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Seiberg duality

N = 1 gauge SU(N)

mesons QjQ̃j ; i, j = 1 . . . FQ

fundamental electric quarks Qa
i ; a = 1 . . .N

antifundamentals (Dirac mass mQ) Q̃i
a

Dual and deflected Unification – p.5

Based on Seiberg duality: the electric model consists of ...

The gauge coupling runs as

ISS meta-stable models

Content of the microscopic “electric model” (Intriligator, Seiberg, Shih

hep-th/0602239)

N = 1 gauge SU(Nc)

mesons QjQ̃j ; i, j = 1 . . . Nf

fundamental electric quarks Qa
i ; a = 1 . . .Nc

antifundamentals (Dirac mass mQ) Q̃i
a

If the beta function is negative b0 = 3Nc − Nf > 0 then the gauge

coupling

e−8π2/g2(E) =

(

E

Λ

)−b0

is strongly coupled in the IR (Λ is the Landau pole).

Dual and deflected Unification – p.3

If the beta-function is negative       
                                then hit Landau pole 

W = λ0X
k0+1 + λ1φXk1+1 + λ2φ

2Xk2+1

Mj = Q̃ (φαX)l
(

φβY
)m

Q ≡ Q̃ (φαX)j
Q

α =
ρX + ρY kX

1 − k∗

β =
ρY + ρXkY

1 − k∗

b0 = 3N − FQ > 0

1

Landau poles in direct gauge mediation: example
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Seiberg duality

Content of the macroscopic “magnetic model”

N = 1 gauge SU(n) n = FQ − N

mesons M j
i ; i, j = 1 . . . FQ

fundamental magnetic quarks qa
i ; a = 1 . . . n

antifundamentals q̃i
a

Dual and deflected Unification – p.6

The magnetic model found by matching baryons and global anomalies is

Runs to weak coupling in IR if                                 so strong->IR-free if

W = λ0X
k0+1 + λ1φXk1+1 + λ2φ

2Xk2+1

Mj = Q̃ (φαX)l
(

φβY
)m

Q ≡ Q̃ (φαX)j
Q

α =
ρX + ρY kX

1 − k∗

β =
ρY + ρXkY

1 − k∗

b0 = 3N − FQ > 0

b0 = 3n − FQ < 0

1

W = λ0X
k0+1 + λ1φXk1+1 + λ2φ

2Xk2+1

Mj = Q̃ (φαX)l
(

φβY
)m

Q ≡ Q̃ (φαX)j
Q

α =
ρX + ρY kX

1 − k∗

β =
ρY + ρXkY

1 − k∗

b0 = 3N − FQ > 0

b0 = 3n − FQ < 0

N + 1 ≤ FQ ≤
3

2
N

1

Landau poles in direct gauge mediation: example
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Characteristics of the IR theory

Magnetic theory contains tree-level plus ADS like dynamically

generated term W = Wcl + Wdyn:

Wcl = hTrFQ
(qMq̃) − hµ2

ISSTrFQ
M

Wdyn = N

(

hFQdetFQ
M

ΛFQ−3n

)

1

n

where µ2
ISS ≈ mQΛ.

Dual and deflected Unification – p.6

Characteristics of the IR theory

Near origin ignoring Wdyn we have an R-symmetry =⇒ |vac〉+:

FMi
j

= h (qi.q̃
j − µ2

ISSδj
i ) $= 0

cannot be satisfied since qi.q̃j has rank n = FQ − N < FQ.

But Wdyn breaks this R-symmetry (anomalously) =⇒ |vac〉0:
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Dual and deflected Unification – p.8anomalously broken by 

Characteristics of the IR theory

Magnetic theory contains tree-level plus ADS like dynamically

generated term W = Wcl + Wdyn:

Wcl = hTrFQ
(qMq̃) − hµ2

ISSTrFQ
M

Wdyn = N

(

hFQdetFQ
M

ΛFQ−3n

)

1

n

where µ2
ISS ≈ mQΛ.

Dual and deflected Unification – p.6

The origin is metastable because of approximate R-symmetry Nelson, Seiberg

Abe, Kobayashi, Omura 

Landau poles in direct gauge mediation: example

M
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Complete example: “deform” ISS for direct gauge mediation (SAA, Durnford, Jaeckel, Khoze)

                                                                                                                                                                       

Landau poles

• Consider a “baryon-deformed” ISS in order to mediate SUSY

breaking:

W = Mijqi.q̃j − Tr(µ2
ISSM) + mεabεrsq

a
r qb

s

where r, s = 1, 2 are the 1st and second generation numbers only.

• We will use q and q̃ to mediate to gauginos so let Nf = 7 and

gauge SU(5)f ⊃ GSM factor

• take (µ2
ISS)ij = diag{µ2

2I2, µ2
5I5}

Dual and deflected Unification – p.10

where                      are the 1st and 2nd flavour numbers. Take 
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and gauge the remaining                                                                                       
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Landau poles in direct gauge mediation: example

Thursday, 10 September 2009



The mediators are               and                 and the typical scalar mass is                                            

Landau poles

• Scalar masses can be much larger (don’t depend on R-symmetry

breaking):

mscalar ∼
g2

A

16π2
µ2

The deformation m takes phenomenology continuously from

almost-gauge-mediation-like to “split-SUSY-like”

Dual and deflected Unification – p.13

Landau poles

• Gaugino mass is now (naively)

qa
i=1..5

q̃i=1..5
a

mλ ≈
ḡ2

A

16π2
χ

µ2
5

µ2
2

Dual and deflected Unification – p.12

Landau poles

• Gaugino mass is now (naively)

qa
i=1..5

q̃i=1..5
a

mλ ≈
ḡ2

A

16π2
χ

µ2
5

µ2
2

Dual and deflected Unification – p.12

This is a model of ‘slightly split SUSY’.                               

Landau poles in direct gauge mediation: example
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Direct gauge mediation is attractive but typically a problem - a large 
contribution to the beta-functions...

In this case (and typically) since the additional fields are in complete SU(5) 
multiplets there is a universal contribution above messenger scale
 

Landau poles

Since the additional fields are in SU(5) multiplets, the beta functions of

the MSSM gauge couplings are modified universally as

b̄A = b̄(MSSM)
A − 9

To avoid an MSSM Landau pole before unification one requires

(α−1
GUT )(MSSM) ! 9 log(MGUT /µ2)

or

µ ! 109GeV

Dual and deflected Unification – p.14

Landau poles

W mess

1/!

