Corfu Summer Institute 2009 - Sept 1st 2009

A Bayesian approach to supersymmetry phenomenology

Roberto Trotta Imperial College London, Astrophysics Group

In collaboration with: R. Ruiz de Austri, L. Roszkowski, M. Hobson, F. Feroz, J. Silk, L. Strigari, C. P. de los Heros, M. Kaplinghat, G. Martinez, J. Bullock

Imperial College London

There are three kinds of lies: lies, damned lies, and statistics. (Mark Twain, reportedly quoting Benjamin Disraeli)

The problem

The particle content of SUSY

Imperial College London

Standard Model particles and fields		Supersymmetric partners					
		Interaction eigenstates			Mass eigenstates		
Symbol	Name	\mathbf{Symbol}	Name		\mathbf{Symbol}	Name	
q = d, c, b, u, s, t	quark	$ ilde q_L, ilde q_R$	$_{ m squark}$		\tilde{q}_1,\tilde{q}_2	squark	
$l = e, \mu, \tau$	lepton	\tilde{l}_L, \tilde{l}_R	$_{\rm slepton}$		\tilde{l}_1,\tilde{l}_2	$_{\rm slepton}$	
$\nu = \nu_e, \nu_\mu, \nu_\tau$	neutrino	$\tilde{ u}$	$\operatorname{sneutrino}$		$\tilde{\nu}$	$\operatorname{sneutrino}$	
g .	gluon	${ ilde g}$	gluino		\tilde{g}	gluino	
W^{\pm}	W-boson	\tilde{W}^{\pm}	wino)			
H^-	Higgs boson	\tilde{H}_{1}^{-}	higgsino	Ş	$\tilde{\chi}_{1,2}^{\pm}$	chargino	
H^+	Higgs boson	\tilde{H}_{2}^{+}	higgsino	J	-,-		
B	B-field	\tilde{B}	bino	Ś			
W^3	W^3 -field	\tilde{W}^3	wino				
H_{1}^{0}	Higgs boson	\tilde{tt}	1	->	$\tilde{\chi}^{0}_{1,2,3,4}$	neutralino	
H_2^{0}	Higgs boson	H_1° \tilde{r}^0	higgsino				
H_{3}^{0}	Higgs boson	H_{2}^{0}	higgsino)			

From Bertone, Hooper & Silk (2005)

Roberto Trotta

Links with astrophysics

Imperial College London

Direct detection

Underground detectors looking for neutralino from local halo

scattering off nuclei (complicated by local WIMP distribution)

Indirect detection

Look for neutralino-neutralino annihilation products:

gamma ray (continuum and & lines) antimatter (e.g., positrons) neutrinos (from Sun & Earth) (complicated by gastrophysical nuisance parameters)

Roberto Trotta

The model & data

- The general Minimal Supersymmetric Standard Model (MSSM): 105 free parameters!
- Need some (pretty strong) simplifying assumption: the Constrained MSSM (CMSSM) reduces the free parameters to just 4 continous variables plus a discrete one (sign(μ)).
- Clearly a highly constrained model (probably not the end of the story!)
- **Present-day data:** collider measurements of rare processes, CDM abundance (WMAP), sparticle masses lower limits, EW precision measurements. Soon, LHC sparticle spectrum measurements.
- Astrophysical direct and indirect detection techniques might also be competitive: neutrino (IceCUBE), gamma-rays (Fermi), antimatter (PAMELA), direct detection (XENON, CDMS, Eureca, Zeplin)

