Scattering amplitudes
 in $\mathcal{N}=4$ super-Yang-Mills theory

Emery Sokatchev
LAPTH, Annecy, France

Outline

\checkmark On-shell gluon scattering amplitudes
\checkmark Iterative structure at weak/strong coupling in $\mathcal{N}=4$ SYM
\checkmark Dual conformal invariance - hidden symmetry of planar amplitudes
\checkmark Maximally helicity violating (MHV) scattering amplitude/Wilson loop duality in $\mathcal{N}=4 \mathrm{SYM}$

Why is $\mathcal{N}=4$ super Yang-Mills theory interesting?

\checkmark Four-dimensional gauge theory with extended spectrum of physical states/symmetries

$$
2 \text { gluons with helicity } \pm 1, \quad 6 \text { scalars with helicity } 0, \quad 8 \text { gauginos with helicity } \pm \frac{1}{2}
$$

all in the adjoint of the $S U\left(N_{c}\right)$ gauge group
\checkmark Classical symmetries survive at the quantum level:
$x \beta$-function vanishes to all loops \Longrightarrow the theory is (super)conformal
\times Only two free parameters: 't Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N_{c}$ and number of colors N_{c}
\checkmark Why is $\mathcal{N}=4$ SYM fascinating?
\times At weak coupling, $\mathcal{L}_{\mathcal{N}=4}$ is more complicated than $\mathcal{L}_{Q C D}$, the number of Feynman integrals contributing to amplitudes is MUCH bigger compared to QCD ... but the final answer is MUCH simpler (examples to follow)
\times At strong coupling, the conjectured AdS/CFT correspondence [Maldacena],[Gubser,Klebanov,Polyakov],[Witten]

$$
\text { Strongly coupled planar } \mathcal{N}=4 \text { SYM } \Longleftrightarrow \text { Weakly coupled string theory on } \text { AdS }_{5} \times \mathrm{S}^{5}
$$

x Final goal (dream):
$\mathcal{N}=4$ SYM is the unique example of a four-dimensional gauge theory that can be/ should be/ will be solved exactly for arbitrary values of the coupling !!!

Why scattering amplitudes?

\checkmark On-shell matrix elements of S-matrix:
x Probe (hidden) symmetries of gauge theory
x Are independent of gauge choice
\times Nontrivial functions of Mandelstam's variables $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$
\checkmark Simpler than QCD amplitudes but they share many properties
\checkmark In planar $\mathcal{N}=4$ SYM they have a remarkable structure
\checkmark All-order conjectures and a proposal for strong coupling via AdS/CFT
\checkmark New dynamical symmetry - dual superconformal invariance

On-shell gluon scattering amplitudes in $\mathcal{N}=4$ SYM

\checkmark Gluon scattering amplitudes in $\mathcal{N}=4$ SYM

\checkmark Color-ordered planar partial amplitudes

$$
\mathcal{A}_{n}=\operatorname{tr}\left[T^{a_{1}} T^{a_{2}} \ldots T^{a_{n}}\right] A_{n}^{h_{1}, h_{2}, \ldots, h_{n}}\left(p_{1}, p_{2}, \ldots, p_{n}\right)+[\text { Bose symmetry }]
$$

\times Color-ordered amplitudes are classified according to their helicity content $h_{i}= \pm 1$
x Supersymmetry relations:

$$
A^{++\ldots+}=A^{-+\ldots+}=0, \quad A^{(\mathrm{MHV})}=A^{--+\ldots+}, \quad A^{(\mathrm{next}-\mathrm{to}-\mathrm{MHV})}=A^{---+\ldots+},
$$

\times The $n=4$ and $n=5$ planar gluon amplitudes are all MHV

$$
\left\{A_{4}^{++--}, \quad A_{4}^{+-+-}, \ldots\right\}, \quad\left\{A_{5}^{+++--}, \quad A_{5}^{+-+--}, \ldots\right\}
$$

x Weak/strong coupling corrections to all MHV amplitudes are described by a single function of the 't Hooft coupling and kinematical invariants!
[Parke,Taylor]

Four-gluon amplitude in $\mathcal{N}=4$ SYM at weak coupling

$$
M_{4}(s, t) \equiv \mathcal{A}_{4} / \mathcal{A}_{4}^{(\text {tree })}=1+a \underbrace{2}_{1} \square_{4}^{3}+O\left(a^{2}\right), \quad a=\frac{g_{\mathrm{YM}}^{2} N_{c}}{8 \pi^{2}}, \quad s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{3}+p_{4}\right)^{2}
$$

