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I. Gravity duals of QCD-like theories
     (Holographic QCD)



Sakai-Sugimoto Model  (D4/D8 system)

The closest example to QCD

z

Nice feature:  Dual realization of Chiral symmetry breaking:

SU(NF )L × SU(NF )R SU(NF )V

Massless spectrum: Gluons and quarks
But not true QCD since

 extra massive states do not decouple 

large N



At large N and large ‘tHooft coupling (g²N in the 4D gauge theory), the 
string dual theory is, at low-energies,  a weakly-coupled gauge theory 

in 5D with chiral symmetry breaking on the z=0 boundary.

Minimal 5D composite Higgs model

AdS5

SO(5)⊗ U(1)

Fermions ∈ 5 of SO(5)

UV-bound.

SU(2)L⊗ U(1)Y

IR-bound.

SO(4)⊗ U(1)

Parameters: g5D, L and 5D fermion masses Agashe, A.P.,Contino

warped extra dim:  z

SU(NF )L × SU(NF )R

z = ∞
z = 0

SU(NF )V

A
µ
L − A

µ
R = 0

boundy conditions:

Dirichlet:

Neumann: Fµ5

L + F
µ5

R = 0



Proposed Holographic QCD model of two massless quarks
.

Minimal 5D composite Higgs model

AdS5

SO(5)⊗ U(1)

Fermions ∈ 5 of SO(5)

UV-bound.

SU(2)L⊗ U(1)Y

IR-bound.

SO(4)⊗ U(1)

Parameters: g5D, L and 5D fermion masses Agashe, A.P.,Contino

warped extra dim:  z
e.g. AdS space

SU(NF )L × SU(NF )R SU(NF )V

A
µ
L − A

µ
R = 0

boundy conditions:

Dirichlet:

Neumann: Fµ5

L + F
µ5

R = 0

Erlich,Katz,Son,Stephanov 
Da Rold,A.P.;  Hirn,Sanz 

z = L1z = 0

U(2)L × U(2)R U(2)V



5D Lagrangian:

−

∫

a(z)
M5

2

[

Tr[LMNL
MN ] +

α2

2
L̂MN L̂

MN + {L → R}

]

+
Nc

64π2

∫
ε
MNOPQ

L̂M Tr [LNOLPQ] − {L → R} + ...

Needed to reproduce the U(1)-anomaly in QCD

Coefficient fixed               no extra parameter!

Chern-Simons term:

ds
2 = a(z)2[dx

2 + dz
2]



−

∫

a(z)
M5

2

[

Tr[LMNL
MN ] +

α2

2
L̂MN L̂

MN + {L → R}

]

+
Nc

64π2

∫
ε
MNOPQ

L̂M Tr [LNOLPQ] − {L → R} + ...

M5 , L1 , αTheory of 3 parameters: 

Compactification scale: Mass gap

Kaluza-Klein states →  QCD-like mesons (qq-states)

5D lagrangian:



Predictions very close to QCD meson sector:
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Baryon physics in a five-dimensional model of hadrons 7

Table 1.1. Global fit to mesonic physical quantities.
Masses, decay constants and widths are given in MeV.
Physical masses have been used in the kinematic factors
of the partial decay widths.

Experiment AdS5 Deviation
mρ 775 824 +6%
ma1 1230 1347 +10%
mω 782 824 +5%
Fρ 153 169 +11%

Fω/Fρ 0.88 0.94 +7%
Fπ 87 88 +1%

gρππ 6.0 5.4 −10%
L9 6.9 · 10−3 6.2 · 10−3 −10%
L10 −5.2 · 10−3 −6.2 · 10−3 −12%

Γ(ω → πγ) 0.75 0.81 +8%
Γ(ω → 3π) 7.5 6.7 −11%
Γ(ρ→ πγ) 0.068 0.077 +13%

Γ(ω → πµµ) 8.2 · 10−4 7.3 · 10−4 −10%
Γ(ω → πee) 6.5 · 10−3 7.3 · 10−3 +12%

up to a cut-off Λ5 ∼ 2 GeV and our tree-level calculations only correspond to the
leading term of an E/Λ5 expansion. Apart from this restriction, we must include in
our fit observables with an experimental accuracy better than 10%. This is because
we want to neglect the experimental error in order to obtain an estimate of the
accuracy of our theoretical predictions. Much more observables can be computed,
once the best-fit value of the parameters are obtained, and several of them have
already been considered in the literature. For instance, one can study the other
low-energy constants of the chiral lagrangian, the physics of the f1 resonance or
the pseudo–scalar resonances which arise when the explicit breaking of the chiral
symmetry is taken into account [11]. It would also be interesting to compute the
a1 → πγ decay, which is absent in our model at tree-level and only proceeds via
loop effects or higher-dimensional terms of our 5D effective lagrangian. c

As discussed in the Introduction, the semiclassical expansion in the 5D model
should correspond to the large-Nc expansion on the 4D side. The results presented
above provide a confirmation of this interpretation: at large-Nc meson masses are
expected to scale like N0

c , while meson couplings and decay constants scale like
gi, 1/Fi ∼ 1/

√
Nc. These scalings agree with Eq. (1.15) and (1.16) if the parameters

α, L and M5 are taken to scale like d

α ∼ N0
c , L ∼ N0

c , M5 ∼ Nc . (1.17)

This leads us to define the adimensional Nc-invariant parameter

γ ≡ Nc

16π2M5Lα
, (1.18)

cHigher order contributions will also change our tree-level prediction L9 +L10 = 0, which is again
related with the absence of the a1–π–γ vertex.
dThis scaling can also be obtained from the AdS/CFT correspondence.

A.P., Wulzer 08



Baryon sector?



Baryon sector?

MB ∝ Nc =
1

1/Nc

Skyrme 61, Adkins+Nappi+Witten 83

Original motivation for Baryons as Skyrmions: 
                                                                 solitons of the chiral lagrangian

Nc
In the large-      limit:

Baryon are solitons!

Witten 77



Baryons:  Solitons of the 5D theory         instanton in 4D  (                )≈ tE → z

Topological charge: 

Q =
1

16π2

∫
d3x

∫ L1

0

dz Tr
[
Lµ̂ν̂L̃µ̂ν̂ − Rµ̂ν̂R̃µ̂ν̂

]
= Ninst(L) − Ninst(R)

µ̂ = 1, 2, 3, 4 (L0 = R0 = 0)

Atiyah,Manton89
Son,Stephanov04

If only the F²-term is considered...

reduces to
 4D Skyrmion charge

energy of this field configuration reads

E =

∫
d3x

∫ zir

zuv

dz a(z)
M5

2
Tr

[
Lµ̂ν̂L

µ̂ν̂ + Rµ̂ν̂R
µ̂ν̂

]
, (3)

where the indeces are now raised and lowered by the Euclidean 4D metric. Finding solutions

to the EOM is the same as minimizing the energy functional Eq. (3), which closely resembles

the Euclidean YM action in 4D. Our problem is therefore very similar to the one of finding

SU(2) instantons, even though, as we will see later, there are some important differences

which will not allow us to find an analitic solution.

The topological charge of the soliton will be defined by

Q =
1

32π2

∫
d3x

∫ zir

zuv

dz εµ̂ν̂ρ̂σ̂ Tr
[
Lµ̂ν̂Lρ̂σ̂ − Rµ̂ν̂Rρ̂σ̂

]
, (4)

which is the difference between the L and R instanton charges. In order to show that Q is

a topological integer number, and with the aim of making the relation with the skyrmion

more precise, it is convenient to go to the axial gauge L5 = R5 = 0. The latter can be

easily reached, starting from a generic gauge field configuration, by means of a Wilson-line

transformation. In the axial gauge both boundary conditions Eqs. (1) and (2) cannot be

simultaneously satisfied. Let us then keep Eq. (1) but modify the UV-boundary condition

to

L̃i |z=zuv
= i U(x)∂iU(x)† , R̃i |z=zuv

= 0 , (5)

where L̃i and R̃i are the gauge fields in the axial gauge and i runs over the 3 ordinary space

coordinates. The field U(x) in the equation above precisely corresponds to the Goldstone

field in the 4D interpretation [9] once a static Ansatz is taken. By using a form notation [10]

A = −i Aµ̂dxµ̂ and remembering that F ∧ F = dω3(A), the 4D integral in Eq. (4) can be

rewritten as an integral of the third Chern–Simons form ω3(A) on the 3D boundary of the

space:

Q =
1

8π2

∫

3D

[
ω3(L̃) − ω3(R̃)

]
. (6)

The contribution to Q coming from the IR-boundary vanishes as the L and R terms in

Eq. (6) cancel each other due to Eq. (1). This is crucial for Q to be quantized and it is the

reason why we have to choose the relative minus sign among the L and R instanton charges

in the definition of Q. At the x2 → ∞ boundary, the contribution to Q also vanishes since in

the axial gauge ∂5Ai = 0 (in order to have F5i = 0). We are then left with the UV-boundary

which we can topologically regard as the 3-sphere S3. Therefore, we find

Q = −
1

8π2

∫

uv

ω3

[
L̃i

(
= i U∂iU

†
)]

=
1

24π2

∫
d3x εijkTr

[
U∂iU

† U∂jU
† U∂kU

†
]

∈ Z . (7)

3

Q =

U(x): pion field



size

E

Is the Baryon given by the 4D instanton configuraton?