Roberto Trotta

Imperial College

London

Friday, 4 September 2009

Data included

Imperial College London

Indirect observables

Observable	Mean value Uncerta		ainties	ref.
	μ	σ (exper.)	τ (theor.)	
M_W	80.398 GeV	$25 { m MeV}$	$15 { m MeV}$	[30]
$\sin^2 \theta_{ m eff}$	0.23153	$16 imes 10^{-5}$	$15 imes 10^{-5}$	[30]
$\delta a_{\mu}^{\mathrm{SUSY}} \times 10^{10}$	29.5	8.8	1.0	[31]
$BR(\overline{B} \to X_s \gamma) \times 10^4$	3.55	0.26	0.21	[32]
ΔM_{B_s}	17.77 ps^{-1}	$0.12 \ {\rm ps}^{-1}$	$2.4 \ \mathrm{ps}^{-1}$	[33]
$BR(\overline{B}_u \to \tau \nu) \times 10^4$	1.32	0.49	0.38	[32]
$\Omega_{\chi}h^2$	0.1099	0.0062	$0.1 \Omega_{\chi} h^2$	[34]
	Limit (95% CL)		τ (theor.)	ref.
$BR(\overline{B}_s \to \mu^+ \mu^-)$	$< 5.8 imes 10^{-8}$		14%	[35]
m_h	> 114.4 GeV (SM-like Higgs)		$3 \mathrm{GeV}$	[36]
ζ_h^2	$f(m_h)$ (see text)		negligible	[36]
$m_{ ilde{q}}$	$> 375 { m GeV}$		5%	[25]
$m_{ ilde{g}}$	$> 289 \mathrm{GeV}$		5%	[25]
other sparticle masses	As in table 4 of	f ref. [6].		

SM parameters

SM (nuisance)	Mean value	Uncertainty	Ref.
parameter	μ	σ (exper.)	
M_t	$172.6{ m GeV}$	$1.4{ m GeV}$	[24]
$m_b(m_b)^{\overline{MS}}$	$4.20{ m GeV}$	$0.07{ m GeV}$	[25]
$\alpha_s(M_Z)^{\overline{MS}}$	0.1176	0.002	[25]
$1/\alpha_{ m em}(M_Z)^{\overline{MS}}$	127.955	0.03	[26]

Roberto Trotta

Why is this a difficult problem?

Imperial College London

- Inherently 8-dimensional: reducing the dimensionality over-simplifies the problem. Nuisance parameters (in particular m_t) cannot be fixed!
- Likelihood discontinuous and multi-modal due to physicality conditions
- RGE connect input parameters to observables in highly non-linear fashion: only indirect (sometimes weak) constraints on the quantities of interest (-> prior volume effects are difficult to keep under control)
- Mild discrepancies between observables (in particular, g-2 and b→sγ) tend to pull constraints in different directions

Roberto Trotta

Bayesian parameter inference

The Bayesian approach

Imperial College London

- Bayesian approach led by two groups (early work by Baltz & Gondolo, 2004):
- Ben Allanach (DAMPT) et al (Allanach & Lester, 2006 onwards, Cranmer, and others)
- Ruiz de Austri, Roszkowski & RT (2006 onwards)
 SuperBayeS public code (available from: superbayes.org)
 + Feroz & Hobson (MultiNest), + Silk (indirect detection), + Strigari (direct detection), + Martinez et al (dwarfs), + de los Heros (IceCube)

Key advantages

Imperial College London

- Efficiency: computational effort scales ~ N rather than k^N as in grid-scanning methods. Orders of magnitude improvement over previously used techniques.
- Marginalisation: integration over hidden dimensions comes for free.
- Inclusion of nuisance parameters: simply include them in the scan and marginalise over them. Notice: nuisance parameters in this context must be well constrained using independent data.
- **Derived quantities**: probabilities distributions can be derived for any function of the input variables (crucial for DD/ID/LHC predictions)

Roberto Trotta

Continuous parameters

$$P(\theta|d, I) = \frac{P(d|\theta, I)P(\theta|I)}{P(d|I)}$$

Bayesian evidence: average of the likelihood over the prior

$$P(d|I) = \int d\theta P(d|\theta, I) P(\theta|I)$$

For parameter inference it is sufficient to consider

 $P(\theta|d, I) \propto P(d|\theta, I) P(\theta|I)$

posterior \propto likelihood \times prior

The SuperBayeS package (superbayes.org) Imperial College London

- Supersymmetry Parameters Extraction Routines for Bayesian Statistics
- Implements the CMSSM, but can be easily extended to the general MSSM
- Currently linked to SoftSusy 2.0.18, DarkSusy 4.1, MICROMEGAS 2.2, FeynHiggs 2.5.1, Hdecay 3.102. New release (v 1.36) upcoming!
- Includes up-to-date constraints from all observables
- Fully parallelized, MPI-ready, user-friendly interface à la cosmomc (thanks Sarah Bridle & Antony Lewis)
- Bayesian MCMC or grid scan mode, plotting routines.
 NEW: MULTI-MODAL NESTED SAMPLING (Feroz & Hobson 2008), efficiency increased by a factor 200. A full 8D scan now takes 3 days on a single CPU (previously: 6 weeks on 10 CPUs)

