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Introduction/Motivation

Quantum Black Holes

I ideal theoretical laboratory for physics beyond QFT/GR
I challenges: information paradox, entropy, holography,

singularities, artificial cutoffs, . . .
I need to reconsider cherished physical principles:

locality, unitarity, Lorentz invariance, . . .

→ parallels to discovery of quantum mechanics

Quantum/Noncommutative Spactime

I model of quantum geometry, spacetime uncertainty
I controlled LI violation and non-locality, UV/IR mixing
I mixing of internal & spacetime symmetries
I holographic properties natural
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Introduction/Motivation

Spacetime noncommutativity

Heuristic argument: quantum + gravity

→ fundamental lengthscale, spacetime uncertainty

∆x ≥
√

~G
c3

↔ noncommutative spacetime structure

[x̂ i , x̂ j ] = iθij(x)

(“first quantized” geometry)

But: obvious problems with spacetime symmetries
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Introduction/Motivation

Star product
General x-dependent NC structure:

f ? g = f · g +
i
2

∑
θij ∂i f · ∂jg −

~2

4

∑
θijθkl ∂i∂k f · ∂j∂lg

− ~2

6

(∑
θij∂jθ

kl ∂i∂k f · ∂lg − ∂k f · ∂i∂lg
)

+ . . .

ditto on coordinates:
[x i ?, x j ] = iθij

need to generalize star product, deform symmetry
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Noncommutative Gravity and Quantum Geometry

Noncommutative Gravity

I simple model of quantum spacetime, captures features of
quantum geometry/gravity

I has deformed analog of diffeomorphism symmetry
I fuzzy black hole solutions and cosmological models;

toy models to study quantum gravitational effects

Other Approaches
Spectral action, specific models, phenomenology, matrix
models; strings, branes, spins, foams, loops. . .
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Noncommutative Gravity
with Julius Wess, Paolo Aschieri, Christian Blohmann, Marija Dimitrijevic, Frank Meyer

Twisted tensor calculus
I Tensors must be star-multiplied (generalized star product!)
I The transformation of individual tensors is undeformed
I The Leibniz rule is deformed (e.g. via Drinfel’d twist)

Covariant derivative

Dµ ? Vν = ∂µVν − Γαµν ? Vα

Curvature and torsion

[Dµ
?, Dν ] ? Vρ = Vσ ? Rσ

ρµν + Tµνα ? Dα ? Vρ
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Noncommutative Gravity

Connection and metric
Metric compatibility and

(Gµν)∗ = Gνµ , (Γαµν)∗ = Γανµ

fixes the connection in terms of the metric:

Γσαβ ?Gσγ + Gγσ ? Γσαβ = ∂αGβγ + ∂βGγα − ∂γGαβ

Riemann and Ricci tensors

Rσ
ρνµ = ∂νΓσµρ − ∂µΓσνρ + Γβνρ ? Γσµβ − Γβµρ ? Γσνβ , Rµν = Rρ

µρν
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Kinematics

Geodesic equation
For hermitean (or real symmetric) connection coefficients

duγ

dλ
= uα ? Γγαβ ? uβ uα =

dxα

dλ

Interpretation: Heisenberg-type equations for operators uα, xα

trajectories→ transition amplitudes

Alternative: Path integral (generalizes variational approach)

More generaly: Fields on NC spacetime
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Dynamics

Deformed Einstein Equations
For “noncommutative sources” Tµν

Rµν(G, ?) = Tµν −
1
2

GµνT

Note: Ordering ambiguities disappear in known solutions.

Solutions?

Solution = mutually compatible pair of
I an algebra (with twist) ?
I a metric Gµν
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NC Schwarzschild Solution
with Sergey Solodukhin

Noncommutative Schwarzschild Black Hole
Vacuum solution (origin excluded), i.e.

Rµν = 0

Spherical symmetry via Killing vectors

[ξi , ξj ] = iεijkξk Lξi g
µν = 0



NC Schwarzschild Solution

Compatible metric (in isotropic coordinates)

ds2 = −A(ρ)dt2 + B(ρ)(dx2 + dy2 + dz2) + C(ρ)dρ2

ρ2 = gijx ix j = x2 + y2 + z2

Compatible algebra

[xi
?, xj ] = 2iλεijkxk

Note:
I λ can be function of ρ (central), a = 2M
I Star product acts nontrivially on tensors
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NC Schwarzschild Solution

Star product
on functions:

f ? g = fg +
∞∑

n=1

Cn(
λ

ρ
)ξ+

nf ξ−ng

with left-invariant (Killing) vector fields ξ± = ξ1 ± iξ2

Cn(
λ

ρ
) = B(n,

ρ

λ
)

=
λn

n! ρ(ρ− λ)(ρ− 2λ) · · · (ρ− (n − 1)λ)

Grosse, Presnajder; Alekseev, Lachowska; Kürkcüoglu, Sämann



NC Schwarzschild Solution

Star product
on tensors:

V ?W = VW +
∞∑

n=1

Cn(
λ

ρ
)Ln

ξ+
V Ln

ξ−W

Metric and algebra are compatible

Tα...ω ? gµν = Tα...ωgµν = gµν ? Tα...ω

furthermore

Tα...ω?∂σ1 . . . ∂σk gµν = Tα...ω∂σ1 . . . ∂σk gµν = ∂σ1 . . . ∂σk gµν?Tα...ω
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NC Schwarzschild Solution

Metric
The metric is now determined using standard methods.
In isotropic coordinates:

ds2 = −
(

1− a
ρ

)
dt2 +

r2

ρ2 (dx2 + dy2 + dz2)

where
r = (ρ+ a/4)2/ρ, a = 2M

and
ρ2 = gijx ix j = x2 + y2 + z2



Onion Spacetime

Where did the noncommutativity go?

