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The problem

There are three kinds of lies: lies, damned lies, and statistics.
(Mark Twain, reportedly quoting Benjamin Disraeli)
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Introduction

• Why supersymmetry? (SUSY) 
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The particle content of SUSY

From Bertone, Hooper & Silk (2005)
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Links with cosmology

• Strong cosmological and astrophysical 
evidence for the existence of Cold Dark 
Matter (CDM)

• The lightest SUSY particle (the 
neutralino) is a natural candidate for the 
CDM

• Cosmological DM abundance 
constrained (with a few assumptions) 
within ~ 10%: 
WMAP 5 yrs data: 
ΩCDMh2 = 0.1099 ± 0.0062
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Links with astrophysics 

Direct detection

Indirect detection
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Underground detectors looking 
for neutralino from local halo 

scattering off nuclei
(complicated by local WIMP 

distribution)

Look for neutralino-neutralino 
annihilation products:

gamma ray (continuum and & lines) 
antimatter (e.g., positrons) 

neutrinos (from Sun & Earth)
(complicated by gastrophysical 

nuisance parameters) 
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The model & data 

• The general Minimal Supersymmetric Standard Model (MSSM): 
105 free parameters! 

• Need some (pretty strong) simplifying assumption: 
the Constrained MSSM (CMSSM) reduces the free parameters to just 4 continous 
variables plus a discrete one (sign(μ)). 

• Clearly a highly constrained model (probably not the end of the story!)

• Present-day data: collider measurements of rare processes, CDM abundance 
(WMAP), sparticle masses lower limits, EW precision measurements. Soon, LHC 
sparticle spectrum measurements.

• Astrophysical direct and indirect detection techniques might also be 
competitive: neutrino (IceCUBE), gamma-rays (Fermi), antimatter (PAMELA), direct 
detection (XENON, CDMS, Eureca, Zeplin)  
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RGE

Non-linear
numerical
function

via SoftSusy 2.0.18 
DarkSusy 4.1 

MICROMEGAS 2.2 
FeynHiggs  2.5.1 

Hdecay 3.102 

Analysis pipeline

4 CMSSM parameters 
θ = {m0, m1/2, A0, tanβ}

(fixing sign(μ) > 0)

4 SM “nuisance
parameters” 

Ψ={mt, mb,αS, αEM }

Observable
quantities

fi(θ ,Ψ)

CDM relic abundance
BR’s

EW observables
g-2

Higgs mass
sparticle spectrum

(gamma-ray, neutrino,
antimatter flux, direct 
detection x-section)

Data: 
Gaussian likelihoods 

for each of the Ψj 
(j=1...4)

Data: 
Gaussian likelihood

(CDM, EWO, g-2, b→sγ, ΔMBs)

other observables have 
only lower/upper limits

Physically acceptable?
EWSB, no tachyons, 

neutralino CDM 

YES

NO

Likelihood = 0
SCANNING ALGORITHM 

Joint likelihood function
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The accessible “surface”

Acceptable

Unphysical

log(m0)
log(m1/2)

Scan from the prior with no likelihood except physicality constraints

lo
g(

lik
e)

Courtesy F. Feroz & M. Bridges
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Data included

Indirect observables SM parameters
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Why is this a difficult problem?

• Inherently 8-dimensional: reducing the dimensionality over-simplifies the problem. 
Nuisance parameters (in particular mt) cannot be fixed! 

• Likelihood discontinuous and multi-modal due to physicality conditions

• RGE connect input parameters to observables in highly non-linear fashion: only 
indirect (sometimes weak) constraints on the quantities of interest (-> prior 
volume effects are difficult to keep under control)

• Mild discrepancies between observables (in particular, g-2 and b→sγ) tend to pull 
constraints in different directions  
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2 dimensional slices 

Roszkowski et al (2001)
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The “WMAP strips” 

Ellis et al (2007)

m0 fixed by requiring that the CDM abundance matches the WMAP value. 
All nuisance parameters fixed. 
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Impact of nuisance parameters

Roszkowki et al (2007)
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Random scans

• Points accepted/rejected in a in/out fashion (e.g., 2-sigma cuts)

• No statistical measure attached to density of points

• No probabilistic interpretation of results possible

• Inefficient/Unfeasible in high dimensional parameters spaces (N>3) 
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Bayesian parameter inference