All-order planar amplitudes can be split into (universal) IR divergent and (nontrivial) finite part

$$
M_{4}(s, t)=\operatorname{Div}\left(s, t, \epsilon_{\mathrm{IR}}\right) \operatorname{Fin}(s / t)
$$

\checkmark IR divergences appear at all loops as poles in $\epsilon_{\text {IR }}$ (in dimreg with $D=4-2 \epsilon_{\text {IR }}$)
\checkmark IR divergences exponentiate (in any gauge theory!)

$$
\operatorname{Div}\left(s, t, \epsilon_{\mathrm{IR}}\right)=\exp \left\{-\frac{1}{2} \sum_{l=1}^{\infty} a^{l}\left(\frac{\Gamma_{\mathrm{cusp}}^{(l)}}{\left(l \epsilon_{\mathrm{IR}}\right)^{2}}+\frac{G^{(l)}}{l \epsilon_{\mathrm{IR}}}\right)\left[\left(-s / \mu^{2}\right)^{l \epsilon_{\mathrm{IR}}}+\left(-t / \mu^{2}\right)^{l \epsilon_{\mathrm{IR}}}\right]\right\}
$$

\checkmark IR divergences are in one-to-one correspondence with UV divergences of cusped Wilson loops
$\Gamma_{\text {cusp }}(a)=\sum_{l} a^{l} \Gamma_{\text {cusp }}^{(l)}=$ cusp anomalous dimension of Wilson loops
$G(a)=\sum_{l} a^{l} G_{\text {cusp }}^{(l)}=$ collinear anomalous dimension
\checkmark What about the finite part of the amplitude $\operatorname{Fin}(s / t)$? Does it have a simple structure?
$\operatorname{Fin}_{\mathrm{QCD}}(s / t)=[4$ pages long mess $], \quad \operatorname{Fin}_{\mathcal{N}=4}(s / t)=$ BDS conjecture

Finite part of four-gluon amplitude in QCD at two loops

$\operatorname{Fin}_{\mathrm{QCD}}{ }^{(2)}(s, t, u)=A(x, y, z)+O\left(1 / N_{c}^{2}, n_{f} / N_{c}\right)$
with notations $x=-\frac{t}{s}, y=-\frac{u}{s}, z=-\frac{u}{t}, X=\log x, Y=\log y, S=\log z$