GUT

Dual and deflected Unification – p.15

Landau poles in direct gauge mediation: example
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SU(5)SM

SU(5)elSU(2)mg

SU(5)SMSU(2)f SU(2)f

The physics of the ISS sector changes at the strong coupling scale (i.e. the Landau 
pole scale of the ISS part of the theory) ...
 

Solution 1: Deflected unification
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So the effective number of degrees of freedom decreases above the Landau 
pole scale of the SUSY-breaking ISS sector ...
 

Deflected unification

W mess

Electric hidden sectorMagnetic hidden

1/!

GUT

Dual and deflected Unification – p.20

Solution 1: Deflected unification
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Deflected unification

A Landau pole appears if

(α−1
GUT )(MSSM) ! 4 log(ΛISS/µ2) + 5 log(MGUT /µ2)

Clearly minimizing ΛISS/µ2 ameliorates the Landau pole, so assuming

that ΛISS ∼ 101−3µ2 we require 5 log(MGUT /µ2) ! 20 to avoid Landau

poles or

µ2 ≥ 4 × 105GeV.

This requirement is easily met by the phenomenological model

Dual and deflected Unification – p.19

Deflected unification

A Landau pole appears if

(α−1
GUT )(MSSM) ! 4 log(ΛISS/µ2) + 5 log(MGUT /µ2)

Clearly minimizing ΛISS/µ2 ameliorates the Landau pole, so assuming

that ΛISS ∼ 101−3µ2 we require 5 log(MGUT /µ2) ! 20 to avoid Landau

poles or

µ2 ≥ 4 × 105GeV.

This requirement is easily met by the phenomenological model

Dual and deflected Unification – p.19

A Landau pole is avoided if this happens at a low enough scale ... e.g. 

Deflected unification

A Landau pole appears if

(α−1
GUT )(MSSM) ! 4 log(ΛISS/µ2) + 5 log(MGUT /µ2)

Clearly minimizing ΛISS/µ2 ameliorates the Landau pole, so assuming

that ΛISS ∼ 101−3µ2 we require 5 log(MGUT /µ2) ! 20 to avoid Landau

poles or

µ2 ≥ 4 × 105GeV.

This requirement is easily met by the phenomenological model

Dual and deflected Unification – p.19

Can be (just about) met by this model.

Landau pole avoided if ...

Solution 1: Deflected unification
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Could it be that the MSSM is itself a magnetic dual theory, with apparent GUTs in 
the magnetic theory mirroring unification in electric theory? (Klebanov Strassler)

 

Magnetic

W GUTmess

Electric

!"!

Solution 2: Dual unification
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This picture is correct in known (Kutasov, Schwimmer, Seiberg) elec/mag duals to GUTs 
with adjoint X that breaks the GUT symmetry! 

Works as follows: first need a superpotential for X ...

Solution 2: Dual unification

Magnetic

W GUTmess

Electric

!"!

Figure 1.1: The dual-unification scenario of Ref.[4]: the supersymmetric Standard Model appears to
run to unphysical gauge unification when there are many messengers in complete SU(5) multiplets.
This is mapped to a real unification occurring in an electric dual description that is valid above
the Landau pole scale.

2 R-symmetry in the deformed KSS model

Let us first revisit the model of KSS in order to see how singlets can be introduced. As we have
said, one of the appealing features of those models was the ability to match the electric and
magnetic theories under deformations of the electric superpotentials

Wel =
k−1∑

i=0

ti
k + 1− i

Tr
[
Xk+1−i

]
+ λ Tr [X] (2.1)

where X is an adjoint field of the SU(N) gauge group and we have chosen our basis for X such
that there is no Xk term as explained in Ref.[7]. The undeformed theory has only the t0 term. The
ti>0 deformations spontaneously break the gauge symmetry and lead to a rich vacuum structure;
it is then possible to show that there exists a similar deformation in the magnetic theory that
produces the same vacuum. There is an aspect of this procedure that we will address in this
section as a warm-up exercise which is this. By adding the extra terms in Eq.(2.1), one breaks
the R-symmetries of the model. In principle therefore the ’t Hooft anomaly matching conditions
apply only to the undeformed theory. However it is often useful to think of couplings such as ti>0

as background R-charged fields that acquire VEVs. Thus a way to match the anomalies directly
in the deformed theory would be to consider these fields as singlets in the spectrum and to do
the anomaly matching on the complete theory. The singlet VEVs can then be fixed at the end to
generate the required R-breaking terms in Eq.(2.1) spontaneously. This is what we will investigate
here.

We commence by summarizing the models of KSS [6, 7] in more detail. They are based on an
SU(N) gauge group with FQ flavours of quarks and anti-quarks, and an adjoint field of the SU(N)
denoted by X. The symmetry content is

SU(FQ)L × SU(FQ)R ×U(1)B ×U(1)R1 ×U(1)R2 . (2.2)

When there is only the t0 term in the superpotential, the global symmetry is partially broken but
retains a U(1)R symmetry. The matter content is then summarised by Table 2.1. When there are
also non-zero ti couplings, the U(1)R-symmetry is completely broken. The F -term equation for

4

KSS

The magnetic theory is

SU(n) = SU(kFQ − N)

and the field content is q, q̃, mj , x where x are adjoints in the magnetic

gauge group, and

mj ≡ Q̃Xj−1Q ; j = 1 . . . k.

The superpotential in the magnetic theory is of the form

Wmag =
k−1
∑

i=0

ti
k + 1 − i

T r(xk+1−i) +
1

µ2

k−1
∑

l=0

tl

k−l
∑

j=1

mj q̃x
k−j−lq

Dual and deflected Unification – p.10

When GUT symmetry unbroken then 
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Additional terms give the same GUT breaking in both theories:

Dual unification

WX = 0 is a k order polynomial so there are k roots: hence

〈X〉 =









x1Ir1

x2Ir2

...xkIrk









;
k

∑

i=1

rk = N

The symmetry is broken as

SU(N) → SU(r1) × SU(r2) . . . SU(rk) × U(1)k−1.

Dual and deflected Unification – p.24

Dual unification

The broken model in the magnetic theory is

SU(n) = SU(kFQ − N) → SU(r̄1) × SU(r̄2) . . . SU(r̄k) × U(1)k−1,

where

r̄i = FQ − ri.