ρ

Yes, in an infinite flat space. Energy independent of size:

E = 8π2M5



size

E

ρ

Yes, in an infinite flat space. Energy independent of size:

E = 8π2M5

But curvature and compactification breaks the scale invariance of the instanton:

size

E
E = 8π2M5

[

1 +
ρ

2R

]

ρ

Is the Baryon given by the 4D instanton configuraton?



size

E

ρ

Yes, in an infinite flat space. Energy independent of size:

E = 8π2M5

But curvature and compactification breaks the scale invariance of the instanton:

size

E
E = 8π2M5

[

1 +
ρ

2R

]

ρ

It shrinks to zero size!
Its stability is UV-sensitive: 

Depends on the higher-dimensional 
operators of the theory

Is the Baryon given by the 4D instanton configuraton?



Lowest higher-dimensional operator:

Dimension five-operator:  Chern-Simons term



Stability and consistency of the model:

5D model:

Soliton
 energy

No sensitive to higher-dim operators

L5 ∝ F
2 +

1

Λ5

AFF̃ +
1

Λ4
5

F
4 + ...

4D Skyrmion: Lχ ∝ (DµU)2 +
1

m2
ρ

(DµU)4 + ...

ρ ∼

1

mρ
Sensitive to higher-dim operators

Different from the 4D Skyrmion model:

Lowest higher-dimensional operator:

Dimension five-operator:  Chern-Simons term

E(ρ) ∼ ρMKK +
1

ρ2Λ2
5

ρ ∼ 1

M1/3
KKΛ2/3

5

>>
1
Λ5



Mainly two approaches towards Holographic Baryons:

    

H.Hata,T.Sakai,S.Sugimoto,S.Yamato;  D.K.Hong,T.Inami,H.U.Yee;  D.K.Hong, 
M.Rho,H.U. Yee,P.YH.Hata,M.Murata,S.Yamato; K.Hashimoto,T.Sakai,S.Sugimoto

a) Treat baryons as approximated instanton configurations

A.P., Wulzer; Wulzer, Panico

b) Find the new 5D soliton configuration including
 the curvature of the space and the CS-term



Mainly two approaches towards Holographic Baryons:

    

H.Hata,T.Sakai,S.Sugimoto,S.Yamato;  D.K.Hong,T.Inami,H.U.Yee;  D.K.Hong, 
M.Rho,H.U. Yee,P.YH.Hata,M.Murata,S.Yamato; K.Hashimoto,T.Sakai,S.Sugimoto

a) Treat baryons as approximated instanton configurations

A.P., Wulzer; Wulzer, Panico

b) Find the new 5D soliton configuration including
 the curvature of the space and the CS-term

Several problems:

Wulzer,Panico;  A.Cherman,T.D. Cohen,M.Nielsen

• Not fully consistent (CS-term is sizable)
   • Does not reproduce large-N expectations



Solution of the SU(2) part:

“cylindrical symmetry” invariance under the combine SU(2) gauge and rotation + Parity:

Ansatz (Witten 77): 

La
j = −

1 + φL
2 (r, z)

r2
εjakxk +

φL
1 (r, z)

r3

(

r2δja − xjxa

)

+
AL

1 (r, z)

r2
xjxa

La
5 =

AL
2 (r, z)

r
xa

Ra

5(x, z) = La

5(−x, z)

Ra
j (x, z) = −La

j (−x, z)



Solution of the SU(2) part:

“cylindrical symmetry” invariance under the combine SU(2) gauge and rotation + Parity:

Ansatz (Witten 77): 

La
j = −

1 + φL
2 (r, z)

r2
εjakxk +

φL
1 (r, z)

r3

(

r2δja − xjxa

)

+
AL

1 (r, z)

r2
xjxa

La
5 =

AL
2 (r, z)

r
xa

Ra

5(x, z) = La

5(−x, z)

Ra
j (x, z) = −La

j (−x, z)

2D Abelian Higgs models: 

4 fields: combine in a
 2D gauge boson + a complex scalar

Lµ̂(x, z) = Rµ̂(−x, z):

A1 ≡ AR
1 = −AL

1 , A2 ≡ AR
2 = −AL

2 ,

φ1 ≡ φR
1 = −φL

1 , φ2 ≡ φR
2 = φL

2 . (10)

Our solution is now fully specified by 4 real 2D functions Aµ̄ and φ. We have a residual U(1)

invariance corresponding to g†
L = gR = exp[i α(r, z)xaσa/(2r)] under which Aµ̄ is the gauge

field and φ has charge +1.

By substituting the Ansatz Eqs. (9) and (10) into the energy Eq. (3), one finds

E = 16π

∫ ∞

0

dr

∫ zir

zuv

dz M5 a(z)

[
1

2
|Dµ̄φ|2 +

1

8
r2F 2

µ̄ν̄ +
1

4r2

(
1 − |φ|2

)2
]

. (11)

In flat space, a(z) = 1, this corresponds to a 2D Abelian Higgs model (with metric gµ̄ν̄ =

r2δµ̄ν̄). For a general warp factor we have, however, a non-metrical theory. Substituting the

Ansatz in the topological charge Eq. (4) we find

Q =
1

2π

∫ ∞

0

dr

∫ zir

zuv

dz εµ̄ν̄

[
∂µ̄(−iφ∗Dν̄φ + h.c.) + Fµ̄ν̄

]
. (12)

The charge can be written, as it should, as an integral over the 1D boundary of the 2D

space. We will choose the boundary conditions in such a way that the first term of Eq. (12)

vanishes, and therefore Q will coincide with the magnetic flux, i.e. the topological charge of

the Abelian Higgs model.

In order to solve numerically the EOM associated with Eq. (11), they must be recast

in the form of a 2D system of non-linear Elliptic Partial Differential Equations (EPDE).

The numerical resolution of the 2D EPDE boundary value problem has indeed been widely

studied and very simple and powerful packages exist. This is the reason why we cannot work

in the axial gauge, since the EOM for A1 is not elliptic in this gauge. We will impose the

2D Lorentz gauge condition ∂µ̄Aµ̄ = 0. The equations for Aν̄ become J ν̄ = ∂µ̄(r2a F µ̄ν̄) =

r2a !Aν̄ + ∂µ̄(r2a)F µ̄ν̄ , where ! is the 2D Laplacian and J is the current of the field φ. In

this way we have a system of 4 EPDE and 4 real unknown functions which we can determine

numerically. Since we are counting the two gauge field components as independent functions,

one can wonder whether the gauge-fixing condition is satisfied. Notice however that by

taking the ∂ν̄ derivative of the EOM for Aν̄ and observing that the current is conserved,

∂ν̄J ν̄ = 0, on the solutions of the EOM for φ, we find an EPDE for ∂ν̄Aν̄ which reads

[(r2a)! + ∂µ̄(r2a)∂µ̄](∂ν̄Aν̄) = 0. This equation has a unique solution once the boundary

conditions are given. If we impose ∂ν̄Aν̄ = 0 at the boundaries, the gauge will then be

automatically mantained everywhere in the bulk.

5



Solution of the U(1) part:

L̂0 = R̂0 =
1

α

s(r, z)

r
Ansatz:



Solution of the U(1) part:

L̂0 = R̂0 =
1

α

s(r, z)

r
Ansatz:

E = 8πM5

∫

∞

0

dr

∫ L1

0

dz

[

a(z)
1

2
(∂µs)2 − πγ

s

r
ρtopo

]

scalar coupled to the topological charge 
density of the 2D Abelian model

Creates a             potential that
 prevents the shrinking of the soliton

1/r2



2D Abelian Higgs model + Scalar

Total:  5 fields 

System of 5 non-linear PDEs in 2D

Solution must be found numerically

+  suitable b.c. to ensure Q=1

We rely on FEMLAB (COMSOL)  package

used by engineers in many physical systems  



Soliton energy density

z

r

taking                            to fix the 3 parametersFπ, mρ, Fω/Fρ

a instanton-like baryon, without the CS, will have 1/2 of the energy

E =

∫
drdz ρE = f(M5, L1, α) ! 1140 MeV



SU(2)-rotation of the soliton doesn’t change its energy

2) Calculate H

3) Calculate the spin and isospin operator

4) Eigenstates of spin and isospin  1/2

G.S. Adkins et al. / Static properties of nucleons 555 

Introducing the conjugate momenta  ~ri = OL/Odi = 4A~i~, we can now write the hamil- 

tonian 

H = q ' l ' i a  i - L = 4 A a i d i  - L = M + 2 A d i a i  = M + 1 ~ 7r2. 
?SA i 