$$
\begin{aligned}
& A=\left\{\left(48 \operatorname{Li}_{4}(x)-48 \operatorname{Li}_{4}(y)-128 \operatorname{Li}_{4}(z)+40 \operatorname{Li}_{3}(x) X-64 \operatorname{Li}_{3}(x) Y-\frac{98}{3} \operatorname{Li}_{3}(x)+64 \operatorname{Li}_{3}(y) X-40 \operatorname{Li}_{3}(y) Y+18 \operatorname{Li}_{3}(y)\right.\right. \\
& +\frac{98}{3} \operatorname{Li}_{2}(x) X-\frac{16}{3} \operatorname{Li}_{2}(x) \pi^{2}-18 \operatorname{Li}_{2}(y) Y-\frac{37}{6} X^{4}+28 X^{3} Y-\frac{23}{3} X^{3}-16 X^{2} Y^{2}+\frac{49}{3} X^{2} Y-\frac{35}{3} X^{2} \pi^{2}-\frac{38}{3} X^{2} \\
& -\frac{22}{3} S X^{2}-\frac{20}{3} X Y^{3}-9 X Y^{2}+8 X Y \pi^{2}+10 X Y-\frac{31}{12} X \pi^{2}-22 \zeta_{3} X+\frac{22}{3} S X+\frac{37}{27} X+\frac{11}{6} Y^{4}-\frac{41}{9} Y^{3}-\frac{11}{3} Y^{2} \pi \\
& -\frac{22}{3} S Y^{2}+\frac{266}{9} Y^{2}-\frac{35}{12} Y \pi^{2}+\frac{418}{9} S Y+\frac{257}{9} Y+18 \zeta_{3} Y-\frac{31}{30} \pi^{4}-\frac{11}{9} S \pi^{2}+\frac{31}{9} \pi^{2}+\frac{242}{9} S^{2}+\frac{418}{9} \zeta_{3}+\frac{2156}{27} S \\
& \left.-\frac{11093}{81}-8 S \zeta_{3}\right) \frac{t^{2}}{s^{2}}+\left(-256 \mathrm{Li}_{4}(x)-96 \mathrm{Li}_{4}(y)+96 \mathrm{Li}_{4}(z)+80 \mathrm{Li}_{3}(x) X+48 \mathrm{Li}_{3}(x) Y-\frac{64}{3} \mathrm{Li}_{3}(x)-48 \mathrm{Li}_{3}(y) X\right. \\
& +96 \mathrm{Li}_{3}(y) Y-\frac{304}{3} \mathrm{Li}_{3}(y)+\frac{64}{3} \mathrm{Li}_{2}(x) X-\frac{32}{3} \mathrm{Li}_{2}(x) \pi^{2}+\frac{304}{3} \mathrm{Li}_{2}(y) Y+\frac{26}{3} X^{4}-\frac{64}{3} X^{3} Y-\frac{64}{3} X^{3}+20 X^{2} Y^{2} \\
& +\frac{136}{3} X^{2} Y+24 X^{2} \pi^{2}+76 X^{2}-\frac{88}{3} S X^{2}+\frac{8}{3} X Y^{3}+\frac{104}{3} X Y^{2}-\frac{16}{3} X Y \pi^{2}+\frac{176}{3} S X Y-\frac{136}{3} X Y-\frac{50}{3} X \pi^{2} \\
& -48 \zeta_{3} X+\frac{2350}{27} X+\frac{440}{3} S X+4 Y^{4}-\frac{176}{9} Y^{3}+\frac{4}{3} Y^{2} \pi^{2}-\frac{176}{3} S Y^{2}-\frac{494}{9} Y \pi^{2}+\frac{5392}{27} Y-64 \zeta_{3} Y+\frac{496}{45} \pi^{4} \\
& \left.-\frac{308}{9} S \pi^{2}+\frac{200}{9} \pi^{2}+\frac{968}{9} S^{2}+\frac{8624}{27} S-\frac{44372}{81}+\frac{1864}{9} \zeta_{3}-32 S \zeta_{3}\right) \frac{t}{u}+\left(\frac{88}{3} \operatorname{Li}_{3}(x)-\frac{88}{3} \operatorname{Li}_{2}(x) X+2 X^{4}-8 X^{3} Y\right. \\
& -\frac{220}{9} X^{3}+12 X^{2} Y^{2}+\frac{88}{3} X^{2} Y+\frac{8}{3} X^{2} \pi^{2}-\frac{88}{3} S X^{2}+\frac{304}{9} X^{2}-8 X Y^{3}-\frac{16}{3} X Y \pi^{2}+\frac{176}{3} S X Y-\frac{77}{3} X \pi^{2} \\
& +\frac{1616}{27} X+\frac{968}{9} S X-8 \zeta_{3} X+4 Y^{4}-\frac{176}{9} Y^{3}-\frac{20}{3} Y^{2} \pi^{2}-\frac{176}{3} S Y^{2}-\frac{638}{9} Y \pi^{2}-16 \zeta_{3} Y+\frac{5392}{27} Y-\frac{4}{15} \pi^{4}-\frac{308}{9} \\
& \left.-20 \pi^{2}-32 S \zeta_{3}+\frac{1408}{9} \zeta_{3}+\frac{968}{9} S^{2}-\frac{44372}{81}+\frac{8624}{27} S\right) \frac{t^{2}}{u^{2}}+\left(\frac{44}{3} L_{i}(x)-\frac{44}{3} L_{i}(x) X-X^{4}+\frac{110}{9} X^{3}-\frac{22}{3} X^{2} Y\right. \\
& +\frac{14}{3} X^{2} \pi^{2}+\frac{44}{3} S X^{2}-\frac{152}{9} X^{2}-10 X Y+\frac{11}{2} X \pi^{2}+4 \zeta_{3} X-\frac{484}{9} S X-\frac{808}{27} X+\frac{7}{30} \pi^{4}-\frac{31}{9} \pi^{2} \\
& \left.+\frac{11}{9} S \pi^{2}-\frac{418}{9} \zeta_{3}-\frac{242}{9} S^{2}-\frac{2156}{27} S+8 S \zeta_{3}+\frac{11093}{81}\right) \frac{u t}{s^{2}}+\left(-176 \operatorname{Li}_{4}(x)+88 \operatorname{Li}_{3}(x) X-168 \operatorname{Li}_{3}(x) Y-\ldots\right.
\end{aligned}
$$