16Friday, 4 September 2009



Roberto Trotta 

The Bayesian approach

• Bayesian approach led by two groups (early work by Baltz & Gondolo, 2004):

• Ben Allanach (DAMPT) et al (Allanach & Lester, 2006 onwards, Cranmer, and others)

• Ruiz de Austri, Roszkowski & RT (2006 onwards) 
SuperBayeS public code  (available from: superbayes.org)
+ Feroz & Hobson (MultiNest), + Silk (indirect detection), + Strigari (direct detection), + 
Martinez et al (dwarfs), + de los Heros (IceCube)

Allanach & Lester (2006) Ruiz de Austri, Roszkowski & RT (2006)

See also, e.g.: Ellis et al (2004, 2005, 2006), Baltz & Gondolo (2004), Buchmuller et al (2008)
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Key advantages

• Efficiency: computational effort scales ~ N rather than kN as in grid-scanning 
methods. Orders of magnitude improvement over previously used techniques. 

• Marginalisation: integration over hidden dimensions comes for free.  

• Inclusion of nuisance parameters: simply include them in the scan and 
marginalise over them. Notice: nuisance parameters in this context must be well 
constrained using independent data.

• Derived quantities: probabilities distributions can be derived for any function of the 
input variables (crucial for DD/ID/LHC predictions)
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Bayesian pdf for an 8D model 

Experimental value:  BR(b →sγ) = (3.55 ± 0.26)×10-4

Theoretical value SM:  BR(b →sγ) = (3.12 ± 0.21)×10-4  (Misiak et al , 2006) 
Previous SM value: BR(b →sγ) = (3.60 ± 0.30)×10-4 

2007
(Roszkowski et al 2007)

2006
(Ruiz de Austri et al 2006) (Feroz et al 2008)

including new SM BR(b →sγ) 
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Bayes’ theorem

P (H|d, I) = P (d|H,I)P (H|I)
P (d|I)

posterior likelihood prior

evidence 

Prior: what we know about H (given information I) before seeing the data

Likelihood: the probability of obtaining data d if hypothesis H is true 

Posterior: our state of knowledge about H after we have seen data d

Evidence: normalization constant (independent of H), crucial for model comparison 

H: hypothesis
d: data
I: external information 
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Continuous parameters

P (θ|d, I) = P (d|θ,I)P (θ|I)
P (d|I)

P (d|I) =
∫

dθP (d|θ, I)P (θ|I)

Bayesian evidence: average of the 
likelihood over the prior 

For parameter inference it is sufficient to 
consider

P (θ|d, I) ∝ P (d|θ, I)P (θ|I)

posterior ∝ likelihood× prior

prior

posterior

likelihood

θ
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Prior dependence 
• In parameter inference, prior dependence will in principle vanish for strongly 

constraining data. 
THIS IS CURRENTLY NOT THE CASE EVEN FOR THE CMSSM! 

Priors 

Likelihood (1 datum) 

Posterior after 1 datum Posterior after 100 data 
points 

Prior 

Likelihood 

Posterior 

Data 
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The SuperBayeS package (superbayes.org)

• Supersymmetry Parameters Extraction Routines for Bayesian Statistics

• Implements the CMSSM, but can be easily extended to the general MSSM  

• Currently linked to SoftSusy 2.0.18, DarkSusy 4.1, MICROMEGAS 2.2, FeynHiggs  
2.5.1, Hdecay 3.102. New release (v 1.36) upcoming!

• Includes up-to-date constraints from all observables

• Fully parallelized, MPI-ready, user-friendly interface à la cosmomc (thanks Sarah 
Bridle & Antony Lewis)

• Bayesian MCMC or grid scan mode, plotting routines. 
NEW: MULTI-MODAL NESTED SAMPLING (Feroz & Hobson 2008), efficiency 
increased by a factor 200. A full 8D scan now takes 3 days on a single CPU 
(previously: 6 weeks on 10 CPUs)
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MCMC estimation

• A Markov Chain is a list of samples θ1, θ2, θ3,... whose density reflects the 
(unnormalized) value of the posterior 

•  A MC is a sequence of random variables whose (n+1)-th elements only depends on 
the value of the n-th element 

• Crucial property: a Markov Chain converges to a stationary distribution, i.e. one that 
does not change with time. In our case, the posterior. 