Performing the usual canonical quantization procedure zr~ =- iO/~a~ we get 

H = M +  - , (6) 
i=0 

with the constraint Y~=o a2 = 1. Because of this constraint, the opera tor  Y~=o 02/Oa2 

is to be interpreted as the laplacian V 2 on the three-sphere.  The wave functions (by 

analogy with usual spherical harmonics) are traceless symmetric polynomials in the 

a~. A typical example is ( a o + i a l )  ~, with - V 2 ( a o + i a l )  ~= l ( l + 2 ) ( a o + i a O  t. Such a 

wave function has spin and isospin equal to 11, as one may see by considering the 

spin and isospin operators  

( 3 ako~o_ektmatoad ) Ik = ~ i aO oag 

A =! i ( a  k 0 0 0 "~ 
a---~o - a o 0 a----~k -- e k,ma, 3 a----~,] " (7) 

An important  physical point must be addressed here. Since the nonlinear sigma 

model field is U = A U o A  -1, A and - A  correspond to the same U. Naively, one 

might expect to insist that the wave function q,(A) obeys q,(A) = + q , ( - A ) .  Actually, 

as discussed long ago by Finkelstein and Rubinstein [8], there are two consistent 

ways to quantize the soliton; one may require qJ(A)= + q , ( - A )  for all solitons, or 

one may require q J ( A ) = - q , ( - A )  for all solitons. The former  choice corresponds 

to quantizing the soliton as a boson. The latter choice corresponds to quantizing it 

as a fermion. We wish to follow the second road, of course, so our wave functions 

will be polynomials of odd  degree in the a~. So, the nucleons, of I = J = !, correspond 

to wave functions linear in ai, while the deltas, of I = J = 3, correspond to cubic 

functions. Wave functions of fifth order and higher correspond to highly excited 

states (masses~ > 1730 MeV) which either are lost in the pion-nucleon continuum or 

else are artifacts of the model. The properly normalized wave functions for proton 

and neutron states of spin up or spin down along the z axis, and some of the A 

wave functions, are: 

[Pl') = 1 (al  + ia2) ,  [p$) = - / ( a 0 - -  ia3) ,  

In?) = / (ao  + ia3), In,l,) = - %  ( a l  -- ia2), 
,/7- qT 

/ _  

[ A++,  Sz =3)_ ._x/2  ( a  t + ia2)3 ,  
7/- 

[ A+, sz = !) = -~ /~  (al  + ia2)(1 - 3(a~ + a32)). (8) 
"B" 

Adkins+Nappi+Witten 83

 1) Identify the time-dependent fluctuations of the rotational zero-modes:

Identification of the the proton and neutron:

:  collective coordinates (quantum mechanical variables)a0, ai

U = a0 + i!σ · !ai ∈ SU(2)

Standard Procedure:



Extra difficulty:

After turning on               we must assure that the EOM are satisfied: 
Fields that were zero in our Ansatz turn on        

a0,i(t)



Static properties of the baryon
Baryon couplings to external sources:

〈B|Jµ|B〉 = J
boundary
µ

∣

∣

soliton

J
boundary
µ =

δL5D

δA
non−norma
µ

= F5µ

∣

∣

boundary

Axial coupling, magnetic and electric form factors (and moments) can be calculated

to match with our non-relativistic normalization we have to divide all correlators by 2MN .

The vector currents become

〈Nf (!q/2)|J0
S(0)|Ni(−!q/2)〉 = GS

E(!q 2)χ†
fχi ,

〈Nf (!q/2)|J i
S(0)|Ni(−!q/2)〉 = i

GS
M(!q 2)

2MN
χ†

f2(!S × !q)iχi ,

〈Nf (!q/2)|J0a
V (0)|Ni(−!q/2)〉 = GV

E(!q 2)χ†
f (2Ia) χi ,

〈Nf (!q/2)|J ia
V (0)|Ni(−!q/2)〉 = i

GV
M(!q 2)

2MN
χ†

f2(!S × !q)i (2Ia) χi , (34)

where we defined

GS,V
E (−q2) = F S,V

1 (q2) +
q2

4M2
N

F S,V
2 (q2) , GS,V

M (−q2) = F S,V
1 (q2) + F S,V

2 (q2) , (35)

and used the definition (!S × !q)i ≡ εijkSjqk. The nucleon spin/isospin vectors of state χi,f

are normalized to χ†χ = 1. For the axial current we find

〈Nf (!q/2)|J i,a
A (0)|Ni(−!q /2)〉 = χ†

f

E

MN
GA(!q 2)2Si

T Iaχi ,

〈Nf (!q /2)|J0,a
A (0)|Ni(−!q /2)〉 = 0 (36)

where !ST ≡ !S − !̂q !S · !̂q is the transverse component of the spin operator.

It is straightforward to compute the matrix elements of the currents in position space on

static nucleon states. Plugging the ansatz (9,11,14,13) in the definition of the currents (6)

and performing the quantization one obtains quantum mechanical operators acting on the

nucleons. The matrix elements are easily computed using the results of sect. 3.1. We finally

obtain the form factors by taking the Fourier transform and comparing with eq.s (34,36).

We have 6

GS
E = − Nc

6πγL

∫
dr r j0(qr) (a(z)∂zs)UV

GV
E =

4πM5

3λ

∫
dr r2 j0(qr)

[
a(z)

(
∂zv − 2 (Dzχ)(2)

)]

UV

GS
M =

8πMNM5α

3λ

∫
dr r3 j1(qr)

qr
(a(z)∂zQ)UV

GV
M =

MN Nc

3πLγα

∫
dr r2 j1(qr)

qr

(
a(z) (Dzφ)(2)

)

UV

GA =
MN

E

Nc

3παγL

∫
dr r

[
a(z)

j1(qr)

qr

(
(Dzφ)(1) − r Azr

)
− a(z) (Dzφ)(1) j0(qr)

]

UV

(37)

where jn are spherical Bessel functions which arise because of the Fourier transform.

6It is quite intuitive that the form factors can be computed in this way. Given that solitons are infinitely
heavy at small coupling, in the Breit frame they are almost static during the process of scattering with the
current. To check this, however, we should perform the quantization of the collective coordinates associated
with the center-of-mass motion, as it was done in [20] for the original 4D Skyrme model.
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Tree-level:



Results:
Experiment AdS5 Deviation

MN 940 MeV 1130 MeV 20%
µS 0.44 0.34 30%
µV 2.35 1.79 31%
gA 1.25 0.70 79%√
〈r2

E,S〉 0.79 fm 0.88 fm 11%
√
〈r2

E,V 〉 0.93 fm ∞
√
〈r2

M,S〉 0.82 fm 0.92 fm 12%
√
〈r2

M,V 〉 0.87 fm ∞
√
〈r2

A〉 0.68 fm 0.76 fm 12%
µp/µn −1.461 −1.459 0.1%

Table 1: Prediction of the nucleon observables with the microscopic parameters fixed by a
fit on the mesonic observables. The deviation from the empirical data is computed using the
expression |th− exp|/ min(|th|, |exp|), where th and exp denote, respectively, the prediction
of our model and the experimental result.

Comparison with Experiments

Let us now compare our results with real-world QCD, we therefore fix the number of colors

Nc = 3 and choose our microscopic parameters to be 1/L % 343 MeV, M5L % 0.0165 and

α % 0.94 (γ % 1.23). These values are obtained by minimizing the root mean square error

(RMSE) in the mesonic sector. The detailed list of the observables we used can be found

in [9] and the minimum RMSE for mesons is found to be 11%.

The numerical results of our analysis and the deviation with respect to the experimental

data are reported in table 1. We find a fair agreement with the experiments, a 36% total

RMSE which is compatible with the expected size of 1/Nc corrections. We discussed in the

previous section that the isovector radii are divergent because of the chiral limit, it would

be interesting to add the pion mass to the model and compute these observables. Table 1

also shows the proton-neutron magnetic moment ratio, which is in perfect agreement with

the experimental value. Notice that for this observable, due to the different scalings of µS

and µV with Nc, our computation includes two orders of the 1/Nc expansion: the leading

order value which is −1 and the next-to-leading 1/Nc correction which accounts for the extra

−0.46. The axial charge is the one which shows the larger (almost 100%) deviation, and

indeed removing this observable the RMSE decreases to 21%. We cannot exclude that, in

a theory in which the naive expansion parameter is 1/3, enhanced 80% relative corrections

to few observables might appear at the next-to-leading order. This failure in gA, therefore,
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Fig. 1.2. Scalar (left) and vector (right) electric form factors. We compare the results with the
empirical dipole fit (dashed line) [4].
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Fig. 1.3. Normalized scalar (left) and vector (right) magnetic form factors. We compare the
results with the empirical dipole fit (dashed line) [4].

deviation, and indeed removing this observable the RMSE decreases to 21%. We
cannot exclude that, in a theory in which the naive expansion parameter is 1/3,
enhanced 80% corrections to few observables might appear at the next-to-leading
order. Nevertheless, we think that this result could be very sensitive to the pion
mass and therefore could be substantially improved in 5D models that incorporate
explicit chiral breaking. The reason for this is that gA is strongly sensitive to the
large-r behavior of the solution (see the discussion following Eq. (1.63)) which is in
turn heavily affected by the presence of the pion mass. Notice that a larger value,
gA ! 0.99, is obtained in the “complete” model described in Ref. [4], a model with
similar features to our 5D scenario and which includes a nonzero pion mass. This
expectation, however, fails in the original Skyrme model, where the addition of the
pion mass does not affect gA significantly [37] and one finds gA ! 0.65.