Four-gluon amplitude in $\mathcal{N}=4 \mathrm{SYM}$ at weak coupling II

\checkmark Bern-Dixon-Smirnov (BDS) conjecture:

$$
\operatorname{Fin}_{4}(s / t)=1+\frac{a}{2} \ln ^{2}(s / t)+O\left(a^{2}\right) \stackrel{\text { all loops }}{\Longrightarrow} \exp \left[\frac{1}{4} \Gamma_{\text {cusp }}(a) \ln ^{2}(s / t)\right]
$$

x Compared to QCD,
(i) the complicated functions of s / t are replaced by the elementary function $\ln ^{2}(s / t)$;
(ii) the coefficient of $\ln ^{2}(s / t)$ is determined by the cusp anomalous dimension $\Gamma_{\text {cusp }}(a)$ just like the coefficient of the double IR pole.
x The conjecture has been verified up to three loops
\times A similar conjecture exists for n-gluon MHV amplitudes
\times It has been confirmed for $n=5$ at two loops
x Agrees with the strong coupling prediction from the AdS/CFT correspondence
\checkmark Surprising features of the finite part of the MHV amplitudes in planar $\mathcal{N}=4$ SYM:
Why should finite corrections exponentiate? and be related to the cusp anomaly of Wilson loops?

Dual conformal symmetry

Examine one-loop 'scalar box' diagram
\checkmark Change variables to go to a dual 'coordinate space' picture (not a Fourier transform!)

$$
p_{1}=x_{1}-x_{2} \equiv x_{12}, \quad p_{2}=x_{23}, \quad p_{3}=x_{34}, \quad p_{4}=x_{41}, \quad k=x_{15}
$$

$$
=\int \frac{d^{4} k\left(p_{1}+p_{2}\right)^{2}\left(p_{2}+p_{3}\right)^{2}}{k^{2}\left(k-p_{1}\right)^{2}\left(k-p_{1}-p_{2}\right)^{2}\left(k+p_{4}\right)^{2}}=\int \frac{d^{4} x_{5} x_{13}^{2} x_{24}^{2}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}}
$$

Check conformal invariance by inversion $x_{i}^{\mu} \rightarrow x_{i}^{\mu} / x_{i}^{2}$
[Broadhurst],[Drummond,Henn,Smirnov,ES]
\checkmark The integral is invariant under $S O(2,4)$ conformal transformations in dual space!
\checkmark This symmetry is not related to the $S O(2,4)$ conformal symmetry of $\mathcal{N}=4$ SYM
\checkmark All scalar integrals contributing to A_{4} up to 4 loops are dual conformal! [Bern,Czakon,Dixon,Kosower,Smirnov]
\checkmark The dual conformal symmetry allows us to determine four- and five-gluon planar scattering amplitudes to all loops!
[Drummond,Henn,Korchemsky,ES],[Alday,Maldacena]
\checkmark Dual conformality is "slightly" broken by the infrared regulator
\checkmark For planar integrals only!

From gluon amplitudes to Wilson loops

Properties of gluon scattering amplitudes in $\mathcal{N}=4$ SYM:
(1) IR divergences of M_{4} exactly match UV divergences of cusped Wilson loops
(2) Perturbative corrections to M_{4} possess a hidden dual conformal symmetry

Is it possible to find an $\mathcal{N}=4$ SYM object for which both properties are manifest?
Yes! The expectation value of a light-like Wilson loop in $\mathcal{N}=4$ SYM

$$
W\left(C_{4}\right)=\frac{1}{N_{c}}\langle 0| \operatorname{Tr} \mathrm{P} \exp \left(i g \oint_{C_{4}} d x^{\mu} A_{\mu}(x)\right)|0\rangle,
$$

\checkmark Gauge invariant functional of the integration contour C_{4} in Minkowski space-time
\checkmark The contour is made out of 4 light-like segments $C_{4}=\ell_{1} \cup \ell_{2} \cup \ell_{3} \cup \ell_{4}$ joining the cusp points x_{i}^{μ}

$$
x_{i}^{\mu}-x_{i+1}^{\mu}=p_{i}^{\mu}=\text { on-shell gluon momenta }
$$

\checkmark The contour C_{4} has four light-like cusps $\mapsto W\left(C_{4}\right)$ has UV divergences
\checkmark Conformal symmetry of $\mathcal{N}=4 \mathrm{SYM} \mapsto$ conformal invariance of $W\left(C_{4}\right)$ in dual coordinates x^{μ}

