# Deformations of branes and exact CFTs 

## Konstadinos Sfetsos

University of Patras

## KEPKYPA, 7 September 2009

Based on:

- JHEP 02 (2008) 087, arXiv:0712.1912 [hep-th], with: A. Fotopoulos, M. Petropoulos and N. Prezas
- JHEP 06 (2008) 080, arXiv:0804.3062 [hep-th], with: N. Prezas (Mostly on this).
- JHEP, to appear, arXiv:0905.1623 [hep-th], with: M. Petropoulos and N. Prezas


## General remarks-Motivation

- In string theory we want to go beyond (super)gravity.
- Obtain exact CFT description of solutions.
- Branes are important in many developments: From the formulation of string theory, to black hole physics, to ads/cft.

Brane solutions admitting exact string description-CFTs
Only a tiny subset:

- NS5-branes at a point: $\mathbb{R}^{5,1} \times \mathbb{R}_{\phi} \times S U(2)$ [Callan-Harvey-Strominger, 91].
- NS5-branes at a circle: $\mathbb{R}^{5,1} \times \frac{S U(2, \mathbb{R})}{U(1)} \times \frac{S U(2)}{U(1)}[K . S ., 98]$.
- Intersecting F1- and NS5-branes: $\mathbb{R}^{4} \times A d S_{3} \times S U(2)$.


## Main motivation

What about backgrounds that do not admit an exact CFT interpretation?

- Understand deformations with exact CFT operators:
- On transverse space, world-volume. Could preserve SUSY.
- Adding angular momentum etc. Do not preserve SUSY.
- Interplay between exact string theory and $\sigma$-model (geometrical) approaches.
Exact operators and their semiclassical realizations.
- When does a perturbation have a clear $\sigma$-model interpretation?
- Aspects of holography when the exact string theory is known.


## Outline

- NS5-branes: Supergravity and basic CFT
- General considerations on supergravity backgrounds.
- NS5-branes at a point and $\mathbb{R}_{\phi} \times S U(2)_{k}$.
- Dictionary for CFT deformations
- General idea on how the dictionary is built up.
- Holographic and non-holographic deformations.
- Relocating the brane's, symmetry considerations, classification.
- Examples
- Branes on circles and on a line segment.
- Conformal to Egutchi-Hanson.
- From near horizon to asymptotic flatness.
- Summarı concludino remarks


## NS5-branes: Supergravity and basic CFT

## Supergravity

Consider $k$ parallel NS5-branes, with:

- Worldvolume, parameterized by $x^{\mu}, \mu=0,1, \ldots, 5$,
- transverse space $\mathbb{R}^{4}$ parametrized by $\mathrm{x}=\left\{x^{i}, i=6,7,8,9\right\}$. They can be spread out in $\mathbb{R}^{4}$ with

$$
\text { density } \quad \rho(\mathbf{x}): \quad \int_{\mathbb{R}^{4}} d^{4} x \rho(\mathbf{x})=1
$$

which defines

$$
H(\mathbf{x})=1+\alpha^{\prime} k \int_{\mathbb{R}^{4}} d^{4} x^{\prime} \frac{\rho\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}}
$$

a harmonic function in $\mathbb{R}^{4}$.

The $1 / 2$-susy preserving solitonic solution [Duff-Lu, 91], has:

- A metric

$$
d s^{2}=\underbrace{\eta_{\mu v} d x^{\mu} d x^{v}}_{6-\operatorname{dim} \text { flat }}+\underbrace{H(\mathbf{x}) \delta_{i j} d x^{i} d x^{j}}_{4-\text { dim non-trivial part }} .
$$

- A three-form NS-NS field

$$
H_{i j k}=\epsilon_{i j k}{ }^{\prime} \partial_{l} H,
$$

with indices raised and lowered with the flat metric of $\mathbb{R}^{4}$ and

- A dilaton field

$$
e^{2\left(\Phi-\Phi_{0}\right)}=H,
$$

where $\Phi_{0}$ is related to the asymptotic string coupling $g_{\mathrm{s}}=e^{\Phi_{0}}$ far from the NS5-branes.

## Basic exact CFT

Branes at a point in the near horizon limit (1 dropped in $H$ ) [Callan-Harvey-Strominger, 91].