Table 1.2 also shows the proton-neutron magnetic moment ratio, µp/µn, which
is in perfect agreement with the experimental value. This observable is the only one
in the list that includes two orders of the 1/Nc expansion. Indeed, due to the scaling
µV ∼ Nc and µS ∼ N0

c , we have µp/µn = −(µV + µS)/(µV − µS) ! −1− 2µS/µV .
In figs. 1.2, 1.3 and 1.4 we compare the normalized nucleon form factors at

q2 $= 0 with the dipole fit of the experimental data. The shape of the scalar and



0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

q2 !GeV2"

G
ES
!q2 "

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

q2 !GeV2"

G
EV
!q2 "

Figure 1: Scalar (left) and vector (right) electric form factors. We compare the results with
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Figure 2: Normalized scalar (left) and vector (right) magnetic form factors. We compare the
results with the empirical dipole fit (dashed line) [7].

does not invalidate the general picture.

It is interesting to notice that a much better prediction for gA is obtained if one uses,

instead of the standard procedure [6] considered in this paper, a different approach to the

quantization of collective coordinates of the skyrmion, which has been proposed in Ref. [17].

The results of Ref. [17] can be directly applied to our case since, for what concerns the

collective coordinate quantization, the 5D nature of our soliton is immaterial. We therefore

find that the prediction for µS and for the radii are unaffected while both µV and gA are

rescaled by 5/3. We still obtain a good prediction for µV = 2.98 (which is 27% away from

the experimental value) and a much better prediction for gA = 1.17. Being the quantization

of [17] equivalent to the standard one at large–Nc, we have no reasons to prefer, a priori, one

or the other. We have no reason either, however, to believe that the 1/Nc corrections one

includes in this alternative approach really capture the leading 1/Nc corrections or at least

part of them. If this was the case we should, of course, use the non–standard quantization

and the discrepancy in the prediction of gA would disappear.
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Figure 3: Left: deviation of the ratio of proton and neutron magnetic form factors from the
large Nc value (solid line), compared with the dipole fit of the experimental data (dashed
line). Right: normalized axial form factor (solid line) compared with the empirical dipole fit
(dashed lines) [7] and with the experimental data taken from [30,31].

If we stick, on the contrary, to the standard quantization procedure a small value of gA

(gA = 0.65 [6]) is also obtained in the original Skyrme model, but the situation improves if

the effects of the ρ and ω mesons are taken into account. The “complete” model described in

Ref. [7] seems the one which should better mimic our 5D scenario, and gA = 0.99 in that case.

The explicit chiral symmetry breaking, which is turned on in [7], could explain the difference

because the axial coupling is strongly sensitive to the large-r behavior of the solution (see

the discussion following eq. (41)) which is in turn heavily affected by the presence of the pion

mass. Correction to gA from chiral symmetry breaking could therefore be enhanced. Notice

that, however, this expectation fails in the original Skyrme model, where the addition of the

pion mass does not affect gA significantly [27].

In figs. 1, 2 and 3 we compare the normalized nucleon form factors at q2 != 0 with the

dipole fit of the experimental data. The shape of the scalar and axial form factors is of the

dipole type, the discrepancy is mainly due to the error in the radii. The shape of vector form

factors is of course not of the dipole type for small q2, but this is due to the divergence of the

derivative at q2 = 0. Including the pion mass will for sure improve the situation given that

it will render finite the slope at zero momentum; it would be interesting to see if the dipole

shape of these form factors is recovered in the presence of the pion mass. We also plot in the

left panel of fig. 3 the deviation of ratio of the proton and neutron magnetic form factors from

the large Nc value which is given, due to the the different large-Nc scaling of the isoscalar

and isovector components, by GP
M(q)/GN

M(q) = −1. Not only we find that this quantity is

quite well predicted, with an error ! 15%, but we also see that its shape, in agreement with

observations, is nearly constant away from q2 = 0. Also in this case correction from the pion

mass are expected to go in the right direction.
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II. Gravity duals of superconductors
     (Holographic superconductors)



Superconductor:
 
Material inside which the EM U(1) is spontaneously 
broken at certain  T<Tc

Order parameter <O>  (e.g. condensation of cooper-pairs) 
turns on at low-temperature

(“Higgs mechanism”)



Proposed model for 3D holographic superconductor
Harnoll,Herzog,Horowitz 09

The Holographic Superconductor Vortex
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A gravity dual of a superconductor at finite temperature has been recently proposed. We present
the vortex configuration of this model and study its properties. In particular, we calculate the
free energy as a function of an external magnetic field, the magnetization and the superconducting
density. We also find the two critical magnetic fields that define the region in which the vortex
configurations are energetically favorable.

INTRODUCTION

The Gauge/Gravity duality, that relates strongly in-
teracting gauge theories to theories of gravity in higher
dimensions, has opened a new window to study many dif-
ferent strongly interacting systems. The applicability of
this approach is very vast ranging from particle physics
to plasma and nuclear physics. In Ref. [1] a model for a
dual description of a superconductor was proposed. The
model showed to have a critical temperature Tc under
which the system goes into a superconducting phase. The
properties of this phase have been thoroughly studied [2],
showing a resemblance with those of a Type II supercon-
ductor. In spite of this, Abrikosov vortices, known to
happen in Type II superconductors, have not yet been
obtained. The purpose of this letter is to show that in
this type of gravity duals vortex solutions indeed exist
and can be energetically favorable in the presence of ex-
ternal magnetic fields. Due to the nonlinear nature of
these configurations, we will have to rely on numerical
methods. Among other physical properties, we will cal-
culate the free energy and the range of the magnetic field
Bc 1 ≤ B ≤ Bc 2 at which the superconductor is at the
intermediate phase (Shubnikov phase) characterized by
vortex configurations. Further aspects of these solutions
will be presented elsewhere.

THE MODEL

The physical system to study is a conformal strongly
coupled superconductor in 3D at finite temperature and
charge density. Its gravitational dual theory [1] is an
asymptotically AdS-Schwarzschild space-time in 4D. The
gravitational degrees of freedom are coupled to an U(1)
gauge field Aµ and a complex scalar Ψ. The action that
summarizes the above model is given by

S =

∫

d4x
√
−G

{

1
16πGN

(R + Λ) −
1

g2
L

}

,

with L =
1

4
F 2 +

1

L2
|DµΨ|2 +

m2

L4
|Ψ|2 . (1)

GN is the 4D gravitational Newton constant, the cosmo-
logical constant Λ defines the asymptotic AdS radius L
via the relation Λ = −3/L2 and Dµ = ∂µ − iAµ. We
use the convention where the metric G has signature
(−, +, +, +), with coordinates (t, z, r,φ) where t is time, z
is the holographic direction such that the AdS-boundary
occurs at z = 0, and (r,φ) are polar coordinates parame-
terizing the remaining 2D plane. For the scalar mass m2

we will focus on two possible values: m2 = −2, 0. Other
values are expected to give similar behaviors [3].

We will work in the so-called probe approximation,
where the gravity sector is effectively decoupled from the
matter sector and therefore, there is no back-reaction on
the background metric due to L. This regime is achieved
in the limit of large g, when compared to the gravitational
strength. In this limit we can, without loss of generality,
fix g = 1. In our conventions, the background AdS-
Schwarzschild Black hole (BH) metric is given by

ds2 =
L2

z2

(

−f(z)dt2 + dr2 + r2dφ2
)

+
L2

z2f(z)
dz2 , (2)

where f(z) = 1 − (z/zh)3.
As we are considering the theory at finite temperature,

we have to take the Euclidian regime with compact time
it ∈ [0, 1/T ] where T = 3/(4πzh). Therefore, the holo-
graphic coordinate runs from the AdS-boundary at z = 0
to the BH horizon at z = zh. Notice that we work with a
planar BH with energy per unit area ε = L2/(8πGNz3

h).
Then, the AdS/CFT duality tells us that the above are
precisely the temperature and energy density of the dual
superconductor.

The gauge field has the usual AdS-boundary behavior

Aν → aν + Jνz , (3)

where aν = (µ, ai) corresponds to the potentials on the
dual CFT, while Jν = (−ρ, Ji) plays the role of the con-
jugated currents. We will consider the case in which the
charge density ρ is fixed constant. The other potentials
ai are related to turning on either electromagnetic fields
or sample velocities in the dual CFT, depending on the
interpretation we give to the AdS/CFT duality. The first
interpretation is what we will use in this article, while the
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2Institut de Ciències de l’Espai (CSIC) and Institut d’Estudis Espacials de Catalunya (IEEC/CSIC),
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matter sector and therefore, there is no back-reaction on
the background metric due to L. This regime is achieved
in the limit of large g, when compared to the gravitational
strength. In this limit we can, without loss of generality,
fix g = 1. In our conventions, the background AdS-
Schwarzschild Black hole (BH) metric is given by

ds2 =
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where f(z) = 1 − (z/zh)3.
As we are considering the theory at finite temperature,

we have to take the Euclidian regime with compact time
it ∈ [0, 1/T ] where T = 3/(4πzh). Therefore, the holo-
graphic coordinate runs from the AdS-boundary at z = 0
to the BH horizon at z = zh. Notice that we work with a
planar BH with energy per unit area ε = L2/(8πGNz3

h).
Then, the AdS/CFT duality tells us that the above are
precisely the temperature and energy density of the dual
superconductor.