Cusp anomalous dimension

\checkmark Cusp anomaly is a very 'unfortunate' feature of Wilson loops evaluated on a Euclidean closed contour with a cusp - generates an anomalous dimension

$$
\left\langle\operatorname{tr} \mathrm{P} \exp \left(i \oint_{C} d x \cdot A(x)\right)\right\rangle \sim\left(\Lambda_{\mathrm{UV}}\right)^{\Gamma_{\text {cusp }}(g, \vartheta)}
$$

\checkmark A very 'fortunate' property of Wilson loops - the cusp anomaly controls the infrared asymptotics of scattering amplitudes in gauge theories
x The integration contour C is defined by the particle momenta
x The cusp angle ϑ is related to the scattering angles in Minkowski space-time, $|\vartheta| \gg 1$

$$
\Gamma_{\text {cusp }}(g, \vartheta)=\vartheta \Gamma_{\text {cusp }}(g)+O\left(\vartheta^{0}\right),
$$

\checkmark The cusp anomalous dimension $\Gamma_{\text {cusp }}(g)$ is an observable in gauge theories appearing in many contexts:
x Logarithmic scaling of anomalous dimensions of high-spin Wilson operators;
x IR singularities of on-shell gluon scattering amplitudes;
x Gluon Regge trajectory;
x Sudakov asymptotics of elastic form factors;
X ...

MHV scattering amplitudes/Wilson loop duality I

The one-loop expression for the light-like Wilson loop (with $x_{j k}^{2}=\left(x_{j}-x_{k}\right)^{2}$)
$\ln W\left(C_{4}\right)=$

$$
=\frac{g^{2}}{4 \pi^{2}} C_{F}\left\{-\frac{1}{\epsilon_{\mathrm{UV}}{ }^{2}}\left[\left(-x_{13}^{2} \mu^{2}\right)^{\epsilon_{\mathrm{UV}}}+\left(-x_{24}^{2} \mu^{2}\right)^{\epsilon_{\mathrm{UV}}}\right]+\frac{1}{2} \ln ^{2}\left(\frac{x_{13}^{2}}{x_{24}^{2}}\right)+\mathrm{const}\right\}+O\left(g^{4}\right)
$$

The one-loop expression for the gluon scattering amplitude

$$
\ln M_{4}(s, t)=\frac{g^{2}}{4 \pi^{2}} C_{F}\left\{-\frac{1}{\epsilon_{\mathrm{IR}}^{2}}\left[\left(-s / \mu_{\mathrm{IR}}^{2}\right)^{\epsilon_{\mathrm{IR}}}+\left(-t / \mu_{\mathrm{IR}}^{2}\right)^{\epsilon_{\mathrm{IR}}}\right]+\frac{1}{2} \ln ^{2}\left(\frac{s}{t}\right)+\mathrm{const}\right\}+O\left(g^{4}\right)
$$

\checkmark Identity the light-like segments with the on-shell gluon momenta $x_{i, i+1}^{\mu} \equiv x_{i}^{\mu}-x_{i+1}^{\mu}:=p_{i}^{\mu}$:

$$
x_{13}^{2} \mu^{2}:=s / \mu_{\mathrm{IR}}^{2}, \quad x_{24}^{2} \mu^{2}:=t / \mu_{\mathrm{IR}}^{2}, \quad x_{13}^{2} / x_{24}^{2}:=s / t
$$

UV divergences of the light-like Wilson loop match IR divergences of the gluon amplitude the finite $\sim \ln ^{2}(s / t)$ corrections coincide at one loop!

MHV scattering amplitudes/Wilson loop duality II

Conjecture: MHV gluon amplitudes are dual to light-like Wilson loops

$$
\ln \mathcal{A}_{4}=\ln W\left(C_{4}\right)+O\left(1 / N_{c}^{2}, \epsilon_{\mathrm{IR}}\right)
$$

\checkmark At strong coupling, the relation holds to leading order in $1 / \sqrt{\lambda}$
\checkmark At weak coupling, the relation was verified at two loops
[Drummond,Henn,Korchemsky,ES]

\checkmark Generalization to $n \geq 5$ gluon MHV amplitudes

$$
\ln \mathcal{A}_{n}^{(\mathrm{MHV})}=\ln W\left(C_{n}\right)+O\left(1 / N_{c}^{2}\right), \quad C_{n}=\text { light-like } n-\text { (poly) gon }
$$

