Walking through a stable Mini-Landscape

Towards realistic constructions with all moduli stabilized

Saúl Ramos-Sánchez

DESY

Sep. 6, 2009

Based on collaborations with: R. Kappl, O. Lebedev, H.P. Nilles, S. Parameswaran, S. Raby, M. Ratz, K. Schmidt-Hoberg, A. Wingerter, P. Vaudrevange, L. Velasco & I. Zavala

arXiv:0806.3905, arXiv:0812.2120 & work in progress

Orbifolds

Dixon, Harvey, Vafa, Witten (1985-86) Ibáñez, Nilles, Quevedo (1987) Font, Ibáñez, Quevedo, Sierra (1990) Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1990) Kobayashi, Raby, Zhang (2004) Förste, Nilles, Vaudrevange, Wingerter (2004) Buchmüller, Hamaguchi, Lebedev, Ratz (2004-06) Kobayashi, Nilles, Plöger, Raby, Ratz (2006) Förste, Steste, Timirgaziu (2006) Förste, Kobayashi, Ohki, Takahashi (2006) Kim, Kyae (2006-07) Choi, Kim (2006-08)

...

5D \mathbb{Z}_2 Orbifold

 $E_8 \times E_8 \longrightarrow \mathcal{G}_{4D} = \mathcal{G}_1 \cap \mathcal{G}_2 \cap \ldots \subset E_8 \times E_8$

In this talk...

- how to get stringy MSSM candidates ?
- how realistic are they ?
- moduli stabilization possible ?

Moduli Stabilization in Heterotic Orbifolds

Mini-Landscape

Saúl Ramos-Sánchez Walking through a stable Mini-Landscape

Orbifolds: Local GUTs

Local GUTs

Kobayashi, Raby, Zhang (2004) Förste, Nilles, Vaudrevange, Wingerter (2004) Buchmüller, Hamaguchi, Lebedev, Ratz (2004)

$$\begin{array}{rrrr} {\bf 16} & \to & ({\bf 3},{\bf 2})_{1/6} + (\overline{\bf 3},{\bf 1})_{-2/3} + (\overline{\bf 3},{\bf 1})_{1/3} + ({\bf 1},{\bf 2})_{-1/2} + ({\bf 1},{\bf 1})_1 + ({\bf 1},{\bf 1})_0 \\ & q & \overline{u} & \overline{d} & \ell & \overline{e} & \overline{\nu} \end{array}$$

Orbifolds: Local GUTs

Advantages of local SO(10) GUTs

- local matter: 16, 1
- 16 furnishes a complete SM family
- in 4D
 - $SO(10) \longrightarrow \mathcal{G}_{4D} = SU(3) \times SU(2) \times U(1)_Y$ possible
 - complete 16 survive
 - no 10 at the branes with local GUTS implies

$$\overline{(\mathbf{3},\mathbf{1})_{1/3}} + \overline{(\mathbf{3},\mathbf{1})_{-1/3}} + (\mathbf{1},\overline{\mathbf{2}})_{1/2} + (\mathbf{1},\mathbf{2})_{-1/2}$$

doublet-triplet splitting achievable

Orbifolds: Local GUTs

• Helpful local GUT scenarios

Require $\mathcal{G}_{4D} = \mathcal{G}_{SM} = \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_Y$

Impossible in \mathbb{Z}_N , $N < 6 \implies$ We consider \mathbb{Z}_6 -II orbifolds

Kobayashi, Raby, Zhang (2004) Buchmüller, Hamaguchi, Lebedev, Ratz (2004)

• Lattice $G_2 \times SU(3) \times SO(4)$; $\mathbb{Z}_6 - \text{II:} \left(e^{2\pi \frac{1}{6}}, e^{2\pi \frac{1}{3}}, e^{2\pi \frac{1}{2}} \right)$

Three Wilson lines possible: W_3 order 3, $W_2 \& W'_2$ order 2

Three Wilson lines possible: W_3 order 3, $W_2 \& W'_2$ order 2

Local GUTs with Wilson lines

Three Wilson lines possible: W_3 order 3, $W_2 \& W_2'$ order 2

Local GUTs with Wilson lines

Three Wilson lines possible: W_3 order 3, $W_2 \& W'_2$ order 2

• Local GUTs with Wilson lines

• 2 promising scenarios with 2 WL

W The c++ orbifolder - Mozilla Firefox	
Elle Edit View Go Bookmarks Tools Help	
🖕 🗣 🖓 😵 🚷 📠 http://www.th.physik.uni-bonn.de/nilles/orbifolds/ 💌 Ø Go 🔍	
The c++ orbifolder	
orbi dow dow here	folder on-line mload program mload source code 0 / about X The C++ Orbifolder version: Beta (release) platform: linux license: freeware by: Hans Peter Nilles, Saul Ramoa-Sänchez, Patrick K.S. Vaudrevange & Akin Wingerter
Jac goethers	

Minilandscape: Search Results

out of a total of $10^7\ \mathbb{Z}_6\text{--II}$ orbifold models:

 ~ 300 models: Lebedev, Nilles, Raby, R-S., Ratz, Vaudrevange, Wingerter (2006-2008)