The gauge field has the usual AdS-boundary behavior

Aν → aν + Jνz , (3)

where aν = (µ, ai) corresponds to the potentials on the
dual CFT, while Jν = (−ρ, Ji) plays the role of the con-
jugated currents. We will consider the case in which the
charge density ρ is fixed constant. The other potentials
ai are related to turning on either electromagnetic fields
or sample velocities in the dual CFT, depending on the
interpretation we give to the AdS/CFT duality. The first
interpretation is what we will use in this article, while the
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The Gauge/Gravity duality, that relates strongly in-
teracting gauge theories to theories of gravity in higher
dimensions, has opened a new window to study many dif-
ferent strongly interacting systems. The applicability of
this approach is very vast ranging from particle physics
to plasma and nuclear physics. In Ref. [1] a model for a
dual description of a superconductor was proposed. The
model showed to have a critical temperature Tc under
which the system goes into a superconducting phase. The
properties of this phase have been thoroughly studied [2],
showing a resemblance with those of a Type II supercon-
ductor. In spite of this, Abrikosov vortices, known to
happen in Type II superconductors, have not yet been
obtained. The purpose of this letter is to show that in
this type of gravity duals vortex solutions indeed exist
and can be energetically favorable in the presence of ex-
ternal magnetic fields. Due to the nonlinear nature of
these configurations, we will have to rely on numerical
methods. Among other physical properties, we will cal-
culate the free energy and the range of the magnetic field
Bc 1 ≤ B ≤ Bc 2 at which the superconductor is at the
intermediate phase (Shubnikov phase) characterized by
vortex configurations. Further aspects of these solutions
will be presented elsewhere.

THE MODEL

The physical system to study is a conformal strongly
coupled superconductor in 3D at finite temperature and
charge density. Its gravitational dual theory [1] is an
asymptotically AdS-Schwarzschild space-time in 4D. The
gravitational degrees of freedom are coupled to an U(1)
gauge field Aµ and a complex scalar Ψ. The action that
summarizes the above model is given by
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L
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via the relation Λ = −3/L2 and Dµ = ∂µ − iAµ. We
use the convention where the metric G has signature
(−, +, +, +), with coordinates (t, z, r,φ) where t is time, z
is the holographic direction such that the AdS-boundary
occurs at z = 0, and (r,φ) are polar coordinates parame-
terizing the remaining 2D plane. For the scalar mass m2

we will focus on two possible values: m2 = −2, 0. Other
values are expected to give similar behaviors [3].

We will work in the so-called probe approximation,
where the gravity sector is effectively decoupled from the
matter sector and therefore, there is no back-reaction on
the background metric due to L. This regime is achieved
in the limit of large g, when compared to the gravitational
strength. In this limit we can, without loss of generality,
fix g = 1. In our conventions, the background AdS-
Schwarzschild Black hole (BH) metric is given by

ds2 =
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−f(z)dt2 + dr2 + r2dφ2
)

+
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where f(z) = 1 − (z/zh)3.
As we are considering the theory at finite temperature,

we have to take the Euclidian regime with compact time
it ∈ [0, 1/T ] where T = 3/(4πzh). Therefore, the holo-
graphic coordinate runs from the AdS-boundary at z = 0
to the BH horizon at z = zh. Notice that we work with a
planar BH with energy per unit area ε = L2/(8πGNz3

h).
Then, the AdS/CFT duality tells us that the above are
precisely the temperature and energy density of the dual
superconductor.

The gauge field has the usual AdS-boundary behavior

Aν → aν + Jνz , (3)

where aν = (µ, ai) corresponds to the potentials on the
dual CFT, while Jν = (−ρ, Ji) plays the role of the con-
jugated currents. We will consider the case in which the
charge density ρ is fixed constant. The other potentials
ai are related to turning on either electromagnetic fields
or sample velocities in the dual CFT, depending on the
interpretation we give to the AdS/CFT duality. The first
interpretation is what we will use in this article, while the
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INTRODUCTION

The Gauge/Gravity duality, that relates strongly in-
teracting gauge theories to theories of gravity in higher
dimensions, has opened a new window to study many dif-
ferent strongly interacting systems. The applicability of
this approach is very vast ranging from particle physics
to plasma and nuclear physics. In Ref. [1] a model for a
dual description of a superconductor was proposed. The
model showed to have a critical temperature Tc under
which the system goes into a superconducting phase. The
properties of this phase have been thoroughly studied [2],
showing a resemblance with those of a Type II supercon-
ductor. In spite of this, Abrikosov vortices, known to
happen in Type II superconductors, have not yet been
obtained. The purpose of this letter is to show that in
this type of gravity duals vortex solutions indeed exist
and can be energetically favorable in the presence of ex-
ternal magnetic fields. Due to the nonlinear nature of
these configurations, we will have to rely on numerical
methods. Among other physical properties, we will cal-
culate the free energy and the range of the magnetic field
Bc 1 ≤ B ≤ Bc 2 at which the superconductor is at the
intermediate phase (Shubnikov phase) characterized by
vortex configurations. Further aspects of these solutions
will be presented elsewhere.

THE MODEL

The physical system to study is a conformal strongly
coupled superconductor in 3D at finite temperature and
charge density. Its gravitational dual theory [1] is an
asymptotically AdS-Schwarzschild space-time in 4D. The
gravitational degrees of freedom are coupled to an U(1)
gauge field Aµ and a complex scalar Ψ. The action that
summarizes the above model is given by

S =
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1
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L
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4
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|Ψ|2 . (1)

GN is the 4D gravitational Newton constant, the cosmo-
logical constant Λ defines the asymptotic AdS radius L
via the relation Λ = −3/L2 and Dµ = ∂µ − iAµ. We
use the convention where the metric G has signature
(−, +, +, +), with coordinates (t, z, r,φ) where t is time, z
is the holographic direction such that the AdS-boundary
occurs at z = 0, and (r,φ) are polar coordinates parame-
terizing the remaining 2D plane. For the scalar mass m2

we will focus on two possible values: m2 = −2, 0. Other
values are expected to give similar behaviors [3].

We will work in the so-called probe approximation,
where the gravity sector is effectively decoupled from the
matter sector and therefore, there is no back-reaction on
the background metric due to L. This regime is achieved
in the limit of large g, when compared to the gravitational
strength. In this limit we can, without loss of generality,
fix g = 1. In our conventions, the background AdS-
Schwarzschild Black hole (BH) metric is given by

ds2 =
L2

z2

(

−f(z)dt2 + dr2 + r2dφ2
)

+
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z2f(z)
dz2 , (2)

where f(z) = 1 − (z/zh)3.
As we are considering the theory at finite temperature,

we have to take the Euclidian regime with compact time
it ∈ [0, 1/T ] where T = 3/(4πzh). Therefore, the holo-
graphic coordinate runs from the AdS-boundary at z = 0
to the BH horizon at z = zh. Notice that we work with a
planar BH with energy per unit area ε = L2/(8πGNz3

h).
Then, the AdS/CFT duality tells us that the above are
precisely the temperature and energy density of the dual
superconductor.

The gauge field has the usual AdS-boundary behavior

Aν → aν + Jνz , (3)

where aν = (µ, ai) corresponds to the potentials on the
dual CFT, while Jν = (−ρ, Ji) plays the role of the con-
jugated currents. We will consider the case in which the
charge density ρ is fixed constant. The other potentials
ai are related to turning on either electromagnetic fields
or sample velocities in the dual CFT, depending on the
interpretation we give to the AdS/CFT duality. The first
interpretation is what we will use in this article, while the
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INTRODUCTION

The Gauge/Gravity duality, that relates strongly in-
teracting gauge theories to theories of gravity in higher
dimensions, has opened a new window to study many dif-
ferent strongly interacting systems. The applicability of
this approach is very vast ranging from particle physics
to plasma and nuclear physics. In Ref. [1] a model for a
dual description of a superconductor was proposed. The
model showed to have a critical temperature Tc under
which the system goes into a superconducting phase. The
properties of this phase have been thoroughly studied [2],
showing a resemblance with those of a Type II supercon-
ductor. In spite of this, Abrikosov vortices, known to
happen in Type II superconductors, have not yet been
obtained. The purpose of this letter is to show that in
this type of gravity duals vortex solutions indeed exist
and can be energetically favorable in the presence of ex-
ternal magnetic fields. Due to the nonlinear nature of
these configurations, we will have to rely on numerical
methods. Among other physical properties, we will cal-
culate the free energy and the range of the magnetic field
Bc 1 ≤ B ≤ Bc 2 at which the superconductor is at the
intermediate phase (Shubnikov phase) characterized by
vortex configurations. Further aspects of these solutions
will be presented elsewhere.