\times At weak coupling, matches the n-gluon amplitude at one loop
x The duality relation for $n=5$ (pentagon) was verified at two loops

Conformal Ward identities for light-like Wilson loops

Main idea: Make use of the conformal invariance of light-like Wilson loops in $\mathcal{N}=4$ SYM + duality relation to constrain the finite part of n-gluon amplitudes
\checkmark Conformal transformations map the light-like polygon C_{n} into another light-like polygon C_{n}^{\prime}
\checkmark If the Wilson loop $W\left(C_{n}\right)$ were well defined (=finite) in $D=4$ dimensions, we would have

$$
W\left(C_{n}\right)=W\left(C_{n}^{\prime}\right)
$$

$\checkmark \ldots$ but $W\left(C_{n}\right)$ has cusp UV singularities \mapsto dimreg breaks conformal invariance

$$
W\left(C_{n}\right)=W\left(C_{n}^{\prime}\right) \times[\text { cusp anomaly }]
$$

\checkmark All-loop anomalous conformal Ward identities for the finite part of the Wilson loop

$$
W\left(C_{n}\right)=\exp \left(F_{n}\right) \times[\mathrm{UV} \text { divergences }]
$$

Under dilatations, \mathbb{D}, and special conformal transformations, \mathbb{K}^{μ},

$$
\begin{aligned}
\mathbb{D} F_{n} & \equiv \sum_{i=1}^{n}\left(x_{i} \cdot \partial_{x_{i}}\right) F_{n}=0 \\
\mathbb{K}^{\mu} F_{n} & \equiv \sum_{i=1}^{n}\left[2 x_{i}^{\mu}\left(x_{i} \cdot \partial_{x_{i}}\right)-x_{i}^{2} \partial_{x_{i}}^{\mu}\right] F_{n}=\frac{1}{2} \Gamma_{\operatorname{cusp}}(a) \sum_{i=1}^{n} x_{i, i+1}^{\mu} \ln \left(\frac{x_{i, i+2}^{2}}{x_{i-1, i+1}^{2}}\right)
\end{aligned}
$$

The same relations also hold at strong coupling

Finite part of MHV amplitudes

Corollaries of the conformal WI for the finite part of the Wilson loop/ MHV scattering amplitudes:
$\checkmark n=4,5$ are special: there are no conformal invariants (too few distances due to $x_{i, i+1}^{2}=0$)
\Longrightarrow the Ward identity has a unique all-loop solution (up to an additive constant)

$$
\begin{aligned}
& F_{4}=\frac{1}{4} \Gamma_{\text {cusp }}(a) \ln ^{2}\left(\frac{x_{13}^{2}}{x_{24}^{2}}\right)+\text { const }, \\
& F_{5}=-\frac{1}{8} \Gamma_{\text {cusp }}(a) \sum_{i=1}^{5} \ln \left(\frac{x_{i, i+2}^{2}}{x_{i, i+3}^{2}}\right) \ln \left(\frac{x_{i+1, i+3}^{2}}{x_{i+2, i+4}^{2}}\right)+\text { const }
\end{aligned}
$$

Exactly the functional forms of the BDS ansatz for the 4- and 5-point MHV amplitudes!
\checkmark Starting from $n=6$ there are conformal invariants in the form of cross-ratios, e.g.

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}, \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}, \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}
$$

Hence the general solution of the Ward identity for $W\left(C_{n}\right)$ with $n \geq 6$ contains an arbitrary function of the conformal cross-ratios.
\checkmark The BDS ansatz is a solution of the conformal Ward identity for arbitrary n but does it actually work for $n \geq 6$?
If not, what is the "remainder" function of $u_{1,2,3}$?

Remainder function

\checkmark We computed the two-loop hexagon Wilson loop $W\left(C_{6}\right)$...

... and found a discrepancy

$$
\ln W\left(C_{6}\right) \neq \ln \mathcal{M}_{6}^{(\mathrm{BDS})}
$$

\checkmark Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich computed the 6-gluon 2-loop amplitude
$\mathcal{M}_{6}^{(\mathrm{MHV})}=$

... and found a discrepancy

$$
\ln \mathcal{M}_{6}^{(\mathrm{MHV})} \neq \ln \mathcal{M}_{6}^{(\mathrm{BDS})}
$$