- $\mathcal{G}_{4D} = \mathcal{G}_{SM} \times \mathcal{G}_{\text{hidden}}$
- 3 SM generations + Higgses + no exotics
- $\mathcal{N} = 1$ susy vacua (F = 0 & D = 0)
- gauge coupling unification
- local GUTs \Rightarrow natural doublet-triplet splitting
- nontrivial (lepton & quark) mass textures
- see-saw neutrino masses
- Iow-energy SUSY breaking Buchmüller, Hamaguchi, Lebedev, R-S, Ratz (2007)
- natural μ -term suppression
- admissible QCD axion
- candidate symmetries for proton stability
- origin of family symmetries

Choi, Nilles, R-S, Vaudrevange (2009)

cf. Stefan Förste's talk

Minilandscape: Search Results

out of a total of $10^7 \mathbb{Z}_6$ -II orbifold models: ~ 300 models: Lebedev, Nilles, Raby, R-S., Ratz, Vaudrevange, Wingerter (2006-2008) • $\mathcal{G}_{4D} = \mathcal{G}_{SM} \times \mathcal{G}_{\text{hidden}}$ • 3 SM generations + Higgses + no exotics • $\mathcal{N} = 1$ susy vacua (F = 0 & D = 0) gauge coupling unification local GUTs ⇒ <u>natural doublet triplet solitting</u> ٥ Nice, but... What about moduli stabilization? candidate sym Stefan Förste's talk origin of family symmetries

Moduli Stabilization in Heterotic Orbifolds

Moduli & Matter

Saúl Ramos-Sánchez Walking through a stable Mini-Landscape

Bulk Moduli

Brane Matter & Moduli

Moduli Stabilization in Heterotic Orbifolds

Towards the goal: how to stabilize

 T_i, U_m, S, N_α

Stabilizing S: a naïve approach

Ingredients:

Kappl, Nilles, Ratz, R-S, Schmidt-Hoberg, Vaudrevange (2008)

- unbroken SUSY $\Rightarrow \langle N_{\alpha} \rangle \sim 0.1$
- effective suppressed superpotential $W_0 = \langle \mathscr{W} \rangle \sim \langle N_\alpha \rangle^9$
- pure Yang-Mills SU(N) in hidden sector, e.g. $SU(4) \rightarrow$ gaugino condensation

Moduli Stabilization Ingredients

Previous efforts

Racetrack – multiple gaugino condensates

```
de Carlos, Casas, Muñoz (1992)
```

• Kähler stabilization (not under control)

Casas (1996)

However, either

not all moduli stabilized simultaneously unrealistic stabilization values not clear whether realizable in heterotic orbifolds

In orbifolds:

- string selections rules \Rightarrow \mathscr{W}^{pert}
- large $\mathcal{G}_{\mathrm{hidden}} \Rightarrow \mathscr{W}^{np}$ from gaugino condensation
- threshold corrections: $f_a = S + \Delta_a(T_i, U_m)$
- $N_{\alpha} \Rightarrow$ De Sitter Vacua possible

Lebedev, Nilles, Ratz (2006)

Moduli Stabilization Ingredients

Focus on a \mathbb{Z}_6 -II MSSM candidate:

- $\mathcal{G}_{4D} = \mathcal{G}_{SM} \times \mathrm{SO}(8) \times \mathrm{SU}(3)$
- 3 MSSM generations $+ h_u, h_d$
- additional brane singlets $N_{lpha} \Rightarrow N_1, N_2$
- In \mathbb{Z}_6 -II with lattice $G_2 \times SU(3) \times SO(4)$

Orbifold invariance of the lattice leaves free parameters: R_1 size of first torus G_2 R_3 size of second torus SU(3) R_5 , R_6 radii of third torus SO(4) α_{56} angle between the SO(4) radii \downarrow T_1, T_2, T_3, U_3

• From sugra multiplet S

Advantage of orbifolds: sugra limit known! ③

Dixon, Kaplunovsky, Louis (1990-1991)

Lüst, Muñoz (1992)

Nontrivial moduli Kähler potential and superpotential:

$$\mathscr{W}^{pert} = d N_1^2 N_2 e^{-\alpha T_2} (1 + e^{-\beta T_1})$$

$$\mathscr{W}^{np} = A \frac{e^{-aS} + e^{-bS}}{(\eta(T_2)\eta(T_3)\eta(U_3))^2}$$

$$K = -\log(S + \bar{S}) - \sum_{i=1}^{3} \log(T_i + \bar{T}_i) - \log(U_3 + \bar{U}_3) + \frac{|N_1|^2 + |N_2|^2}{(U_3 + \bar{U}_3)^{\ell_3} \prod_{i=1}^{3} (T_i + \bar{T}_i)^{n_i}}$$

- too many vacua ($10^{500})$ in the string landscape \rightarrow search strategy needed
- local GUTs offer an optimal strategy to find realistic vacua
- in \mathbb{Z}_6 -II heterotic orbifolds, about 200 MSSM candidates with successful phenomenology
- $\bullet\,$ in orbifolds, sugra limit known $\rightarrow\,$ ingredients for moduli stabilization available
- \bullet presence of matter fields \rightarrow De Sitter vacua achievable
- necessary to address explicitly this question in particular models

Parameswaran, R-S, Velasco-Sevilla, Zavala, work in progress