• From the chain, expectation values wrt the posterior are obtained very simply: 

P (θ|d, I) ∝ P (d|θ, I)P (θ|I)

〈θ〉 =
∫

dθP (θ|d)θ ≈ 1
N

∑
i θi

〈f(θ)〉 =
∫

dθP (θ|d)f(θ) ≈ 1
N

∑
i f(θi)
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MCMC estimation

• Marginalisation becomes trivial: create bins along the dimension of interest and 
simply count samples falling within each bins ignoring all other coordinates 

• Examples (from superbayes.org) : 

2D distribution of samples 
from joint posterior

SuperBayeS
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Fancier stuff 
SuperBayeS
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Nested sampling

x1

L(x)

0

1

2
!

!

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where 〈·〉 denotes the expectation value with respect to the posterior)

〈m〉 ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

〈f(m)〉 ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

Feroz et al (2008), arxiv: 0807.4512, Trotta et al (2008), arxiv: 0809.3792 

(animation courtesy of David Parkinson)

X(λ) =
∫
L(θ)>λ P (θ)dθ

An algorithm originally aimed primarily at the Bayesian evidence computation (Skilling, 2006):

P (d) =
∫

dθL(θ)P (θ) =
∫ 1
0 X(λ)dλ
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The MultiNest algorithm
• MultiNest: Also an extremely efficient sampler for multi-modal likelihoods! 

Feroz & Hobson (2007), RT et al (2008), Feroz et al (2008)

Target Likelihood Sampled Likelihood 
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Global CMSSM constraints 

See also recent works by Ellis et al (2004, 2005, 2006), Baltz & Gondolo 
(2004), Buchmuller et al (2008), Allanach & collaborators (2006, 2007,2008)
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Priors

• There is a vast literature on priors: Jeffreys’, conjugate, non-informative, ignorance, 
reference, ... 

• In simple problems, “good” priors are dictated by symmetry properties 

• “Flat priors” (i.e., uniform in the model’s parameters) are often uncritically adopted as 
default by cosmologists/physicists: they do not necessarily reflect indifference/
ignorance. Beware: in large dimensions, most of the volume of a sphere is near its 
surface! 

• For the SM parameters we adopt flat priors (with cutoff well beyond the region where 
the likelihood is non-zero). This is largely unproblematic as the nuisance parameters 
are directly constrained by the likelihood hence the posterior is dominated by the 
likelihood

• Priors for the CMSSM parameters: this is a difficult issue
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Parameter inference (all data included) 

Flat priors Log priors
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2D posterior vs profile likelihood

Posterior Profile likelihood
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Comparison with other work

Buchmuller et al (2008) Trotta et al (2008)
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Posterior for some observables

Higgs prospects
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ATLAS will solve the prior dependency
• Projected constraints from ATLAS, (dilepton and lepton+jets edges, 1 fb-1 luminosity)

Roszkowski, Ruiz & RT (2009, 0907.0594)

Log priorFlat prior

35Friday, 4 September 2009



Roberto Trotta 

Residual dependency on the statistics

• Marginal posterior and profile likelihood will remain somewhat discrepant using 
ATLAS alone. Much better agreement from ATLAS+Planck CDM determination.

ATLAS alone ATLAS+Planck
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Direct and indirect detection prospects 
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Astrophysical probes 

• Direct detection: underground detectors looking for nuclear recoils from WIMP 
scattering. It is fundamental to account for the uncertainty in the local WIMP 
distribution.

• Indirect detection: detection of annihilation products from WIMP-WIMP annihilation.

• Gamma ray (galactic centre, galactic halo, diffuse extragalactic sources, nearby 
dwarf galaxies) 

• Antimatter (positrons, anti-proton) from local clumps 

• Neutrinos from the center of the Sun/Earth. 

• In all cases: it is fundamental to include a modeling of background sources. 
For gamma ray and neutrinos the unknown branching ratios have to be 
estimated simultaneously (bias!).
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Direct detection prospects 

Predicted reach with 1 tonne detectors

R. Trotta, F. Feroz, M.P. Hobson, R. Ruiz de Austri and L. Roszkowski, 0809.3792

Bayesian pdf Profile likelihood 
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Predicting the gamma ray flux

ρχ(r) = ρ0
(r/r0)

−γ

[1+(r/a)α]
β−γ

α

[1 + (r/a)α]
β−γ

α

J(Ψ) =
∫
los dlρ2

χ(r(l, Ψ)) J̄ = 1
∆Ω

∫
∆Ω J(Ψ)dΩ

Differential flux:

DM density profile:

particle 
physics

astrophysics

dΦγ

dEγ
∝

∑
i
〈σiv〉
m2

χ

dNi
γ

dEγ

∫
ρ2

χdl
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Predictions for Fermi in the CMSSM

Predicted gamma-ray spectrum 
probability distribution from the galactic 

center at Fermi resolution 

Predicted gamma-ray flux above 10 GeV 
at Fermi resolution 

Roszkowski, Ruiz, Silk & RT (2008)
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Predictions for the positrons spectrum 

PAMELA data 
(Adriani et al 2008)

background model

Notice: this is for a fixed choice of propagation parameters!
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Neutrinos from WIMP annihilations in the Sun

neutrino flux

ν

ν

neutrino

muon

Cherenkov light
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Detection prospects with IceCube

• In the context of the CMSSM, the final configuration of IceCube (with 80 strings) has 
between 2% and 12% probability of achieving a 5-sigma detection 

Trotta, Ruiz de Austri & de los Heros (0906.0366)
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Bias from assuming the wrong final state

effective area

effective area

Muon events rate = 

total spectrum - sum over final states 

Total events = 34 1/yr

Events/yr assuming 
only 1 channel

0.8

64
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Bias from assuming the wrong final state

• In general, the systematic error from assuming only 1 dominating channel is given 
by

Systematic bias from assuming single-channel domination (IceCube)

Trotta, Ruiz de Austri & de los Heros (0906.0366)
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Some uses for the Bayesian evidence
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Model comparison
• The Bayesian evidence is the prime tool for Bayesian model comparison. It 

automatically includes the notion of “Occam’s razor” (see RT, 0803.4089) 
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P (d|M) =
∫
Ω dθP (d|θ, M)P (θ|M)

 Model’s posterior probability : P (M |d) = P (d|M)P (M)
P (d)

Two models (e.g. sgn(μ)=±1): P (M0|d)
P (M1|d) = P (d|M0)

P (d|M1)
P (M0)
P (M1)

Posterior odds = Bayes factor × prior odds

sgn(μ)=+1 between 6 and 60 times more probable than sgn(μ)=-1
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Information content of observables

• Which observable is the most constraining for the CMSSM?

• The information content (i.e., constraining power) of each observable with respect to 
the model and prior can be quantified using the Kullback-Leibler divergence between 
prior and posterior: 

RT et al (2008)

DKL =
∫

dθP (θ|d) ln P (θ|d)
P (θ) = − lnP (d) − 〈χ2/2〉

Information content = -ln(Bayesian evidence) - average chi-square/2
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Constraining power of observables

Cosmology provides 80% for flat priors (95% for log priors) of the total 
constraining power on the CMSSM
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Data consistency

Tension between the anomalous magnetic moment and b -> sγ

RT et al (2008)
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Testing for data consistency

• Evaluate the probability of “systematic inconsistency” between g-2 and and b → sγ 
within the CMSSM:

• Baysian model comparison: 
H0: (g-2, b → sγ) compatible and described by a unique set of CMSSM parameters 
vs
H1: (g-2, b → sγ) systematically incompatible  

Feroz et al (2008) find that |ln R| < 1.0, hence no significant evidence for 
tension (but no conclusive evidence for H0, either)
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Predictive data distributions
• What is the probability of observing (g-2, b → sγ) given the CMSSM and all other 

constraints? Compute the predictive data distribution (i.e., conditional evidence) for 
Dobs given the other observations D

Feroz, Hobson, Ruiz, Roszkowski & RT, 2009, 0903.2487

53Friday, 4 September 2009



Roberto Trotta 

Conclusions

• SUSY phenomenology provides a timely and challenging problem for parameter 
inference and model selection. A considerably harder problem than cosmological 
parameter extraction!

• Bayesian advantages: higher efficiency, inclusion of nuisance parameters, 
predictions for derived quantities, model comparison

• CMSSM only a case study. There are several models around (NUHM, pMSSM, ... -> 
more free parameters) that will need to be analyzed as soon as new data flow in

• Currently, even the CMSSM is somewhat underconstrained: ATLAS+Planck will take 
us to “statistics nirvana” (Bob Cousins)

• The Bayesian evidence can be used for model selection, data consistency checks 
and prediction. Also useful to quantify constraining power of the data.
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