Roberto Trotta

MCMC estimation

$P(\theta|d, I) \propto P(d|\theta, I)P(\theta|I)$

- A Markov Chain is a list of samples θ₁, θ₂, θ₃,... whose density reflects the (unnormalized) value of the posterior
- A MC is a sequence of random variables whose (*n*+1)-th elements only depends on the value of the *n*-th element
- **Crucial property:** a Markov Chain converges to a stationary distribution, i.e. one that does not change with time. In our case, the posterior.
- From the chain, expectation values wrt the posterior are obtained very simply:

$$\begin{aligned} \langle \theta \rangle &= \int d\theta P(\theta | d) \theta \approx \frac{1}{N} \sum_{i} \theta_{i} \\ \langle f(\theta) \rangle &= \int d\theta P(\theta | d) f(\theta) \approx \frac{1}{N} \sum_{i} f(\theta_{i}) \end{aligned}$$

Roberto Trotta

MCMC estimation

Imperial College London

- **Marginalisation becomes trivial:** create bins along the dimension of interest and simply count samples falling within each bins ignoring all other coordinates
- Examples (from **superbayes.org**) :

Roberto Trotta

Global CMSSM constraints

See also recent works by Ellis et al (2004, 2005, 2006), Baltz & Gondolo (2004), Buchmuller et al (2008), Allanach & collaborators (2006, 2007,2008)

Priors

Imperial College London

- There is a vast literature on priors: Jeffreys', conjugate, non-informative, ignorance, reference, ...
- In simple problems, "good" priors are dictated by symmetry properties
- "Flat priors" (i.e., uniform in the model's parameters) are often uncritically adopted as default by cosmologists/physicists: they do not necessarily reflect indifference/ ignorance. Beware: in large dimensions, most of the volume of a sphere is near its surface!
- For the SM parameters we adopt flat priors (with cutoff well beyond the region where the likelihood is non-zero). This is largely unproblematic as the nuisance parameters are directly constrained by the likelihood hence the posterior is dominated by the likelihood
- Priors for the CMSSM parameters: this is a difficult issue

Roberto Trotta

Direct and indirect detection prospects

Astrophysical probes

Imperial College London

- Direct detection: underground detectors looking for nuclear recoils from WIMP scattering. It is fundamental to account for the uncertainty in the local WIMP distribution.
- Indirect detection: detection of annihilation products from WIMP-WIMP annihilation.
 - **Gamma ray** (galactic centre, galactic halo, diffuse extragalactic sources, nearby dwarf galaxies)
 - Antimatter (positrons, anti-proton) from local clumps
 - **Neutrinos** from the center of the Sun/Earth.
 - In all cases: it is fundamental to include a modeling of background sources. For gamma ray and neutrinos the unknown branching ratios have to be estimated simultaneously (bias!).

Roberto Trotta

Predictions for the positrons spectrum

Bias from assuming the wrong final state Imperial College London

 In general, the systematic error from assuming only 1 dominating channel is given by

$$f_i^{\text{syst}} = \frac{\text{BR}(\chi\chi \to i)}{N_i/N_{\mu}}$$

Systematic bias from assuming single-channel domination (IceCube)

Some uses for the Bayesian evidence

Model comparison

Imperial College London

• The Bayesian evidence is the prime tool for Bayesian model comparison. It automatically includes the notion of "Occam's razor" (see RT, <u>0803.4089</u>)

$$P(d|M) = \int_{\Omega} d\theta P(d| heta, M) P(heta|M)$$

or probability : $P(M|d) = rac{P(d|M)P(M)}{P(d)}$

Model's posterior probability :

Two models (e.g. $sgn(\mu)=\pm 1$):

$$\frac{P(M_0|d)}{P(M_1|d)} = \frac{P(d|M_0)}{P(d|M_1)} \frac{P(M_0)}{P(M_1)}$$

Posterior odds = Bayes factor × prior odds

	Prior	"2 TeV"		"4 TeV"		
ซ		flat	\log	flat	\log	
,)	$\log \Delta E$ (our determination)	2.7 ± 0.1	4.1 ± 0.1	1.8 ± 0.1	3.2 ± 0.1	
2	P_+/P (our determination)	15.6 ± 1.1	61.6 ± 1.1	5.9 ± 1.1	24.0 ± 1.1	
Ψ						