THE MODEL

The physical system to study is a conformal strongly
coupled superconductor in 3D at finite temperature and
charge density. Its gravitational dual theory [1] is an
asymptotically AdS-Schwarzschild space-time in 4D. The
gravitational degrees of freedom are coupled to an U(1)
gauge field Aµ and a complex scalar Ψ. The action that
summarizes the above model is given by

S =
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√
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1
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1
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L

}

,

with L =
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GN is the 4D gravitational Newton constant, the cosmo-
logical constant Λ defines the asymptotic AdS radius L
via the relation Λ = −3/L2 and Dµ = ∂µ − iAµ. We
use the convention where the metric G has signature
(−, +, +, +), with coordinates (t, z, r,φ) where t is time, z
is the holographic direction such that the AdS-boundary
occurs at z = 0, and (r,φ) are polar coordinates parame-
terizing the remaining 2D plane. For the scalar mass m2

we will focus on two possible values: m2 = −2, 0. Other
values are expected to give similar behaviors [3].

We will work in the so-called probe approximation,
where the gravity sector is effectively decoupled from the
matter sector and therefore, there is no back-reaction on
the background metric due to L. This regime is achieved
in the limit of large g, when compared to the gravitational
strength. In this limit we can, without loss of generality,
fix g = 1. In our conventions, the background AdS-
Schwarzschild Black hole (BH) metric is given by

ds2 =
L2
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(

−f(z)dt2 + dr2 + r2dφ2
)

+
L2

z2f(z)
dz2 , (2)

where f(z) = 1 − (z/zh)3.
As we are considering the theory at finite temperature,

we have to take the Euclidian regime with compact time
it ∈ [0, 1/T ] where T = 3/(4πzh). Therefore, the holo-
graphic coordinate runs from the AdS-boundary at z = 0
to the BH horizon at z = zh. Notice that we work with a
planar BH with energy per unit area ε = L2/(8πGNz3

h).
Then, the AdS/CFT duality tells us that the above are
precisely the temperature and energy density of the dual
superconductor.

The gauge field has the usual AdS-boundary behavior

Aν → aν + Jνz , (3)

where aν = (µ, ai) corresponds to the potentials on the
dual CFT, while Jν = (−ρ, Ji) plays the role of the con-
jugated currents. We will consider the case in which the
charge density ρ is fixed constant. The other potentials
ai are related to turning on either electromagnetic fields
or sample velocities in the dual CFT, depending on the
interpretation we give to the AdS/CFT duality. The first
interpretation is what we will use in this article, while the
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INTRODUCTION

The Gauge/Gravity duality, that relates strongly in-
teracting gauge theories to theories of gravity in higher
dimensions, has opened a new window to study many dif-
ferent strongly interacting systems. The applicability of
this approach is very vast ranging from particle physics
to plasma and nuclear physics. In Ref. [1] a model for a
dual description of a superconductor was proposed. The
model showed to have a critical temperature Tc under
which the system goes into a superconducting phase. The
properties of this phase have been thoroughly studied [2],
showing a resemblance with those of a Type II supercon-
ductor. In spite of this, Abrikosov vortices, known to
happen in Type II superconductors, have not yet been
obtained. The purpose of this letter is to show that in
this type of gravity duals vortex solutions indeed exist
and can be energetically favorable in the presence of ex-
ternal magnetic fields. Due to the nonlinear nature of
these configurations, we will have to rely on numerical
methods. Among other physical properties, we will cal-
culate the free energy and the range of the magnetic field
Bc 1 ≤ B ≤ Bc 2 at which the superconductor is at the
intermediate phase (Shubnikov phase) characterized by
vortex configurations. Further aspects of these solutions
will be presented elsewhere.

THE MODEL

The physical system to study is a conformal strongly
coupled superconductor in 3D at finite temperature and
charge density. Its gravitational dual theory [1] is an
asymptotically AdS-Schwarzschild space-time in 4D. The
gravitational degrees of freedom are coupled to an U(1)
gauge field Aµ and a complex scalar Ψ. The action that
summarizes the above model is given by

S =

∫
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L
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GN is the 4D gravitational Newton constant, the cosmo-
logical constant Λ defines the asymptotic AdS radius L
via the relation Λ = −3/L2 and Dµ = ∂µ − iAµ. We
use the convention where the metric G has signature
(−, +, +, +), with coordinates (t, z, r,φ) where t is time, z
is the holographic direction such that the AdS-boundary
occurs at z = 0, and (r,φ) are polar coordinates parame-
terizing the remaining 2D plane. For the scalar mass m2

we will focus on two possible values: m2 = −2, 0. Other
values are expected to give similar behaviors [3].

We will work in the so-called probe approximation,
where the gravity sector is effectively decoupled from the
matter sector and therefore, there is no back-reaction on
the background metric due to L. This regime is achieved
in the limit of large g, when compared to the gravitational
strength. In this limit we can, without loss of generality,
fix g = 1. In our conventions, the background AdS-
Schwarzschild Black hole (BH) metric is given by

ds2 =
L2

z2

(

−f(z)dt2 + dr2 + r2dφ2
)

+
L2

z2f(z)
dz2 , (2)

where f(z) = 1 − (z/zh)3.
As we are considering the theory at finite temperature,

we have to take the Euclidian regime with compact time
it ∈ [0, 1/T ] where T = 3/(4πzh). Therefore, the holo-
graphic coordinate runs from the AdS-boundary at z = 0
to the BH horizon at z = zh. Notice that we work with a
planar BH with energy per unit area ε = L2/(8πGNz3

h).
Then, the AdS/CFT duality tells us that the above are
precisely the temperature and energy density of the dual
superconductor.

The gauge field has the usual AdS-boundary behavior

Aν → aν + Jνz , (3)

where aν = (µ, ai) corresponds to the potentials on the
dual CFT, while Jν = (−ρ, Ji) plays the role of the con-
jugated currents. We will consider the case in which the
charge density ρ is fixed constant. The other potentials
ai are related to turning on either electromagnetic fields
or sample velocities in the dual CFT, depending on the
interpretation we give to the AdS/CFT duality. The first
interpretation is what we will use in this article, while the
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The Gauge/Gravity duality, that relates strongly in-
teracting gauge theories to theories of gravity in higher
dimensions, has opened a new window to study many dif-
ferent strongly interacting systems. The applicability of
this approach is very vast ranging from particle physics
to plasma and nuclear physics. In Ref. [1] a model for a
dual description of a superconductor was proposed. The
model showed to have a critical temperature Tc under
which the system goes into a superconducting phase. The
properties of this phase have been thoroughly studied [2],
showing a resemblance with those of a Type II supercon-
ductor. In spite of this, Abrikosov vortices, known to
happen in Type II superconductors, have not yet been
obtained. The purpose of this letter is to show that in
this type of gravity duals vortex solutions indeed exist
and can be energetically favorable in the presence of ex-
ternal magnetic fields. Due to the nonlinear nature of
these configurations, we will have to rely on numerical
methods. Among other physical properties, we will cal-
culate the free energy and the range of the magnetic field
Bc 1 ≤ B ≤ Bc 2 at which the superconductor is at the
intermediate phase (Shubnikov phase) characterized by
vortex configurations. Further aspects of these solutions
will be presented elsewhere.

THE MODEL

The physical system to study is a conformal strongly
coupled superconductor in 3D at finite temperature and
charge density. Its gravitational dual theory [1] is an
asymptotically AdS-Schwarzschild space-time in 4D. The
gravitational degrees of freedom are coupled to an U(1)
gauge field Aµ and a complex scalar Ψ. The action that
summarizes the above model is given by

S =
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GN is the 4D gravitational Newton constant, the cosmo-
logical constant Λ defines the asymptotic AdS radius L
via the relation Λ = −3/L2 and Dµ = ∂µ − iAµ. We
use the convention where the metric G has signature
(−, +, +, +), with coordinates (t, z, r,φ) where t is time, z
is the holographic direction such that the AdS-boundary
occurs at z = 0, and (r,φ) are polar coordinates parame-
terizing the remaining 2D plane. For the scalar mass m2

we will focus on two possible values: m2 = −2, 0. Other
values are expected to give similar behaviors [3].

We will work in the so-called probe approximation,
where the gravity sector is effectively decoupled from the
matter sector and therefore, there is no back-reaction on
the background metric due to L. This regime is achieved
in the limit of large g, when compared to the gravitational
strength. In this limit we can, without loss of generality,
fix g = 1. In our conventions, the background AdS-
Schwarzschild Black hole (BH) metric is given by

ds2 =
L2

z2

(

−f(z)dt2 + dr2 + r2dφ2
)

+
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z2f(z)
dz2 , (2)

where f(z) = 1 − (z/zh)3.
As we are considering the theory at finite temperature,

we have to take the Euclidian regime with compact time
it ∈ [0, 1/T ] where T = 3/(4πzh). Therefore, the holo-
graphic coordinate runs from the AdS-boundary at z = 0
to the BH horizon at z = zh. Notice that we work with a
planar BH with energy per unit area ε = L2/(8πGNz3

h).
Then, the AdS/CFT duality tells us that the above are
precisely the temperature and energy density of the dual
superconductor.