Dual and deflected Unification – p.26

Dual unification

The broken model in the magnetic theory is

SU(n) = SU(kFQ − N) → SU(r̄1) × SU(r̄2) . . . SU(r̄k) × U(1)k−1,

where

r̄i = FQ − ri.

Dual and deflected Unification – p.26

where                        .      Example ...

that µ is the scale at which α−1
U(1)(tµ) = −ᾱ−1

U(1)(tµ). Since the slopes of both electric and magnetic

U(1)’s are the same, in order consistently to define the scale µ (i.e. with µ < MGUT ) we require

ᾱGUT < 0, which would mean that the couplings of the magnetic theory are always unphysical.

Equivalently, the unification takes place in the magnetic phase. Such theories are irrelevant to us.

We will therefore focus on theories that have all SQCD factors in the free magnetic range, in this

case 3
2ri > Nf ≥ ri + 1 ∀i. We also require that the magnetic GUT theory is not asymptotically free

while the electric GUT theory is. A necessary condition is that Nf falls within the window given by

Nc

k
< Nf <

Nc

k − 1
2

, (3.55)

where the lower bound comes from the requirement that N̄c > 0 and the upper bound is the condition

that b̄0 < 0. This gives us a strong constraint, since we must have Nc ≥ k(2k − 1). If for example

k = 2, then the minimal case is

Nf = 6
elec: SU(10) → SU(5) × SU(5) × U(1),

mag: SU(2) → U(1)2.

The first case with at least three different group factors in the magnetic theory (i.e. the first non-trivial

unification) is

Nf = 10
elec: SU(15) → SU(8) × SU(7) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),

however in this case the matching of the U(1)’s is less clear because the unbroken magnetic theory

has vanishing β-function (2N̄c = Nf ). The first unambiguous case is

Nf = 11
elec: SU(17) → SU(9) × SU(8) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1).

Now let us consider the different scales. We take the GUT scale MGUT > Λ to ensure that

the electric theory unifies in the perturbative (weak coupling) regime. There are then two possible

orderings of the dynamical scales of SU(Nc) and SU(N̄c) consistent with the matching condition:

either Λ̄ < Λ < µ or Λ̄ > Λ > µ. These arise as follows: we have b0 > 0 and b̄0 < 0 and also

|b̄0| < |b0|, and therefore the matching condition (3.18) leads to the two situations shown in figure 4.

(Similar plots hold for the SU(ri) and SU(r̄i) constituent factors, with the replacements Λ → Λi and

µ → µi ∼ µ̂.)

For the first case,

Λ̄ < Λ < µ, (3.56)

the magnetic theory experiences a fake unification below the horizontal axis, but the overall magnetic

SU(5) theory is never realised as a perturbative theory. An example is depicted in figure 5 for the

case

Nf = 13
elec: SU(21) → SU(11) × SU(10) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),

– 17 –

Solution 2: Dual unification
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ᾱGUT < 0, which would mean that the couplings of the magnetic theory are always unphysical.

Equivalently, the unification takes place in the magnetic phase. Such theories are irrelevant to us.

We will therefore focus on theories that have all SQCD factors in the free magnetic range, in this

case 3
2ri > Nf ≥ ri + 1 ∀i. We also require that the magnetic GUT theory is not asymptotically free

while the electric GUT theory is. A necessary condition is that Nf falls within the window given by

Nc

k
< Nf <

Nc

k − 1
2

, (3.55)

where the lower bound comes from the requirement that N̄c > 0 and the upper bound is the condition

that b̄0 < 0. This gives us a strong constraint, since we must have Nc ≥ k(2k − 1). If for example

k = 2, then the minimal case is

Nf = 6
elec: SU(10) → SU(5) × SU(5) × U(1),

mag: SU(2) → U(1)2.

The first case with at least three different group factors in the magnetic theory (i.e. the first non-trivial

unification) is

Nf = 10
elec: SU(15) → SU(8) × SU(7) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),

however in this case the matching of the U(1)’s is less clear because the unbroken magnetic theory

has vanishing β-function (2N̄c = Nf ). The first unambiguous case is

Nf = 11
elec: SU(17) → SU(9) × SU(8) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1).

Now let us consider the different scales. We take the GUT scale MGUT > Λ to ensure that

the electric theory unifies in the perturbative (weak coupling) regime. There are then two possible

orderings of the dynamical scales of SU(Nc) and SU(N̄c) consistent with the matching condition:

either Λ̄ < Λ < µ or Λ̄ > Λ > µ. These arise as follows: we have b0 > 0 and b̄0 < 0 and also

|b̄0| < |b0|, and therefore the matching condition (3.18) leads to the two situations shown in figure 4.

(Similar plots hold for the SU(ri) and SU(r̄i) constituent factors, with the replacements Λ → Λi and

µ → µi ∼ µ̂.)

For the first case,

Λ̄ < Λ < µ, (3.56)

the magnetic theory experiences a fake unification below the horizontal axis, but the overall magnetic

SU(5) theory is never realised as a perturbative theory. An example is depicted in figure 5 for the

case

Nf = 13
elec: SU(21) → SU(11) × SU(10) × U(1),

mag: SU(5) → SU(2) × SU(3) × U(1),

– 17 –

10 15 20 25 30 35
!200

!100

0

100

200

300

400

500

Log!Q"GeV#

Figure 5: Running inverse couplings in KSS models with broken GUTs with MGUT , µ > Λ > Λ̄ and k = 2 and
assuming t0 = 1. The couplings are U(1) ≡ red/dashed; SU(11) → SU(2) ≡ blue/dotted; SU(10) → SU(3) ≡
dark-blue/solid. We also show the running (in green) of the unbroken theory, the scale µ̂ = µ2/MGUT in solid
grey, and the scale µ in dashed grey. The couplings of the unbroken theories obey ᾱ(µ)−1 = −α(µ)−1, while
those of the SU(ri) subgroups in the broken theories obey ᾱ(µ̂)−1 = −α(µ̂)−1. For this choice of parameters the
unbroken theories have no overlap, but the broken theories do.
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Figure 6: As in figure 5, for Λ̄ > MGUT > Λ > µ.