Spacetime “coordinates” and fields (other than the metric) are
nontrivial operators acting on a Hilbert space.

Spacetime turns into quasi 2+1 dimensional onion spacetime
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Onion Spacetime

Unitary representations
Coordinate measurements should give “real” results
⇒ Consider unitary representations of

[xi
?, xj ] = 2iλεijkxk

(i.e. choose an appropriate class of functions)

(~x)?2|j ,m〉 = (2λ)2j(j + 1)|j ,m〉, 2j = 0,1,2, . . .



Onion Spacetime

Ditto, in terms of

ρ2 = gijx ix j = x2 + y2 + z2 :

using
(~x)?2 ≡

∑
xi ? xi = ρ(ρ+ 2λ)

we get:
ρ = 2jλ = nλ; n = 0,1,2, . . .

Recall: λ = λ(ρ,a) in general, but restricted by physics.
e.g. λ(a,a) ∼ l2p/a.

Outside horizon condition:

ρ > a/4 ⇒ n > a/4λ



NC Schwarzschild Spacetime
(schematically, in isotropic coordinates)
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Hilbert Space

Outside event horizon
Sum over representations on “onion shells”:

H =
⊕
n>N

Cn+1 N ∼ a/4λ0

Here: n = 2j and C2j+1 ≡ [j]

“Inside” event horizon
Hidden by the event horizon are all states with n ≤ N:

Hhidden = [0]⊕ [
1
2

]⊕ . . .⊕ [jmax]

That is equal to ([J]⊗ [J]) ⊕ ([J]⊗ [J ∓ 1
2 ]) ,

i.e. a scalar plus a spinorial function (field) on a fuzzy sphere.
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Hilbert Space

L2(R3)→ L2(S2)

We find the following surprising result:
States describing the location of an event in the 3 dim NC bulk
are equivalent to “ordinary” wave functions on a sphere (minus
a fuzzy sphere)

H =
⊕
n>N

Cn+1 =
⊕

Cn+1 − Hhidden

⇒ NC Schwarzschild = “Fuzzy Black Hole” (→ Brian Dolan)
Holographic behavior appears quite naturally

NC: bulk (3D)→ surface (2D)
Heuristically:
(1) coordinates are no longer independent: z ∼ [x , y ]
(2) number of commuting operators = two



Fuzzy Event Horizon

Area quantization
The fuzzy sphere that represents the states hidden by the event
horizon has N “cells” (N ≡ nmin). This result can be obtained by
either by counting states or by the uncertainty principle.

An equidistant spectrum of the area operator was originally
conjectured by Bekenstein and Mukhanov.

Mass quantization?
The parameter a = 2M is not necessarily discrete in our model.
But TdS = dM ?!

There are indications of a modification of the Planck black body
radiation spectrum for small quantum numbers.



NC Schwarzschild Solution

NC Schwarzschild BH in Schwarzschild coordinates
Change of coordinates

r = (ρ+ a/4)2/ρ, a = 2M

(the coordinates are still quantized!)

horizon: r = a ⇔ ρ = a/4
ρ < a/4: second copy of Schwarzschild spacetime



Inside NC black hole I

Inside the fuzzy black hole
Constant time slices are now de Sitter.
→ introduce auxiliary coordinate

ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3

and constraint

−x2
0 + x2

1 + x2
2 + x2

3 = α2 > 0

Now quantize x1, x2, x3 as before.

x2
0 = ρ2 − α2 ρ2 =

a
4r(1− r/a)

ρ =∞: either r = 0 (singularity) or r = a (horizon)
→ two sequences of fuzzy spheres
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ρ =∞: either r = 0 (singularity) or r = a (horizon)
→ two sequences of fuzzy spheres



Inside NC black hole I

Fuzzy black hole inside and outside, in one figure:

Solutions apparently do not match . . .
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Inside NC black hole II

So far: NC Solutions inside event horizon exist; important proof
of principle. Matching solutions: choose algebras carefully.

NC “wormhole”
Reconsider solution in isotropic coordinates
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Inside NC black hole II

So far: NC Solutions inside event horizon exist; important proof
of principle. Matching solutions: choose algebras carefully.

NC “wormhole”
Reconsider solution in isotropic coordinates

NC “wormhole” =
two Schwarzschild spacetimes glued together at the horizon

inside↔ outside: a/4ρ↔ 4ρ/a



Entropy

Outside observer (far away, stationary): Not relevant to ask
what is “really” going on inside the black hole. Only relevant to
consider degrees of freedom of part of original spacetime now
hidden by event horizon. That space is discreet.