The BDS ansatz fails for $n=6$ starting from two loops.
... but the Wilson loop/MHV amplitude duality still holds

$$
\ln \mathcal{M}_{6}^{(\mathrm{MHV})}=\ln W\left(C_{6}\right)
$$

All-order MHV superamplitude

\checkmark All MHV amplitudes can be combined into a single superamplitude

$$
\mathcal{A}_{n}^{\mathrm{MHV}}\left(p_{1}, \eta_{1} ; \ldots ; p_{n}, \eta_{n}\right)=i(2 \pi)^{4} \frac{\delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \delta^{(8)}\left(\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} M_{n}^{(\mathrm{MHV})},
$$

Here $p_{i}^{\alpha \dot{\alpha}}=\lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}}$ solves $p_{i}^{2}=0$, and $\eta_{i}^{A}(A=1 \ldots 4)$ are Grassmann variables.
Helicity: $h[\lambda]=1 / 2, h[\tilde{\lambda}]=h[\eta]=-1 / 2$
\times Perturbative corrections to all MHV amplitudes are factorized into a universal factor $M_{n}^{(\mathrm{MHV})}$
x The all-loop MHV amplitudes appear as coefficients in the expansion of $\mathcal{A}_{n}^{\mathrm{MHV}}$ in powers of η 's

$$
\mathcal{A}_{n}^{\mathrm{MHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{1 \leq j<k \leq n}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{(\mathrm{MHV})}\left(1^{+} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots
$$

× The function $M_{n}^{(\mathrm{MHV})}$ is dual to a light-like n-gon Wilson loop

$$
\ln M_{n}^{(\mathrm{MHV})}=\ln W_{n}+O\left(\epsilon, 1 / N^{2}\right)
$$

\checkmark The MHV superamplitude possesses a bigger, dual superconformal symmetry which acts on the dual coordinates x_{i}^{μ} and their superpartners $\theta_{i \alpha}^{A}$

$$
p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu}, \quad \lambda_{i}^{\alpha} \eta_{i}=\theta_{i}^{\alpha}-\theta_{i+1}^{\alpha}
$$

Dual superconformal invariance

\checkmark Tree-level MHV superamplitude (in the spinor formalism $\langle i j\rangle=\lambda_{i}^{\alpha} \lambda_{j a}$)

$$
\mathcal{A}_{n}^{\mathrm{MHV} ; \text { tree }}=i(2 \pi)^{4} \frac{\delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \delta^{(8)}\left(\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

\checkmark The same amplitude in the dual superspace $\quad p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu}, \quad \lambda_{i}^{\alpha} \eta_{i}=\theta_{i}^{\alpha}-\theta_{i+1}^{\alpha}$

$$
\mathcal{A}_{n}^{\mathrm{MHV} ; \text { tree }}=i(2 \pi)^{4} \frac{\delta^{(4)}\left(x_{1}-x_{n+1}\right) \delta^{(8)}\left(\theta_{1}-\theta_{n+1}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

\checkmark Define inversions in the dual superspace

$$
I\left[\lambda_{i}^{\alpha}\right]=\left(x_{i}^{-1}\right)^{\dot{\alpha} \beta} \lambda_{i \beta}, \quad I\left[\theta_{i}^{\alpha A}\right]=\left(x_{i}^{-1}\right)^{\dot{\alpha} \beta} \theta_{i}^{\beta A}
$$

Neighbouring contractions are dual conformal covariant

$$
I[\langle i i+1\rangle]=\left(x_{i}^{2}\right)^{-1}\langle i i+1\rangle
$$

\checkmark The tree-level MHV amplitude is covariant under dual conformal inversions

$$
I\left[\mathcal{A}_{n}^{\mathrm{MHV} ; \text { tree }}\right]=\left(x_{1}^{2} x_{2}^{2} \ldots x_{n}^{2}\right) \times \mathcal{A}_{n}^{\mathrm{MHV} ; \text { tree }}
$$

\checkmark Generalization: dual superconformal covariance is a property of all tree-level superamplitudes (MHV, NMHV, $\mathrm{N}^{2} \mathrm{MHV}, \ldots$) in $\mathcal{N}=4$ SYM theory