- $\rho(\mathbf{x})=\delta^{(4)}(\mathbf{x})$ (every localized distribution far from sources).
- Letting $r=\sqrt{2 k} e^{\Phi_{0}+\phi / \sqrt{2 k}}\left(a^{\prime}=2\right)$

$$
d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d \phi^{2}+2 k \underbrace{d \Omega_{3}^{2}}_{\theta, \tau, \psi}, \quad H=2 \operatorname{Vol}_{S^{3}} .
$$

- Linear [Myers, 87; Antoniadis-Bachas-Ellis-Nanopoulos, 89] dilaton

$$
\Phi=-\frac{q}{2} \phi, \quad q=\sqrt{2 / k} .
$$

This is nothing but the exact supersymmetric theory $(\mathcal{N}=4)$ for

$$
\mathbb{R}^{5,1} \times \mathbb{R}_{\phi} \times S U(2)_{k}
$$

Operators for deformations of the NS5-branes at a point
In the world-volume of NS5's Little string theory (LST) [Seiberg, 97]. Asymptotically linear dilaton backgrounds provide holographic duals [Aharony-Berkooz-Kutasov-Seiberg, 98].
We restrict to Lorentz-invariant operators in the NS5 world-volume

$$
\text { symmetric, traceless of } \widetilde{\operatorname{tr}}\left(X^{i_{1}} X^{i_{2}} \ldots X^{i_{2 j+2}}\right), \quad i=6,7,8,9,
$$

where the $S O(4)$ scalars $X^{i}$ are $k \times k$ traceless matrices.

- Their eigenvalues parametrize the transverse positions NS5's.

The correspondence in the CFT side should involve:

- The $\Phi_{j ; m, \bar{m}}^{\mathrm{su}}$ primaries of the bosonic $S U(2)_{k-2}$. Semiclassically realized in terms of the Euler angles $\theta, \tau, \psi$.
- The fermions $\psi_{ \pm}$and $\psi_{3}$ in the adjoint of $S U(2)$.
- The boson $\phi$ and the corresponding fermion $\psi_{\phi}$.
- The vertex operator $e^{-q a_{j} \phi}$ of $\mathbb{R}_{\phi}$.

Holographic deformations

$$
\overbrace{\tilde{\operatorname{tr}}\left(X^{i_{1}} X^{i_{2}} \cdots X^{i_{2 j+2}}\right)}^{\text {LST }} \Longleftrightarrow \overbrace{\left(\psi \bar{\psi} \Phi_{j}^{\text {su }}\right)_{j+1 ; m, \bar{m}} e^{-q a_{j} \phi}}^{\text {CFT }} .
$$

Scalars in $\left(\frac{1}{2}, \frac{1}{2}\right)$ rep. of $S U(2)_{L} \times S U(2)_{R}$, l.h.s. has spin $j+1$.

- Quite generally

$$
\left(\psi \bar{\psi} \Phi_{j}^{\mathrm{su}}\right)_{j+1 ; m, \bar{m}}=\left(\mu_{3} \psi^{3} \Phi_{j, m_{3}}^{\mathrm{su}}+\mu_{+} \psi^{+} \Phi_{j, m_{+}}^{\mathrm{su}}+\mu_{-} \psi^{3} \Phi_{j, m_{-}}^{\mathrm{su}}\right) e^{-a_{j} q \phi} .
$$

- $\operatorname{Spin} j+1: \mu_{3, \pm}$ Clebsch-Gordan and $m_{3}=m, m_{ \pm}=m \mp 1$.
- $m$ and $\bar{m}$ will be associated with $U(1)$ 's symmetries in space.
- CFT for $S U(2)_{k-2} \rightarrow j=0, \frac{1}{2}, \ldots,(k-2) / 2$. The number of matrices on the l.h.s. is $k$, same as the dim of the matrix $X^{i}$.


## Non-Holographic deformations

- Relax condition on coefficients (no spin is specified).
- Use also the fermion $\psi_{\phi}$.
$\mathcal{N}=1$ preserving perturbation: We perturb the Lagrangian with

$$
\sum_{j=0}^{(k-2) / 2} \sum_{m, \bar{m}=-(j+1)}^{j+1}\left(\lambda_{j ; m, \bar{m}} G_{-\frac{1}{2}} \bar{G}_{-\frac{1}{2}}\left(\psi \bar{\psi} \Phi_{j}^{\text {su }}\right)_{j+1 ; m, \bar{m}} e^{-q a_{j} \phi}+\text { c.c. }\right) .
$$

- $G$ is the $\mathcal{N}=1$ supercurrent, realized in terms of $S U(2)_{k-2}$ currents, $\phi$ and the fermions.
- Giving Vev's to the $X^{i}$ 's (dictates the density $\rho(\mathbf{x})$ ) determines

$$
\lambda_{j ; m, \bar{m}} \sim \widetilde{\operatorname{tr}}\left(X^{i_{1}} X^{i_{2}} \ldots X^{i_{2 j+2}}\right) .
$$