Naive state counting “inside” NC black hole
1st quantized description: wave function on fuzzy sphere
2nd quantized description: wave function→ quantum field

For field operators with finite spectrum: dim H = f N

Entropy = missing information ∝ N (just like black hole area)
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Entropy

Entanglement Entropy
Pure state on “whole” NC spacetime:

|Ψ〉 =
∑

ci |ψA
i 〉 ⊗ |ψ

B
i 〉

with appropriately chosen states |ψA
i 〉 ∈ Hout and |ψB

i 〉 ∈ Hin.

Note: dim Hout � dim Hin
# of nonzero ci = Schmidt rank of |Ψ〉

Partial traces→ density matrices ρA, ρB

Entanglement entropy S = −trρA ln ρA = −trρB ln ρB

For an initial pure state with maximal Schmidt number we
recover the naive state counting result.
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Entropy

Entanglement Entropy
A more sophisticated computation starts with a scalar field in
the ground state of the Rindler Hamiltonian.

For large quantum number N:
NC computation ∼ regularized classical computation.

I Partial trace gives thermal Unruh density matrix with
temperature T = 1/2π. Redshifted this yields the Hawking
temperature. Subtleties occur for 2M = a 6= Nλ.

I Entanglement entropy is proportional to area of horizon.
It is finite (!). (Automatic UV cutoff at l ∼ a/λ0.)

I Entropy of thermal gas near horizon is also finite.
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Coherent States, Star Products, Entropy II

Generalized coherent state (SU(2), spin j representation)

|Ω〉 = RΩ|j , j〉, RΩ ∈ SU(2)/U(1); (2j+1)

∫
dΩ

4π
|Ω〉〈Ω| = 1j

Star product
For A(Ω) := 〈Ω|A|Ω〉 and B(Ω) := 〈Ω|B|Ω〉 define:

A(Ω) ? B(Ω) = 〈Ω|AB|Ω〉 = (2j + 1)

∫
dΩ̃

4π
〈Ω|A|Ω̃〉〈Ω̃|B|Ω〉



Coherent States, Star Products, Entropy II

Quantum mechanical entropy for a density operator ρ

Entropy

SQ(ρ) = −trρ ln ρ = −(2j + 1)

∫
dΩ

4π
ρ(Ω) ? ln? ρ(Ω)

Now “switch off” (or ignore) noncommutativity⇒

Lieb-Wehrl entropy

SW (ρ) = −(2j + 1)

∫
dΩ

4π
ρ(Ω) ln ρ(Ω)

≥ −(2j + 1)

∫
dΩ

4π
|〈Ω|Ψ〉|2 ln |〈Ω|Ψ〉|2

> 0 even for pure states
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Quantum mechanical entropy for a density operator ρ

Entropy
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4π
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≥ 2j
2j + 1

(→ 1 as j →∞)



Coherent States, Star Products, Entropy II

Quantum mechanical entropy for a density operator ρ

Entropy

SQ(ρ) = −trρ ln ρ = −(2j + 1)

∫
dΩ

4π
ρ(Ω) ? ln? ρ(Ω)

Now “switch off” (or ignore) noncommutativity⇒

Lieb-Wehrl entropy

SW (ρ) = −(2j + 1)

∫
dΩ

4π
ρ(Ω) ln ρ(Ω)

∼ entropy of classical coarse-graining: “quantum ignorance”

scales like area for a field on the fuzzy event horizon



Exact NC Gravity Solutions

Other exact solutions?
Given enough isometries, we can find compatible
algebra-metric pairs with the same method as for the
Schwarzschild case. Some examples:

I Rotating solution (Kerr) with time-space noncommutativity
I Charged solution (Reissner-Nordström), time commutative
I Robertson-Walker (hard to make isotropic)
I BTZ black hole solution in 2+1 dimensions

Higher dimensions
The simple Lie-type coordinate is an artefact of 3+1
dimensions. In higher dimensions we find higher algebras

[xi , xj , . . . , xk ] = 2iλεij...klxl

and have to deal with nonassociativity or projectors.
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Exact NC Gravity Solutions

Noncommutative BTZ black hole
2+1 dimensions: φ, ρ, t

Quantization of metric-compatible Poisson structure gives

[φ, t ] = iτ (angle-time noncommutativity)

where τ > 0 is a fundamental unit of time.

Better: [eiφ, t ] = τeiφ (since φ = φ+ 2π etc.)

Irreducible representations (labeled by α ∈ [0, τ))

t |n, α〉 = (nτ + α)|n, α〉

Dolan, Gupta, Stern

Turns out to be an exact solution to the NC gravity equations.



Exact NC Gravity Solutions

Noncommutative BTZ black hole
2+1 dimensions: φ, ρ, t

t |n, α〉 = (nτ + α)|n, α〉 , α ∈ [0, τ)



Summary

noncommutative gravity

I simple construction via twisted tensor calculus
I fully covariant

solutions
I use isometries, metric central
I provide simple models of quantum geometry

fuzzy black hole

I discrete, quasi-2D onion-type spacetime
I natural holographic properties