 $sgn(\mu)=+1$ between 6 and 60 times more probable than $sgn(\mu)=-1$

Roberto Trotta

Information content of observables

- Which observable is the most constraining for the CMSSM?
- The information content (i.e., constraining power) of each observable with respect to the model and prior can be quantified using the Kullback-Leibler divergence between prior and posterior:

$$D_{KL} = \int d\theta P(\theta|d) \ln \frac{P(\theta|d)}{P(\theta)} = -\ln P(d) - \langle \chi^2/2 \rangle$$

Information content = -In(Bayesian evidence) - average chi-square/2

RT et al (2008)

Roberto Trotta

Constraining power of observables

Imperial College London

Constraints	Data	Flat priors		Log priors			
	points	$\chi^2_{ m min}$	$\langle \chi^2 angle$	D_{KL}	$\chi^2_{ m min}$	$\langle \chi^2 angle$	$D_{ m KL}$
PHYS+NUIS	4	0.06	3.89	1.00	0.02	3.88	1.00
+CDM	5	0.05	4.36	3.22	0.10	4.32	2.59
+BSG	5	0.31	6.48	1.11	0.10	5.48	1.21
+GM2	5	0.27	11.55	1.35	0.13	6.38	1.20
+COLL+CDM	5+	0.28	4.60	3.20	0.15	5.04	2.98
+COLL $+$ BSG	5+	0.99	6.82	1.11	0.45	6.54	1.24
+COLL+GM2	5+	1.79	13.43	1.10	0.17	9.92	1.49
+COLL+CDM+BSG	6+	0.75	7.15	3.36	0.68	7.72	3.29
+COLL+CDM+GM2	6+	0.62	9.24	2.90	0.43	7.49	3.23
+COLL+CDM+BSG+	-GM2 7+	6.27	15.83	3.48	4.67	14.89	3.39
ALL but GM2	10+	3.51	9.45	3.42	3.22	9.51	3.28
ALL but CDM	10+	12.17	18.86	1.10	4.14	18.30	1.24
ALL	11+	13.51	19.29	3.38	11.90	18.41	3.26

Cosmology provides 80% for flat priors (95% for log priors) of the total constraining power on the CMSSM

Roberto Trotta

Data consistency

Imperial College London

Testing for data consistency

- Evaluate the probability of "systematic inconsistency" between g-2 and and b → sγ within the CMSSM:
- Baysian model comparison: H₀: (g-2, b → sγ) compatible and described by a unique set of CMSSM parameters vs

H₁: (g-2, b \rightarrow s γ) systematically incompatible

$$R = \frac{\Pr(\mathbf{D}|H_1)}{\Pr(\mathbf{D}|H_0)} = \frac{\Pr(\mathbf{D}|H_1)}{\prod_i \Pr(D_i|H_0)}.$$

Feroz et al (2008) find that $|\ln R| < 1.0$, hence no significant evidence for tension (but no conclusive evidence for H₀, either)

Roberto Trotta

Imperial College

London

Predictive data distributions

Imperial College London

 What is the probability of observing (g-2, b → sγ) given the CMSSM and all other constraints? Compute the predictive data distribution (i.e., conditional evidence) for D^{obs} given the other observations D

$$\mathscr{L}(\mathscr{D}^{\mathrm{obs}}|D) \equiv \frac{p(\mathscr{D}^{\mathrm{obs}}|D)}{p(\mathscr{D}^{\mathrm{max}}|D)} = \frac{p(\mathscr{D}^{\mathrm{obs}},D)}{p(\mathscr{D}^{\mathrm{max}},D)}$$

Conclusions

Imperial College London

- SUSY phenomenology provides a timely and challenging problem for parameter inference and model selection. A considerably harder problem than cosmological parameter extraction!
- Bayesian advantages: higher efficiency, inclusion of nuisance parameters, predictions for derived quantities, model comparison
- CMSSM only a case study. There are several models around (NUHM, pMSSM, ... -> more free parameters) that will need to be analyzed as soon as new data flow in
- Currently, even the CMSSM is somewhat underconstrained: ATLAS+Planck will take us to "statistics nirvana" (Bob Cousins)
- The Bayesian evidence can be used for model selection, data consistency checks and prediction. Also useful to quantify constraining power of the data.

Roberto Trotta