4. More general models (with coupled sectors)

The KSS models discussed so far were characterized in the IR by a magnetic theory broken into

completely decoupled SQCD factors. The unification in both the electric and magnetic descriptions

– 19 –

Solution 2: Dual unification

Moreover unification in electric theory implies unification in magnetic theory. (SAA, Khoze)
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Dual unified SU(5)

2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.
Note that the theory we outline below is not the only choice of parameters. One can in fact choose
any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our
main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the
moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed
theory A may not even be necessary if theory B is itself asymptotically free.) The model is based
on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),
with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of
bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an
anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition
in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(N) × Sp(M)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(N) Sp(M)a Rp

Ya=1...3 i
Q̃J̄=1...3M ˜ 1 1
H̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 −i
FJ=1...∆f 1 i

X Adj 1 1
Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model
to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-
parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the
rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental
pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to
be cubic. Again, other values are possible but the higher you go the more difficult it becomes
to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT
symmetry breaking will be driven by lower order deformations to the X3 superpotential which we
can take to be a mass term for X. We write down the most general leading (modulo powers of X
which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge
symmetries:

WB =
mX

2
X2 +

s0

3
X3 + κiZY XiH̃

+λijQ̃XiY Y XjH̃ + λ′
ijF̃XiY Y XjF̃ + λ′′

ijH̃XiFQ̃XjF + λ′′′
ij F̃XiFF̃XjF . (1)

where the couplings carry dimensions.
4The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.

5
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any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our
main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the
moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed
theory A may not even be necessary if theory B is itself asymptotically free.) The model is based
on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),
with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of
bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an
anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition
in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(N) × Sp(M)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(N) Sp(M)a Rp

Ya=1...3 i
Q̃J̄=1...3M ˜ 1 1
H̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 −i
FJ=1...∆f 1 i

X Adj 1 1
Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model
to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-
parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the
rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental
pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to
be cubic. Again, other values are possible but the higher you go the more difficult it becomes
to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT
symmetry breaking will be driven by lower order deformations to the X3 superpotential which we
can take to be a mass term for X. We write down the most general leading (modulo powers of X
which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge
symmetries:

WB =
mX

2
X2 +

s0

3
X3 + κiZY XiH̃

+λijQ̃XiY Y XjH̃ + λ′
ijF̃XiY Y XjF̃ + λ′′

ijH̃XiFQ̃XjF + λ′′′
ij F̃XiFF̃XjF . (1)

where the couplings carry dimensions.
4The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.
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Electric theory:

2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.
Note that the theory we outline below is not the only choice of parameters. One can in fact choose
any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our
main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the
moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed
theory A may not even be necessary if theory B is itself asymptotically free.) The model is based
on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),
with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of
bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an
anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition
in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(11) × Sp(1)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(11) Sp(1)a Rp

Ya=1...3 i
Q̃J̄=1...3 ˜ 1 1
H̃J̄=1...3 ˜ 1 −1
F̃J̄=1,2 ˜ 1 −i
FJ=1,2 1 i

X Adj 1 1
Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model
to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-
parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the
rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental
pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to
be cubic. Again, other values are possible but the higher you go the more difficult it becomes
to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT
symmetry breaking will be driven by lower order deformations to the X3 superpotential which we
can take to be a mass term for X. We write down the most general leading (modulo powers of X
which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge
symmetries:

WB =
mX

2
X2 +

s0

3
X3 + κiZY XiH̃

+λijQ̃XiY Y XjH̃ + λ′
ijF̃XiY Y XjF̃ + λ′′

ijH̃XiFQ̃XjF + λ′′′
ij F̃XiFF̃XjF . (1)

where the couplings carry dimensions.
4The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.
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2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.
Note that the theory we outline below is not the only choice of parameters. One can in fact choose
any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our
main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the
moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed
theory A may not even be necessary if theory B is itself asymptotically free.) The model is based
on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),
with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of
bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an
anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition
in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(11) × Sp(1)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(11) Sp(1)a Rp

Ya=1...3 i
Q̃J̄=1...3 ˜ 1 1
H̃J̄=1...3 ˜ 1 −1
F̃J̄=1,2 ˜ 1 −i
FJ=1,2 1 i

X Adj 1 1
Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model
to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-
parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the
rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental
pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to
be cubic. Again, other values are possible but the higher you go the more difficult it becomes
to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT
symmetry breaking will be driven by lower order deformations to the X3 superpotential which we
can take to be a mass term for X. We write down the most general leading (modulo powers of X
which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge
symmetries:

WB =
mX

2
X2 +

s0

3
X3 + κiZY XiH̃

+λijQ̃XiY Y XjH̃ + λ′
ijF̃XiY Y XjF̃ + λ′′

ijH̃XiFQ̃XjF + λ′′′
ij F̃XiFF̃XjF . (1)

where the couplings carry dimensions.
4The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.
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Dual unified SU(5)

2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.
Note that the theory we outline below is not the only choice of parameters. One can in fact choose
any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our
main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the
moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed
theory A may not even be necessary if theory B is itself asymptotically free.) The model is based
on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),
with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of
bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an
anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition
in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(N) × Sp(M)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(N) Sp(M)a Rp

Ya=1...3 i
Q̃J̄=1...3M ˜ 1 1
H̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 −i
FJ=1...∆f 1 i

X Adj 1 1
Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model
to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-
parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the
rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental
pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to
be cubic. Again, other values are possible but the higher you go the more difficult it becomes
to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT
symmetry breaking will be driven by lower order deformations to the X3 superpotential which we
can take to be a mass term for X. We write down the most general leading (modulo powers of X
which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge
symmetries:

WB =
mX

2
X2 +

s0

3
X3 + κiZY XiH̃

+λijQ̃XiY Y XjH̃ + λ′
ijF̃XiY Y XjF̃ + λ′′

ijH̃XiFQ̃XjF + λ′′′
ij F̃XiFF̃XjF . (1)

where the couplings carry dimensions.
4The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.
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where N Sp(2m) corresponds to the effective number of flavours, i.e. half the actual number of
Sp(M) fundamentals. Equality (i.e. N Sp(2m) = M + 2 ) corresponds to s-confinement. For our
case this is

3(M + 1) > n + 1 ≥ 2M + 4 . (22)
The "1" corresponds to the single massless fundamental za for each Sp(M). In this window there
exists an IR free magnetic dual Sp(m) description with

m = N Sp(M) − (M + 2)

=
n− 3

2
−M

= 5M + ∆f −
N + 3

2
(23)

whose mesons include antisymmetrics of SU(n). The spectrum is shown in table 4, where the

Table 4: Theory E: the generic low energy SU(n)× Sp(m)3 model with M = n−3
2 −m.