- Perturbation produces a purely bosonic term, and two fermionic terms, one quadratic and one quartic.
- Should be cast in the form of an supersymmetric $\sigma$-model [Zumino, 79; Alvarez-Gaume-Freedman, 81; Howe-Sierra, 84]

$$
\begin{aligned}
\mathcal{L}= & e_{-}^{\imath} e_{+}^{l}+i \Psi_{+}^{l}\left(\partial_{-} \Psi_{+}^{l}+\omega_{-k}^{\imath} \Psi_{+}^{k}\right) \\
& +i \Psi_{-}^{l}\left(\partial_{+} \Psi_{-}^{\imath}+\omega_{+k}^{l} \Psi_{-}^{k}\right)+\frac{1}{2} R_{\imath j k l} \Psi_{+}^{l} \Psi_{+}^{\jmath} \Psi_{-}^{k} \Psi_{-}^{l}
\end{aligned}
$$

- For a marginal perturbation $h=1$, we should have, either
- $a_{j}=j+1$ : Normalizable operators (vanish as $\phi \rightarrow \infty$ ).
- $a_{j}=-j$ : Non-normalizable operators (diverge as $\phi \rightarrow \infty$ ).


## Summary, classification

Relating $m$ to $j$ and paying attention exceptional cases we arrive at:

| operator | chiral | primary | $\mathcal{N}=2$ | $\mathcal{N}=4$ | spacetin |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\psi^{+} \Phi_{j ; j} e^{-q(j+1) \phi}$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\sqrt{ }$ | V |
| $\psi^{+} \Phi_{j ; j} e^{q j \phi}$ |  | $\sqrt{ }$ |  |  |  |
| $\left(\psi \Phi_{j}\right)_{j+1 ; m} e^{-q(j+1) \phi}$ |  |  | $\sqrt{ }$ | $\sqrt{ }$ | V |
| $\left(\psi \Phi_{j}\right)_{j+1 ; m} e^{q j \phi}$ |  |  |  |  |  |
| $\psi_{3} e^{-q \phi}$ |  | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | V |
| $\psi_{3}$ |  |  | $\checkmark$ |  |  |
| $\left(\psi \Phi_{j}\right)_{m} e^{-q(j+1) \phi}$ |  |  |  |  |  |
| $\left(\psi \Phi_{j}\right)_{m} e^{q j \phi}$ |  |  | $\sqrt{ }$ | $\sqrt{ }$ | $\checkmark$ |
| $\psi \Phi_{j ;-j} e^{-q(j+1) \phi}$ | $\sqrt{ }$ | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ | $\checkmark$ |
| $\psi \Phi_{j ;-j} e^{q j \phi}$ | $\sqrt{ }$ |  | $\sqrt{ }$ |  |  |
| $\psi_{\phi} e^{-q \phi}$ |  | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | V |
| $\psi_{\phi}$ |  |  | $\checkmark$ | $\sqrt{ }$ | $\checkmark$ |

Deforming the brane's position
To describe deformation of the brane's position and not a flow to a different theory:

- Should preserve $\mathcal{N}=4$, but only in the normalizable branch. Using the operators of $\mathcal{N}=4$ realized in terms of the $S U(2)_{k-2}$ currents, $\phi$ and the fermions [Kounnas-Porrati-Rostand, 91], we find:
- $a_{j}=j+1$ : Only the normalizable branch preserves $\mathcal{N}=4$.
- Not all values of $m$, for fixed $j$, are allowed, but

$$
\begin{aligned}
m=j+1: & \mathcal{V}_{j ; j+1}=\psi^{+} \Phi_{j, j}^{\text {su }} e^{-q(j+1) \phi} \text { chiral primary } \\
m=-j-1: & \mathcal{V}_{j ;-j-1}=\psi^{-} \Phi_{j,-j}^{\text {su }} e^{-q(j+1) \phi} \text { anti-chiral primary }
\end{aligned}
$$

Chiral (anti-) primaries [Lerche-Vafa-Warner, 89] have $h= \pm q / 2$.

- An exception

$$
\psi_{3} e^{-q \phi} \text { primary, but not chiral }
$$

NS5-branes configurations and their symmetries in the continuum


## Holographic examples

## NS5-branes on a circle

The background for NS5-branes on a circle is [K.S., 98]

$$
\begin{aligned}
d s^{2} & =k\left[d \rho^{2}+d \theta^{2}+\frac{1}{\Sigma}\left(\tanh ^{2} \rho d \tau^{2}+\tan ^{2} \theta d \psi^{2}\right)\right] \\
B_{\tau \psi} & =\frac{k}{\Sigma}, \quad \Sigma=\tanh ^{2} \rho \tan ^{2} \theta+1
\end{aligned}
$$

plus a dilaton.