The gauge field has the usual AdS-boundary behavior

Aν → aν + Jνz , (3)

where aν = (µ, ai) corresponds to the potentials on the
dual CFT, while Jν = (−ρ, Ji) plays the role of the con-
jugated currents. We will consider the case in which the
charge density ρ is fixed constant. The other potentials
ai are related to turning on either electromagnetic fields
or sample velocities in the dual CFT, depending on the
interpretation we give to the AdS/CFT duality. The first
interpretation is what we will use in this article, while the
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teracting gauge theories to theories of gravity in higher
dimensions, has opened a new window to study many dif-
ferent strongly interacting systems. The applicability of
this approach is very vast ranging from particle physics
to plasma and nuclear physics. In Ref. [1] a model for a
dual description of a superconductor was proposed. The
model showed to have a critical temperature Tc under
which the system goes into a superconducting phase. The
properties of this phase have been thoroughly studied [2],
showing a resemblance with those of a Type II supercon-
ductor. In spite of this, Abrikosov vortices, known to
happen in Type II superconductors, have not yet been
obtained. The purpose of this letter is to show that in
this type of gravity duals vortex solutions indeed exist
and can be energetically favorable in the presence of ex-
ternal magnetic fields. Due to the nonlinear nature of
these configurations, we will have to rely on numerical
methods. Among other physical properties, we will cal-
culate the free energy and the range of the magnetic field
Bc 1 ≤ B ≤ Bc 2 at which the superconductor is at the
intermediate phase (Shubnikov phase) characterized by
vortex configurations. Further aspects of these solutions
will be presented elsewhere.

THE MODEL

The physical system to study is a conformal strongly
coupled superconductor in 3D at finite temperature and
charge density. Its gravitational dual theory [1] is an
asymptotically AdS-Schwarzschild space-time in 4D. The
gravitational degrees of freedom are coupled to an U(1)
gauge field Aµ and a complex scalar Ψ. The action that
summarizes the above model is given by
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GN is the 4D gravitational Newton constant, the cosmo-
logical constant Λ defines the asymptotic AdS radius L
via the relation Λ = −3/L2 and Dµ = ∂µ − iAµ. We
use the convention where the metric G has signature
(−, +, +, +), with coordinates (t, z, r,φ) where t is time, z
is the holographic direction such that the AdS-boundary
occurs at z = 0, and (r,φ) are polar coordinates parame-
terizing the remaining 2D plane. For the scalar mass m2

we will focus on two possible values: m2 = −2, 0. Other
values are expected to give similar behaviors [3].

We will work in the so-called probe approximation,
where the gravity sector is effectively decoupled from the
matter sector and therefore, there is no back-reaction on
the background metric due to L. This regime is achieved
in the limit of large g, when compared to the gravitational
strength. In this limit we can, without loss of generality,
fix g = 1. In our conventions, the background AdS-
Schwarzschild Black hole (BH) metric is given by

ds2 =
L2

z2

(

−f(z)dt2 + dr2 + r2dφ2
)

+
L2

z2f(z)
dz2 , (2)

where f(z) = 1 − (z/zh)3.
As we are considering the theory at finite temperature,

we have to take the Euclidian regime with compact time
it ∈ [0, 1/T ] where T = 3/(4πzh). Therefore, the holo-
graphic coordinate runs from the AdS-boundary at z = 0
to the BH horizon at z = zh. Notice that we work with a
planar BH with energy per unit area ε = L2/(8πGNz3

h).
Then, the AdS/CFT duality tells us that the above are
precisely the temperature and energy density of the dual
superconductor.

The gauge field has the usual AdS-boundary behavior

Aν → aν + Jνz , (3)

where aν = (µ, ai) corresponds to the potentials on the
dual CFT, while Jν = (−ρ, Ji) plays the role of the con-
jugated currents. We will consider the case in which the
charge density ρ is fixed constant. The other potentials
ai are related to turning on either electromagnetic fields
or sample velocities in the dual CFT, depending on the
interpretation we give to the AdS/CFT duality. The first
interpretation is what we will use in this article, while the



Charge density of the superconductor → A0≠0 in the bulk
(sets the scale)

Below certain T, the scalar turns on towards the BH

BH horizonΨ

since meff2 ~ m2-A02

   Superconducting phase: <Ψ>≠0 → Nonzero “photon mass” 
New phase: 
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Figure 1: The condensate as a function of temperature. λ is the dimension of the
operator O, and d is the spacetime dimension of the superconductor. λBF = −3/2
for d = 3 and λBF = −2 for d = 4. The condensate tends to increase with λ.

λ corresponds to increasing the mass of the bulk scalar, and hence making it harder
for the scalar hair to form. As expected from mean field theory, 〈O〉 ∼ (Tc − T )1/2

near the critical point. At low temperature, for λ > λBF , the condensate quickly
saturates a fixed value which increases with λ. For λ = λBF , the vev approaches a
fixed value roughly linearly, and for λ < λBF it appears to diverge.

3 Conductivity

To observe that our boundary theory is superconducting, we need to calculate the
conductivity σ. This is related to the retarded current-current two-point function for
our global U(1) symmetry, σ(ω) = 1

iωGR(ω, k = 0). To do so we must calculate an
electromagnetic perturbation on top of the hairy black hole. The linearized equation
of motion for δA = Ax(r)e−iωt+iky dx is

A′′
x +

(
f ′

f
+

d− 3

r

)
A′

x +

(
ω2

f 2
− k2

r2f
− 2ψ2

f

)
Ax = 0 (6)

This mode is not coupled to other linearized perturbations and can be studied sepa-
rately. We require Ax ∝ f−iω/dr0 near r = r0 corresponding to ingoing wave boundary
conditions at the horizon. The AdS/CFT dictionary tells us how to calculate the
retarded current Greens function GR from our gauge field perturbation [15]. The

4

☛ Order parameter is nonzero for T<Tc:
Horowitz,Roberts

λ=Dim[O]

☛ “Superconducting density” (<JJ> correlator at zero ω):
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Figure 5: Superfluid density in d = 3 and d = 4.

fact that the electron-photon coupling implies that a photon will excite quasiparticles
in pairs. We find that this BCS result does not hold in general, even though it did
hold for the cases studied in [2]. The values of ∆ are given in Tables 1 and 2 at the
end of this paper.

Another order parameter is the superfluid density, ns. It is the coefficient of
the pole in Im[σ] at ω = 0. By the Kramers-Kronig relations, if Im[σ] = ns/ω,
Re[σ] = πnsδ(ω). It is this delta function that tells us our boundary theory exhibits
DC superconductivity. The BCS theory gives relations between ns, 〈O〉, and ∆, but
for holographic superconductors, no analogous formulas are known.

It is clear from the definition of σ that ns = Re[GR(ω = k = 0)]. In terms of
long-wavelength response, we can extract two correlation lengths, ξω and ξk. We
simply study the small ω, k behavior of GR,

Re[GR] = ns(1− ξ2
ωω2 + ξ2

kk
2 + · · · ) (14)

Because Lorentz invariance is broken at finite temperature, we do not expect ξω =
ξk. However, at low temperatures the spacetime is in some sense “nearly” AdS in
Poincare coordinates, and so at low temperatures we expect the two values to be
approximately equal. In the d = 3 case we indeed find that they are nearly equal not
only at low temperature, but all the way up to T/Tc ≈ 0.7. For d = 4, ξω and ξk are
not separately well defined since there is a renormalization ambiguity as mentioned
earlier. We can always shift GR → GR +C(ω2− k2). Therefore in that case the only
renormalization-independent quantity is the difference, δξ2 = ξ2

k − ξ2
ω. Studying GR

at small k can be understood as linear response to a long wavelength magnetic field,
it is unclear how to interperet ξω.

10

(“photon mass”)



Do these type of vortices exist in holographic superconductors?

Turning on magnetic fields:

Expected:  Abrikosov Vortices (if it is a Type II superconductor)

Yes,  and they can be energetically 
favorable for certain B
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BH horizonΨ

Turning on magnetic fields:

B

Gravity theory:

Vortex Ansatz:

2

second one is relevant for superfluids 1 [4]. Similarly, the
scalar field has the following AdS-boundary behavior

|Ψ| → az3−∆ + bz∆ , (4)

where ∆ = 2, 3 (for m2 = −2, 0) corresponds to the di-
mension of the dual operator O∆ responsible for the U(1)
breaking, and b determines the vacuum expectation value
of this operator. The value of a corresponds to an explicit
breaking of the U(1) symmetry and will then be turned
to zero 2. Having fixed m2, the only parameters of the
model are the scales T and

√
ρ.