SU(n) Sp(m)a Rp

ỹa ˜ i

h̃J=1...3M ˜ 1 1
q̃J̄=1...3M ˜ 1 −1
f̃J̄=1...∆f

˜ 1 i
fJ=1...∆f 1 −i

x Adj 1 1
ζa 1 i

aa 1 −1
ha 1 1

Table 5: Theory E′: the spectrum of the confined low energy SU(5) model when m = 0 or M = n−3
2 .

SU(5) Rp

h̃J=1...3 ˜ 1
q̃J̄=1...3 ˜ −1
f̃J̄=1,2 ˜ i
fJ=1,2 −i

x Adj 1
aa −1
ha 1

mesons, aa ≡ yaya and ha ≡ zaya, give us the necessary representations of antisymmetrics for
the Georgi-Glashow model. Note that the bifundamentals ỹa in the dual theory have their flavour
charges (i.e. their SU(n) charges) reversed and that the R-parities of the matter and higgs fields
are the conventional ones for a SU(5)-GUT like model. One can check that anomalies cancel as
they should: the contribution to SU(n)3 anomalies is −6(M +m)+3(n−4)+3 = 0 . If 5M = N+3

2
then we would have m = 0 and the theory confines, with a spectrum as shown in table 5. The
superpotential is derived from WD with the required additional meson terms. For generic values
of m it takes the form

WE =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λ̃′ij f̃xi
saxj

sf̃ +
1

µD
(aỹỹ + hζỹ) + quartic , (24)

10

where N Sp(2m) corresponds to the effective number of flavours, i.e. half the actual number of
Sp(M) fundamentals. Equality (i.e. N Sp(2m) = M + 2 ) corresponds to s-confinement. For our
case this is

3(M + 1) > n + 1 ≥ 2M + 4 . (22)
The "1" corresponds to the single massless fundamental za for each Sp(M). In this window there
exists an IR free magnetic dual Sp(m) description with

m = N Sp(M) − (M + 2)

=
n− 3

2
−M

= 5M + ∆f −
N + 3

2
(23)

whose mesons include antisymmetrics of SU(n). The spectrum is shown in table 4, where the

Table 4: Theory E: the generic low energy SU(n)× Sp(m)3 model with M = n−3
2 −m.

SU(n) Sp(m)a Rp

ỹa ˜ i

h̃J=1...3M ˜ 1 1
q̃J̄=1...3M ˜ 1 −1
f̃J̄=1...∆f

˜ 1 i
fJ=1...∆f 1 −i

x Adj 1 1
ζa 1 i

aa 1 −1
ha 1 1

Table 5: Theory E′: the spectrum of the confined low energy SU(5) model when m = 0 or M = n−3
2 .

SU(5) Rp

h̃J=1...3 ˜ 1
q̃J̄=1...3 ˜ −1
f̃J̄=1,2 ˜ i
fJ=1,2 −i

x Adj 1
aa −1
ha 1

mesons, aa ≡ yaya and ha ≡ zaya, give us the necessary representations of antisymmetrics for
the Georgi-Glashow model. Note that the bifundamentals ỹa in the dual theory have their flavour
charges (i.e. their SU(n) charges) reversed and that the R-parities of the matter and higgs fields
are the conventional ones for a SU(5)-GUT like model. One can check that anomalies cancel as
they should: the contribution to SU(n)3 anomalies is −6(M +m)+3(n−4)+3 = 0 . If 5M = N+3

2
then we would have m = 0 and the theory confines, with a spectrum as shown in table 5. The
superpotential is derived from WD with the required additional meson terms. For generic values
of m it takes the form

WE =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λ̃′ij f̃xi
saxj

sf̃ +
1

µD
(aỹỹ + hζỹ) + quartic , (24)

10

while for the confined theory it is

WE′ =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λUaah + λ̃′ij f̃xi
saxj

sf̃ + quartic , (25)

Note that one of the low energy higgs fields ha is actually composite, and that if we are thinking
of this as the Georgi-Glashow model, then the κ̃ and λ̃ are required phenomenological couplings,
namely the so called higgs µ-term and down quark mass respectively. In this theory the former
would be tuned to split Higgs doublets and triplets in the usual manner (of which more later).

Theory A and A’
It is straightforward now to see how theory A derives from theory B by "integrating in" some
heavy mesons. Again assuming maximal rank for all the couplings theory A, the full spectrum is
then given by table clear up below ...

Table 6: Theory A: the high energy SU(N)× Sp(M)3 model.

SU(N) Sp(M)a Rp

Ya −i
H̃J̄=1...3M ˜ 1 1
Q̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 i
FJ=1...∆f 1 −i

X Adj 1 1
Ẑa Φ̂i aJ 1 i

χ̂i aJ̄ 1 −i

Σ̂i aJ̄ 1 1
(φ̂H)i ≡ (FXiH̃) 1 1 −i

(φ̂Q)i ≡ (FXiQ̃) 1 1 i

(φ̂F )i ≡ (FXiF̃ ) 1 1 1

WC =
mX

2
X2 +

s0

3
X3 + κ̂iZχi

+λ̄ijΦiχj + λ̄′ijΣiΣj + λ̄′′ijφH iφQ j + λ̄′′′ijφF iφF j

+
s0

µ2
B

(
Φih̃x1−i

s y + χiq̃x
1−i
s y + Σif̃x1−i

s y

+ φQ ih̃x1−i
s f + φH iq̃x

1−i
s f + φF if̃x1−i

s f
)

. (26)

Finally, given the above it is easy to write down dual theory A. This would be appropriate if
theory B has

N Sp(M) =
N + 1

2
≥ (M + 2) . (27)

We then find a dual theory with gauge group SU(N)× Sp(M̂)3 where

M̂ = N Sp(M) − (M + 2)

=
N − 3

2
−M . (28)

11
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Dual unified SU(5)

2 The dualities in detail
We now reconstruct the chain of dualities described in the introduction and depicted in figure 2.
Note that the theory we outline below is not the only choice of parameters. One can in fact choose
any number of Sp(M) factors, extra Sp(M) fundamentals in the electric theory and so on. Our
main aim here is to establish the fact that SU(5) GUTs can be fairly simply dualized so for the
moment we will usually make the most minimal choices.