- Expanding for large $\rho(\phi=\sqrt{2 k} \rho)$

$$
\begin{aligned}
d s^{2} & =d s_{(0)}^{2}+4 e^{-2 \rho}\left(\sin ^{4} \theta d \psi^{2}-\cos ^{4} \theta d \tau^{2}\right)+\mathcal{O}\left(e^{-4 \rho}\right) \\
B_{\tau \psi} & =B_{\tau \psi}^{(0)}+4 e^{-2 \rho} \sin ^{2} \theta \cos ^{2} \theta+\mathcal{O}\left(e^{-4 \rho}\right)
\end{aligned}
$$

- The perturbation is just

$$
J_{3} \bar{J}_{3} e^{-q \phi} \quad \Longleftrightarrow \quad \psi^{3} \bar{\psi}^{3} e^{-q \phi}
$$

NS5-branes on a finite line segment

- Background has an $S O(3) \subset S O(4)$ symmetry.
- The bosonic part of the perturbation is

$$
\left(J^{+} \jmath^{+}+J^{-} \bar{\jmath}^{-}+2 J^{3} \bar{\jmath}^{3}\right) e^{-q \phi}
$$

- This commutes with the $S O(3)$ generated by

$$
J^{3}-\jmath^{3}, \quad J^{+}-\bar{J}^{-}, \quad J^{-}-\bar{J}^{+},
$$

in accordance with the symmetry of the deformation.

## Deformation of a finite size circle

The appropriate CFT with $\mathcal{N}=4$ SUSY is [K.S., 98]

$$
\mathbb{R}^{5,1} \times \frac{S U(2)_{k}}{U(1)} \times \frac{S L(2, \mathbb{R})_{k}}{U(1)}
$$

orbifolded under a $\mathbb{Z}_{k}$ discrete symmetry.


- Perturbation in terms of compact parafermions dressed with primaries of the non-compact theory.
- Fermions enter through their bosonized versions.
- New feature: For finite $k$, no purely bosonic or fermionic terms.
- A clear semiclassical $\sigma$-model picture in the limit $k \gg 1$.


## Non-holographic examples

Conformal to Egutchi-Hanson metric
Consider the 4-dim background conformal to Hyperkähler metric.

- If the conformal factor is harmonic, then it has generically $\mathcal{N}=(4,1)$ supersymmetry.
- For the Egutchi-Hanson Hyperkähler metric

$$
\nabla_{\mathrm{EH}}^{2} H=0 \Longrightarrow H=\frac{1}{r^{2}}\left[1+\frac{a^{4}}{3 r^{4}}+\mathcal{O}\left(\frac{a^{8}}{r^{8}}\right)\right] .
$$

- To leading order background is $S U(2) \times \mathbb{R}_{\phi}$.
- The bosonic part of the perturbation is $\left(r=e^{q \phi / 2}\right)$

$$
e^{-2 q \phi}\left[\left(\Phi_{1 ; 1,-1} J^{-}-\Phi_{1 ;-1,-1} J^{+}+4 \Phi_{1 ; 0,-1} J^{3}\right) J^{-}+\cdots\right] .
$$

- The holomorphic part of the deformation preserves $\mathcal{N}=4$, but the non-holomorphic none.


## Beyond the near-horizon

Want to "restore" the " 1 " in the harmonic function $H$.
Perturbation should:

- Be non-normalizable, since the asymptotic behavior changes.
- Preserve $(4,4)$ susy, since there is no-susy enhancement.

Perturbation is written is two equivalent ways

- Manifestly $\mathcal{N}=4$ for the holomorphic part

$$
e^{q \phi}\left[\left(\Phi_{1 ; 1,-1} J^{-}-\Phi_{1 ;-1,-1} J^{+}-2 \Phi_{1 ; 0,-1} J^{3}\right) \bar{J}^{-}+\cdots\right] .
$$

- Manifestly $\mathcal{N}=4$ for the anti-holomorphic part

$$
e^{q \phi}\left[\left(\Phi_{1 ;-1,1} \bar{J}^{-}-\Phi_{1 ;-1,-1} \bar{J}^{+}-2 \Phi_{1 ;-1 ; 0} \bar{J}^{3}\right) J^{-}+\cdots\right] .
$$

Therefore it preserves $(4,4)$ susy.

## Summary, concluding remarks

We studied NS5-background deformations in two different ways:

- By using the proposed holography, relating NS5-brane world-volume to CFT marginal operators preserving $\mathcal{N}=4$.
- by computing the deformation of the supergravity solution and of the corresponding $\sigma$-model.
- Comparison and complete agreement at the semiclassical level. Non-trivial confirmation of the holographic correspondence.
- Susy breaking deformations (adding angular momentum) [K.S., unpublished].
Some related future work:
- Check the correspondence for operators on the NS5-brane world-volume, in relation also to thermodynamics of LST.
- CFT deformations on the wold-volume. Appropriate supergravity solution seems to exist [G. Papadopoulos].

