects even larger before divergence cancellation found by Goto et al. '08)

CP-asymmetry  $S_{\psi\phi}$  much smaller in SM than  $S_{J/\psi K_S}$  ( $\beta_s \leftrightarrow \beta$ ). Large LHT effects possible:



Simultaneous large effects in  $K_L \to \pi^0 \nu \bar{\nu}$  and  $S_{\psi\phi}$  possible, but unlikely.

Contrary to  $Br(B_s \to \mu^+ \mu^-)$  and  $S_{\psi\phi}$ : Here simultaneous significant effects are rather likely !



Another interesting signature: Correlation between the Br's of  $K_L \rightarrow \mu^+ \mu^-_{SD}$  and  $K^+ \rightarrow \pi^+ \nu \bar{\nu}$  $\rightarrow$  complementary to RS model !



 $\Rightarrow$  Test LHT signatures in experiment !

 $D\bar{D}$  more complicated than  $K\bar{K}$  and  $B\bar{B}$ :  $K\bar{K}$  and  $B\bar{B}$  dominated by short-distance physics: charm/top loops



 $D\overline{D}$  has almost no short-distance contribution: Small CKM factors, down-type quarks in the loops too light  $\rightarrow$  SM: long-distance  $\rightarrow$  difficult to estimate  $\rightarrow$  we vary SM contribution in reasonable range in our calculation Significant contribution from LHT possible !

Need to be careful,  $D\overline{D}$  is special, e.g.

 $\Delta M_K = 2 \operatorname{Re}(M_K^{12})$  because weak phase tiny

$$\Delta M_B = 2 |M_B^{12}|$$
 because  $\Delta \Gamma_B \ll \Delta M_B$ 

No such approximation in the D system,

$$\Delta M_D = 2 \operatorname{Re} \sqrt{\left| M_D^{12} \right|^2 - \frac{1}{4} \left| \Gamma_D^{12} \right|^2 - i \Gamma_D^{12} M_D^{12*}}$$

### Some formalism

### $D\bar{D}$ mixing:

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^{0} \\ \bar{D}^{0} \end{pmatrix} = \begin{pmatrix} M_{11}^{D} - \frac{i}{2}\Gamma_{11}^{D} & M_{12}^{D} - \frac{i}{2}\Gamma_{12}^{D} \\ M_{12}^{D^{*}} - \frac{i}{2}\Gamma_{12}^{D^{*}} & M_{11}^{D} - \frac{i}{2}\Gamma_{11}^{D} \end{pmatrix} \begin{pmatrix} D^{0} \\ \bar{D}^{0} \end{pmatrix}$$

Flavour violation: Off-diagonal elements are non-zero,  $M_{12}^D, \Gamma_{12}^D \neq 0$ 

Flavour eigenstates: 
$$|D_{1/2}\rangle = \frac{1}{\sqrt{|p|^2 + |q|^2}} \left(p|D^0\rangle + - q|\bar{D}^0\rangle\right)$$

Observables: normalised mass and width differences, also: |q/p|.

$$x_D \equiv \frac{\Delta M_D}{\overline{\Gamma}}, \qquad y_D \equiv \frac{\Delta \Gamma_D}{2\overline{\Gamma}}, \qquad \frac{q}{p} \equiv \sqrt{\frac{M_{12}^{D^*} - \frac{i}{2}\Gamma_{12}^{D^*}}{M_{12}^D - \frac{i}{2}\Gamma_{12}^D}}$$

BaBar / Belle / CDF 07

Rather recently:  $x_D, y_D \neq 0$  measured  $\rightarrow D\bar{D}$  oscillations observed !

$$x_D = 0.0100^{+0.0024}_{-0.0026}, \qquad y_D = 0.0076^{+0.0017}_{-0.0018}, \qquad \left|\frac{q}{p}\right| = 0.86^{+0.17}_{-0.15}$$

(BaBar, arXiv:0908.0761:  $y_D = 0.0112 \pm 0.0026 \pm 0.0022$ )

CP violation not (yet) observed, |q/p| consistent with 1 !

In the SM, no significant  $\mathcal{CP}$  expected. LHT ?

#### Our strategy:

We determine  $(M_{12}^D)_{\text{SM}}$  and  $(\Gamma_{12}^D)_{\text{SM}}$  so that together with the LHT contribution,  $x_D$  and  $y_D$  coincide with experiment.

Bigi, Uraltsev '01 / Falk, Grossman, Ligeti, Nir, Petrov '04  $(M_{12}^D)_{\rm SM}$  and  $(\Gamma_{12}^D)_{\rm SM}$  are real, but the relative sign is not known (relative minus seems to be preferred).  $\rightarrow$  Two solutions !



Essentially all LHT parameter points are consistent with expectations for magnitude of SM contributions. In some cases,  $(M_{12}^D)_{\rm SM} / (\Gamma_{12}^D)_{\rm SM}$  can be rather large, but these are not our most spectacular/interesting data points.  $\epsilon_K$  constraint cuts away very large results for  $|M_{12}^D|$ , (blue triangles: no  $\epsilon_K$  constraint)



but very large (for D) CPasymmetries possible ! Why experimental bound on  $a_{\rm SL}$  ?  $\rightarrow |q/p|$  !



Semileptonic CP asymmetry  $a_{SL}^{D^0}$ is closely related to |q/p|, and  $|q/p|_{exp} = 0.86^{+0.17}_{-0.15}$ 

asL 1.0 0.5 0.0 2.0 |q/p| 0.5 1.5 -0.5 -1.0 Selid 0.60.4 0.2 0.0 |q/p|2.0 0.5 -0.2-0.4

Correlation with  $B_s \overline{B}_s$  mixing: Simultaneous large effects possible, but unlikely. (c.f. (no) correlation K system  $\leftrightarrow B$  system)

# Conclusions

- The LHT model is an interesting, economical alternative to SUSY etc. in solving the little hierarchy problem
- Rather few parameters, hierarchy OK, EW precision tests OK
- Interesting, sometimes spectacular effects on Flavour observables
- Large CP violation in  $D\overline{D}$  oscillations possible
- Wait for experimental veri-/falsification



-0.4L