Theory B
It is in fact easier to begin with theory B, shown in table 14 and deduce theory A last of all. (Indeed
theory A may not even be necessary if theory B is itself asymptotically free.) The model is based
on an N = 1 supersymmetric SU(N) × Sp(M)3 gauge theory (one Sp(M) for each generation),
with an adjoint field for the SU(N) gauge group denoted X. We assume three generations of
bifundamentals Ya coupling the SU(N) group to each of the Sp(M) groups. In order to have an
anomaly free vector-like theory we have to introduce 6M antifundamentals of SU(N). In addition
in order to be able to get both theories to confine we have to add a number of massless Sp(M)
fundamentals: we add a single one, Za=1...3, for each Sp(M). One should bear in mind that for

Table 1: Theory B: the electric SU(N) × Sp(M)3 model. We also allow ∆f pairs of fundamen-
tal/antifundamental (under SU(N)).

SU(N) Sp(M)a Rp

Ya=1...3 i
Q̃J̄=1...3M ˜ 1 1
H̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 −i
FJ=1...∆f 1 i

X Adj 1 1
Za 1 i

eventual phenomenology one would like to have a discrete symmetry such as R-parity in the model
to distinguish between matter fields and higgses. We assign R-parity i to the bifundamentals Ya, R-
parity−1 to 3M of the fundamentals which we call matter fields, Q̃J̄=1...3M , and R-parity +1 to the
rest of the fundamentals which we call higgses H̃. We also add ∆f fundamental/antifundamental
pairs (extra messenger fields) F and F̃ with R-parity ±i respectively.

Kutasov duality requires a non-zero superpotential for the SU(N) adjoints which we take to
be cubic. Again, other values are possible but the higher you go the more difficult it becomes
to achieve duality (in the sense that the gauge groups quickly become unwieldy). SU(N) GUT
symmetry breaking will be driven by lower order deformations to the X3 superpotential which we
can take to be a mass term for X. We write down the most general leading (modulo powers of X
which will get large VEVs) terms for the remaining fields consistent with R-parity and the gauge
symmetries:

WB =
mX

2
X2 +

s0

3
X3 + κiZY XiH̃

+λijQ̃XiY Y XjH̃ + λ′
ijF̃XiY Y XjF̃ + λ′′

ijH̃XiFQ̃XjF + λ′′′
ij F̃XiFF̃XjF . (1)

where the couplings carry dimensions.
4The dualities we will be using are well established and satisfy all the usual tests of for example ‘t Hooft anomaly

matching. Therefore we will not burden the reader by including all the global charges.

5

where N Sp(2m) corresponds to the effective number of flavours, i.e. half the actual number of
Sp(M) fundamentals. Equality (i.e. N Sp(2m) = M + 2 ) corresponds to s-confinement. For our
case this is

3(M + 1) > n + 1 ≥ 2M + 4 . (22)
The "1" corresponds to the single massless fundamental za for each Sp(M). In this window there
exists an IR free magnetic dual Sp(m) description with

m = N Sp(M) − (M + 2)

=
n− 3

2
−M

= 5M + ∆f −
N + 3

2
(23)

whose mesons include antisymmetrics of SU(n). The spectrum is shown in table 4, where the

Table 4: Theory E: the generic low energy SU(n)× Sp(m)3 model with M = n−3
2 −m.

SU(n) Sp(m)a Rp

ỹa ˜ i

h̃J=1...3M ˜ 1 1
q̃J̄=1...3M ˜ 1 −1
f̃J̄=1...∆f

˜ 1 i
fJ=1...∆f 1 −i

x Adj 1 1
ζa 1 i

aa 1 −1
ha 1 1

Table 5: Theory E′: the spectrum of the confined low energy SU(5) model when m = 0 or M = n−3
2 .

SU(5) Rp

h̃J=1...3 ˜ 1
q̃J̄=1...3 ˜ −1
f̃J̄=1,2 ˜ i
fJ=1,2 −i

x Adj 1
aa −1
ha 1

mesons, aa ≡ yaya and ha ≡ zaya, give us the necessary representations of antisymmetrics for
the Georgi-Glashow model. Note that the bifundamentals ỹa in the dual theory have their flavour
charges (i.e. their SU(n) charges) reversed and that the R-parities of the matter and higgs fields
are the conventional ones for a SU(5)-GUT like model. One can check that anomalies cancel as
they should: the contribution to SU(n)3 anomalies is −6(M +m)+3(n−4)+3 = 0 . If 5M = N+3

2
then we would have m = 0 and the theory confines, with a spectrum as shown in table 5. The
superpotential is derived from WD with the required additional meson terms. For generic values
of m it takes the form

WE =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λ̃′ij f̃xi
saxj

sf̃ +
1

µD
(aỹỹ + hζỹ) + quartic , (24)

10

where N Sp(2m) corresponds to the effective number of flavours, i.e. half the actual number of
Sp(M) fundamentals. Equality (i.e. N Sp(2m) = M + 2 ) corresponds to s-confinement. For our
case this is

3(M + 1) > n + 1 ≥ 2M + 4 . (22)
The "1" corresponds to the single massless fundamental za for each Sp(M). In this window there
exists an IR free magnetic dual Sp(m) description with

m = N Sp(M) − (M + 2)

=
n− 3

2
−M

= 5M + ∆f −
N + 3

2
(23)

whose mesons include antisymmetrics of SU(n). The spectrum is shown in table 4, where the

Table 4: Theory E: the generic low energy SU(n)× Sp(m)3 model with M = n−3
2 −m.

SU(n) Sp(m)a Rp

ỹa ˜ i

h̃J=1...3M ˜ 1 1
q̃J̄=1...3M ˜ 1 −1
f̃J̄=1...∆f

˜ 1 i
fJ=1...∆f 1 −i

x Adj 1 1
ζa 1 i

aa 1 −1
ha 1 1

Table 5: Theory E′: the spectrum of the confined low energy SU(5) model when m = 0 or M = n−3
2 .