Conclusions and recent developments

\checkmark MHV amplitudes in $\mathcal{N}=4$ theory
x possess dual conformal symmetry both at weak and at strong coupling
x Dual to light-like Wilson loops
... but what about NMHV, NNMHV, etc. amplitudes?
\checkmark This symmetry is part of a bigger dual superconformal symmetry of all planar tree-level superamplitudes in $\mathcal{N}=4$ SYM
[DHKS], [Brandhuber,Heslop,Travaglini]
\times Relates various particle amplitudes with different helicity configurations (MHV, NMHV,...)
x Interesting twistor space structure
[Witten'03], [Arkani-Hamed et al], [Hodges], [Mason,Skinner], [Korcemsky,ES]
x Broken by loop corrections, but how?
\checkmark Dual superconformal symmetry is now explained better through the AdS/CFT correspondence by a combined bosonic [Kallosh,Tseytin] and fermionic T-duality symmetry
\checkmark What is the generalization of the Wilson loop/amplitude duality beyond MHV?
\checkmark What is the role of ordinary superconformal symmetry?
x Exact symmetry at tree level, closure [ordinary, dual] = Yangian
[Drummond,Henn,Plefka]
x Not sufficient to fix the tree, need analytic properties
[Korchemsky,ES], [Beisert et al]
x At loop level broken by IR divergences, hard to control
\checkmark Is the theory integrable (in some sense)?

Back-up slides

Maximally Helicity Violating (MHV) superamplitude

\checkmark On-shell helicity states in $\mathcal{N}=4$ SYM:

$$
\left.G^{ \pm} \text {(gluons } h= \pm 1\right), \quad \Gamma_{A}, \bar{\Gamma}^{A} \text { (gluinos } h=\frac{1}{2} \text {) }, \quad S_{A B} \text { (scalars } h=0 \text {) }
$$

\checkmark Self-conjugate under PCT - maximal supersymmetry
\checkmark Can be combined into a single on-shell superstate with Grassmann variables $\eta^{A}, A=1 \ldots 4$

$$
\begin{aligned}
\Phi(p, \eta) & =G^{+}(p)+\eta^{A} \Gamma_{A}(p)+\frac{1}{2} \eta^{A} \eta^{B} S_{A B}(p) \\
& +\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}(p)+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}(p)
\end{aligned}
$$

\checkmark Combine all MHV amplitudes into a single MHV superamplitude

$$
\begin{aligned}
\mathcal{A}_{n}^{\mathrm{MHV}} & =\left(\eta_{1}\right)^{4}\left(\eta_{2}\right)^{4} \times A\left(G_{1}^{-} G_{2}^{-} G_{3}^{+} \ldots G_{n}^{+}\right) \\
& +\left(\eta_{1}\right)^{4}\left(\eta_{2}\right)^{3} \eta_{3} \times A\left(G_{1}^{-} \bar{\Gamma}_{2} \Gamma_{3} \ldots G_{n}^{+}\right) \\
& +\left(\eta_{1}\right)^{4}\left(\eta_{2}\right)^{2}\left(\eta_{3}\right)^{2} \times A\left(G_{1}^{-} \bar{S}_{2} S_{3} \ldots G_{n}^{+}\right)+\ldots
\end{aligned}
$$

Homogenous polynomial in η 's of degree 8

$$
\mathcal{A}_{n}^{\mathrm{MHV}}=i(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \underbrace{\frac{\delta^{(8)}\left(\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}}_{\text {tree amplitude }} \times \underbrace{M_{n}^{\mathrm{MHV}}\left(\left\{s_{i, i+1}\right\} ; a\right)}_{\text {universal function }}
$$

Four-gluon amplitude from AdS/CFT

Alday-Maldacena proposal:
\checkmark On-shell scattering amplitude is described by a classical string world-sheet in AdS_{5}

\times On-shell gluon momenta $p_{1}^{\mu}, \ldots, p_{n}^{\mu}$ define sequence of light-like segments on the boundary
x The closed contour has n cusps with the dual coordinates x_{i}^{μ} (the same as at weak coupling!)

$$
x_{i, i+1}^{\mu} \equiv x_{i}^{\mu}-x_{i+1}^{\mu}:=p_{i}^{\mu}
$$

The dual conformal symmetry also exists at strong coupling!
\checkmark Is in agreement with the Bern-Dixon-Smirnov (BDS) ansatz for $n=4$ amplitudes
\checkmark Admits generalization to arbitrary n-gluon amplitudes but it is difficult to construct explicit solutions for 'minimal surface' in AdS
\checkmark Agreement with the BDS ansatz is also observed for $n=5$ gluon amplitudes [Komargodsk] but disagreement is found for $n \rightarrow \infty \mapsto$ the BDS ansatz needs to be modified [Alday,Maldacena]

The same questions to answer as at weak coupling:
Why should finite corrections exponentiate?
Why should they be related to the cusp anomaly of Wilson loop?