SU(5) Rp

h̃J=1...3 ˜ 1
q̃J̄=1...3 ˜ −1
f̃J̄=1,2 ˜ i
fJ=1,2 −i

x Adj 1
aa −1
ha 1

mesons, aa ≡ yaya and ha ≡ zaya, give us the necessary representations of antisymmetrics for
the Georgi-Glashow model. Note that the bifundamentals ỹa in the dual theory have their flavour
charges (i.e. their SU(n) charges) reversed and that the R-parities of the matter and higgs fields
are the conventional ones for a SU(5)-GUT like model. One can check that anomalies cancel as
they should: the contribution to SU(n)3 anomalies is −6(M +m)+3(n−4)+3 = 0 . If 5M = N+3

2
then we would have m = 0 and the theory confines, with a spectrum as shown in table 5. The
superpotential is derived from WD with the required additional meson terms. For generic values
of m it takes the form

WE =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λ̃′ij f̃xi
saxj

sf̃ +
1

µD
(aỹỹ + hζỹ) + quartic , (24)

10

while for the confined theory it is

WE′ =
mx

2
x2 − s0

3
x3 + κ̃i hxi

sh̃ + λ̃ij h̃xi
saxj

sq̃ + λUaah + λ̃′ij f̃xi
saxj

sf̃ + quartic , (25)

Note that one of the low energy higgs fields ha is actually composite, and that if we are thinking
of this as the Georgi-Glashow model, then the κ̃ and λ̃ are required phenomenological couplings,
namely the so called higgs µ-term and down quark mass respectively. In this theory the former
would be tuned to split Higgs doublets and triplets in the usual manner (of which more later).

Theory A and A’
It is straightforward now to see how theory A derives from theory B by "integrating in" some
heavy mesons. Again assuming maximal rank for all the couplings theory A, the full spectrum is
then given by table clear up below ...

Table 6: Theory A: the high energy SU(N)× Sp(M)3 model.

SU(N) Sp(M)a Rp

Ya −i
H̃J̄=1...3M ˜ 1 1
Q̃J̄=1...3M ˜ 1 −1
F̃J̄=1...∆f

˜ 1 i
FJ=1...∆f 1 −i

X Adj 1 1
Ẑa Φ̂i aJ 1 i

χ̂i aJ̄ 1 −i

Σ̂i aJ̄ 1 1
(φ̂H)i ≡ (FXiH̃) 1 1 −i

(φ̂Q)i ≡ (FXiQ̃) 1 1 i

(φ̂F )i ≡ (FXiF̃ ) 1 1 1

WC =
mX

2
X2 +

s0

3
X3 + κ̂iZχi

+λ̄ijΦiχj + λ̄′ijΣiΣj + λ̄′′ijφH iφQ j + λ̄′′′ijφF iφF j

+
s0

µ2
B

(
Φih̃x1−i

s y + χiq̃x
1−i
s y + Σif̃x1−i

s y

+ φQ ih̃x1−i
s f + φH iq̃x

1−i
s f + φF if̃x1−i

s f
)

. (26)

Finally, given the above it is easy to write down dual theory A. This would be appropriate if
theory B has

N Sp(M) =
N + 1

2
≥ (M + 2) . (27)

We then find a dual theory with gauge group SU(N)× Sp(M̂)3 where

M̂ = N Sp(M) − (M + 2)

=
N − 3

2
−M . (28)
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Application to proton decay - why does nature seem to unify but the proton not decay?

u
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A
(X)
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d u

d u

eu

Figure 8: Proton decay in simple SU(5) SUSY GUTs generated by dimension 6 and dimension 5 operators
respectively.

SU(3)c indices, the offending terms in the Lagrangian are of the form

LA(X),A(Y ) =
ig√
2
(Aµ

IKX̄JIγµXKJ + Aµ
IKQ̄IγµQK)

⊃ ig√
2
A(X)µ

ia (εijkū
c
kγµqja + q̄ibγµe+

ab + d̄iγµla) (5.1)

where e+
ab = e+εab is an antisymmetric singlet of SU(2)L which comes from the antisymmetric 10 of

SU(5). For the moment we are using the usual nomenclature of the MSSM - thus the right-handed

fields are denoted uc and dc, ec, and the left-handed doublets q and l. So integrating out A(X)
µ generates

a term

Leff ⊃ g2

2M2
GUT

εijkεab(q̄ajγµuc
k)(q̄ibγµe+) . (5.2)

Note that the effective operator is a baryon of SU(3) (and also a baryon of SU(2)). Indeed the

new operators, since they must violate baryon number but also respect gauge invariance, can only be

baryons. The nett result is that the proton can decay via processes such as p → π0e+ as in figure 8a.

These are the dimension 6 operators which exists in SU(5) unification. In supersymmetric theories

one also has dimension 5 operators that contribute at one-loop due to the presence of Higgs triplets,

Q̃T ≡ 3̄ and QT ≡ 3, that couple via the Yukawa couplings of the MSSM:

W ⊃ hu

4
εIJKLMXIJXKLHM + hdXIJQIH̃J ⊃ huU c

i EcQT i + hdεijkU
c
i Dc

jQ̃T k , (5.3)

and similar for left handed fields. These give rise via figure 8b to the most dangerous operators; for

example those involving just the right handed fields are of the form

Leff ⊃ g2huhd

16π2MSUSY MGUT
εijk(u

c
ie

c)(uc
jd

c
k) . (5.4)

where hu and hd are the Yukawa couplings of the MSSM. Note that in this estimate, thanks to the non-

renormalization theorem, the one loop integral is dominated by the low momentum region k ! MSUSY ,

and so MSUSY appears in the denominator. In the low energy limit the diagram is equivalent to first

evaluating the non-renormalizable terms in an effective theory,

Weff ⊃ huhd

MGUT
εijk(E

cU c
i U c

j Dc
k) , (5.5)
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Figure 9: Approximation to figure 8b in which the dimension 5 operator is evaluated in the electric theory.

and then computing the diagram in figure 9 with its corresponding 4-point vertex.

In a dual-unified theory however, although the magnetic theory appears to be unified, proton

decay has to go through the electric theory since that is where the vector fields and Higgs triplets gain

their mass. At this energy scale the magnetic theory is strongly coupled and one must instead use

the weakly coupled electric theory description. In principle this could always be done by using the

diagram in figure 9. One would first compute the relevant operator in the electric theory and then

map it to the corresponding operators in Weff of the magnetic theory via Seiberg duality.

If one can find the electric dual of the SSM and its GUT theory, one has a ready mapping between

the baryonic operators involved. Since we do not yet know of a such theory, we will present a general

argument for what happens, and then support it by examining an analogous process in a theory where

both the dual theories are known, namely that of the previous section [22,23].

First the general argument. Suppose that SU(3)c baryons of the SSM are mapped to baryons of

SU(Nc) in the electric dual. Our generic picture is that the SU(3)c group factor is strongly coupled

in the UV above the messenger scale and the SU(Nc) factor is asymptotically free. Hence Nc > 3,

and as we have seen it is typically much larger. Therefore the baryon in the electric theory into which

Weff maps will have dimension > 4; let us call this dimension d, so that schematically the baryon

mapping would be

εijkE
cU c

i U c
j Dc

k → Λ4−dχd , (5.6)

where χ represents generic fields of the electric theory. (For convenience we are setting the dynamical

scales Λ and Λ̄ to be equal.) Now we must look to the electric theory to generate the operator in an

honest perturbative tree-level diagram involving propagators with MGUT scale masses. On dimensional

grounds we will find

Wel ⊃
χd

Md−3
GUT

. (5.7)

Note that this is the largest such an operator could be. In principle the operator could be smaller

if non-renormalizable Planck suppressed operators are involved (in which case powers of M−1
P l would

have to be accommodated as well). The relevant baryon number violating operator induced in the

– 25 –

effective magnetic theory would then be

Weff ⊃
(

Λ

MGUT

)d−4 1

MGUT
εijkE

cU c
i U c

j Dc
k . (5.8)

Hence the proton decay gets an extra
(

Λ
MGUT

)d−4
suppression compared with (5.5), which for even

modestly small Λ would make it ineffective.

It is perhaps clearer why this happens if one begins by building equivalents to figure 8b in the

electric theory. In order to generate gauge invariant operators, all such diagrams would have many

more quark legs since they have to correspond to baryons of the electric theory. At low external

momenta these quark legs confine into electric baryons, which can then be mapped into magnetic

baryons with the accompanying supression. (Of course the magnetic SU(3)c theory only becomes

confining again well below the messenger scale.)

Now let us show explicitly that this happens in an analogous process. Consider the two adjoint

models of eq.(4.4), with k = 4 and m = 0 in which the broken model is6

elec: SU(2n) → SU(n) × SU(n)′ × U(1)

mag: SU(6) → SU(3) × SU(3)′ × U(1)
(5.9)

where 6Nf −n = 3. We use a prime to distinguish the second SU(n) factor; i.e. in the broken theories

the field content is Nf flavours of quarks and antiquarks (labelled Q, Q̃ and Q′, Q̃′ in the electric theory

and q, q̃ and q′, q̃′ in the magnetic theory), a single massless adjoint for each SU factor (labelled X,

X ′ in the electric theory and Y , Y ′ in the magnetic theory) and a pair of massless bifundamentals

(labelled F , F̃ in the electric theory and f , f̃ in the magnetic theory).

Since the models do not contain asymmetric representations we have to improvise a little: we will

suppose that the operator of interest in the low energy theory is

Weff ⊃ κ

MGUT
εijk(Y q)iqjqk . (5.10)

Here the adjoint, which has zero baryon number, has replaced the right handed electron Ec, which

came from the antisymmetric in SU(5). We are interested in estimating the value of the constant

κ. We require the baryon mappings of the broken theory which may be obtained from ref. [22]; they

involve both the fundamental and the “dressed” quarks (i.e. quarks multiplied by some combination

6Note that refs. [22, 23] also considered the SU(n) × SU(n′) structure with n
′ "= n and also N

′

f "= Nf for which

electric/magnetic duality was established, but the unification in this case is more obscure.

– 26 –

Dual unified SU(5)

Note that the effective operator is a “baryon”:

W = λ0X
k0+1 + λ1φXk1+1 + λ2φ

2Xk2+1

Mj = Q̃ (φαX)l
(

φβY
)m

Q ≡ Q̃ (φαX)j
Q

α =
ρX + ρY kX

1 − k∗

β =
ρY + ρXkY

1 − k∗

b0 = 3N − FQ > 0

b0 = 3n − FQ < 0

N + 1 ≤ FQ ≤
3

2
N

tE = log(E)

bitΛi + bitΛi
= (bi + bi)tGUT − (b0 + b0)tGUT

Λb0Λ
b̄0

= µ̂b0+b̄0 .

ΛbiΛ
b̄i

= µbi+b̄i

i .

εijkEcU c
i U c

j Dc
k ↔ Λ4−dQd

(

Λ̄i

MGUT

)b̄i

= const ≡ e
−

8π2

ḡ2(MGUT )

SO(32)

µi =
µ2

MGUT
≡ µ̂

Wel ∼
Qd

Md−3
GUT

ᾱ−1 = −α−1
GUT + (b0 + b̄0)(tGUT − tµi)

εAA(AQ̃) ⊃ εEUUD

1
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The baryon number violation proportional to a baryon operator in the magnetic
 
theory but this is generated in the electric theory: on dimensional grounds expect 

where       represents generic electric fields and d is at least N.

But we know how to map to the operator in the magnetic theory
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suppression compared with (5.5), which for even

modestly small Λ would make it ineffective.
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more quark legs since they have to correspond to baryons of the electric theory. At low external

momenta these quark legs confine into electric baryons, which can then be mapped into magnetic
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(labelled F , F̃ in the electric theory and f , f̃ in the magnetic theory).

Since the models do not contain asymmetric representations we have to improvise a little: we will

suppose that the operator of interest in the low energy theory is

Weff ⊃ κ

MGUT
εijk(Y q)iqjqk . (5.10)

Here the adjoint, which has zero baryon number, has replaced the right handed electron Ec, which

came from the antisymmetric in SU(5). We are interested in estimating the value of the constant

κ. We require the baryon mappings of the broken theory which may be obtained from ref. [22]; they

involve both the fundamental and the “dressed” quarks (i.e. quarks multiplied by some combination

6Note that refs. [22, 23] also considered the SU(n) × SU(n′) structure with n
′ "= n and also N
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f "= Nf for which

electric/magnetic duality was established, but the unification in this case is more obscure.
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Dual unified SU(5)
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k0+1 + λ1φXk1+1 + λ2φ
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Mj = Q̃ (φαX)l
(

φβY
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b̄0

= µ̂b0+b̄0 .

ΛbiΛ
b̄i

= µbi+b̄i

i .

εijkEcU c
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In this case (X is dimensionless)... 

Dual unified SU(5)
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Preserving unification prediction: need 2-loop accuracy (~5%), but have only 1-loop matching

Dual unified SU(5)

No - Dual GUTs have the same predictive accuracy if 
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Summary

  Deflected unification can save direct gauge mediation from Landau poles

  Dual unification can happily accommodate them ...

  New methods for finding electric/magnetic duals
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