It has been reported in Ref. [1, 3] that for ρ $= 0 the
system undergoes a phase transition at

Tc % 0.12
√

ρ for m2 = −2 ,

Tc % 0.09
√

ρ for m2 = 0 , (5)

where the two phases are related to a charged BH and a
charged BH with a non-trivial scalar hair. At T < Tc, the
system is at the hairy phase corresponding to a supercon-
ducting phase. In Refs. [5, 6] the model was also studied
in the presence of an external magnetic field B using a
dyonic BH with a probe scalar field. The result was a
bounded superconducting region or drop, that squeezes
to zero size as we increase B. The above suggested that
we are dealing with a Type II superconductor. If this
is the case, Abrikosov vortex configurations should be
present in this model.

We stress that, as is usual in this approach, we are
treating the electromagnetic field of the 3D dual theory
as a nondynamical background. This corresponds to take
the 3D electric charge e → 0, while keeping constant B
and ρ.

THE VORTEX SOLUTION

We use the Ansatz given by

Ψ = ψ(r, z) einφ , A0 = A0(r, z) , Aφ = Aφ(r, z) , (6)

with all other fields set to zero. This Ansatz preserves
global U(1) transformations when combined with a ro-
tation in the 2D plane. The fields Ar, Az can be con-
sistently set to zero since our Ansatz fulfills ∂rArg[Ψ] =
∂zArg[Ψ] = 0. The winding number n ∈ Z determines
different topological solutions. With the above Ansatz we

1 In fact, the vortex solution we present in this article can be
identified with vortex configurations in a superfluid, once the
appropriated reinterpretations are made.

2 For the case m2 = −2 there is the possibility to have b = 0 and
a "= 0 corresponding to have a dual CFT operator of dimension
one [2].

obtain from Eq. (1) the following equations of motion:

z2∂z

(

f

z2
∂zψ

)

+
1

r
∂r (r∂rψ)

+

(

A2
0

f
−

(Aφ − n)2

r2
−

m2

z2

)

ψ = 0 ,

∂z (f∂zAφ) + r ∂r

(

1

r
∂rAφ

)

−
2ψ2

z2
(Aφ − n) = 0 ,

f∂2
zA0 +

1

r
∂r (r∂rA0) −

2ψ2

z2
A0 = 0 . (7)

In order to describe a dual superconductor at fixed ρ
in the presence of an external magnetic field B, the
AdS/CFT correspondence tells us that we must impose
the AdS-boundary conditions

ψ|z=0 = 0 , ∂zA0|z=0 = −ρ , Aφ|z=0 =
1

2
r2B , (8)

for the case m2 = 0, while for m2 = −2 the first condition
must be ∂zψ|z=0 = 0 (this is equivalent to set a = 0 in
Eq. (4)). At the horizon z = zh we require the field con-
figurations to be regular; in particular we set A0|z=zh

= 0
as usual, to have a well-defined Euclidean continuation.
Similar reasoning at r = 0 implies that for n $= 0

ψ|r=0 = 0 , ∂rA0|r=0 = 0 , Aφ|r=0 = 0 , (9)

while for n = 0, ∂rψ|r=0 = 0. We will be considering a
3D superconductor of radius R that we will take to be
much bigger than the vortex radius. This is implemented
by setting a nonzero ρ extending from r = 0 to r = R.

The 2D system of the three partial differential equa-
tions of Eq. (7) is nonlinear, and therefore requires to be
solved numerically. For this purpose we have used the
COMSOL 3.4 package [7]. In our numerical studies we
have chosen

R =
50
√

ρ
, T = 0.065

√
ρ . (10)

This corresponds to

T

Tc
% 0.74 (0.54) , (11)

for the case of m2 = 0 (−2).
In Fig. 1 we show the order parameter 〈O∆〉 =

1
∆

z1−∆∂zψ|z=0 of the dual superconductor. We can see
that this goes to zero at the origin where the vortex is
placed. For the value of the magnetic field, we have cho-
sen

Bn =
2n

R2
, (12)

corresponding to the value at which the magnetic flux

crossing a surface of constant z, Φ =
∫

dφ
∫ R
0

rdrB,
equals 2πn. This is the quantized flux going through
the n-vortex of the dual superconductor.

working in the probe limit: g →Infty

→ configurations must be found numerically
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Numerical solution shows order parameter and “superconducting 
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FIG. 1: Order parameter 〈O∆〉 for the n = 1 (solid) and
n = 2 (dashed) vortex configuration. The lower (upper) curves
correspond to the case m

2 = 0 (−2). Presented in units of√
ρ = 1.

FREE ENERGY, MAGNETIZATION AND
CRITICAL MAGNETIC FIELDS

We are interested to determine the free energy of the
superconductor configurations with n = 0, 1, 2 to know
which one is energetically favorable as we vary B. By
the AdS/CFT, the free energy F of the superconductor
is given by

F [T, B, ρ]

T
= SE +

π

T

∫ R

0

drrA0∂zA0

∣

∣

∣

∣

∣

z=0

, (13)

where the right-hand side is evaluated on-shell in the 4D
theory with the boundary conditions given in Eq. (8).
The second term of Eq. (13) has been added to guaran-
tee the variational principle when working at fixed ∂zA0

on the AdS-boundary. Since, as we will see, the phase
transition to vortex configurations occurs at small values
of B, we can treat the magnetic field as a small pertur-
bation and separate the solution as

ψ → ψ + δψ , A0 → A0 + δA0 , Aφ → Aφ + δAφ , (14)

where the unperturbed solution (ψ, A0, Aφ) corresponds
to that at zero external magnetic field, i.e., Aφ|z=0 = 0,
while the perturbation (δψ, δA0, δAφ) must fulfill

δAφ|z=0 =
1

2
r2B , ∂zδA0|z=0 = 0 , δψ|z=0 = 0 , (15)

for m2 = 0 and ∂zδψ|z=0 = 0 for m2 = −2. By integrat-
ing by parts the free energy of the n-vortex configuration
can be written, up to B2 terms, as

Fn(B) # Fn(0) − αnB +
1

2
βnB2 , (16)

where we have defined

Fn(0) = 2π

∫ R

0

dr

∫ zh

0

dz
r

z2

(

A2
0

f
−

Aφ(Aφ − n)

r2

)

ψ2

− π

∫ R

0

drrA0 ∂zA0

∣

∣

∣

∣

∣

z=0

,

αn =
2π

B

∫ R

0

dr

r
δAφ∂zAφ

∣

∣

∣

∣

∣

z=0

,

βn = −
2π

B2

∫ R

0

dr

r
δAφ∂zδAφ

∣

∣

∣

∣

∣

z=0

. (17)

Notice that the positive-defined quantities αn and βn do
not depend on B, since δAφ ∝ δAφ|z=0 ∝ B. Eq. (16)
has a simple interpretation in terms of the magnetization
M of the superconductor. Using M = −∂F/∂B, we can
write

Fn(B) = Fn(0) −
∫ B

0

MndB , (18)

where the magnetization of the n-vortex configuration
Mn in the z-component is given by

Mn =
1

2

∫

dφ dr r()r × )J)z = π

∫

dr rJφ . (19)

From the AdS/CFT dictionary, we have that

〈Jφ〉 = −
δF

δAφ|z=0
= ∂zAφ + ∂zδAφ

∣

∣

∣

∣

z=0

, (20)

that together with Eq. (19) leads to our final expression
for the magnetization

Mn = αn − βnB . (21)

Using this expression into Eq. (18), we recover the free
energy of Eq. (16).

For the free energy at B = 0 we obtain

Fn(0) # F0(0) + 0.9(1.5)n2 ln[Rρ1/2]
√

ρ + cn , (22)

where c0 = 0, c1 # 1.2(3.7)
√

ρ, c2 # 0.3(4)
√

ρ and

F0(0) # 5(4)R2ρ
√

ρ , (23)

for the case m2 = 0(−2). This shows that, as expected,
the vortex configurations have for B = 0 a larger energy
than the n = 0 solution. Note that F0(0) grows with the
volume of the superconductor (∝ R2), although not the
difference F1,2(0)−F0(0) that is only logarithmically sen-
sitive to R for R → ∞, as expected for 3D vortices in the
absence of electromagnetic fields. For the magnetization
we find

αn # 0.4(0.7)nR2√ρ , βn # 0.05(0.09)R4√ρ . (24)

4

From Eq. (16) it is clear that there is a critical value
for B at which the difference between the free energies
F1(B) − F0(B) is zero. This value is usually referred as
Bc 1 and marks the beginning of the mixed phase where
the magnetic field starts to penetrate the superconductor.
For the case of m2 = 0 we have

F1(B) − F0(B)
√

ρ
# 0.9 ln[Rρ1/2] + 1.2 − 0.8

B

B1
, (25)

that for R = 50/
√

ρ equals to zero at

Bc 1 # 6B1 , (26)

where B1 is defined in Eq. (12). For m2 = −2 we get
similar values, Bc 1 # 7B1. At higher magnetic field val-
ues than Bc 1 the vortex configuration is preferred. No-
tice that for R → ∞, we have B1 → 1/R2 and therefore
Bc 1 → 0, indicating that the non-vortex solution is never
favorable at any B &= 0.

For the configuration with n = 2, we find that its free
energy is less than that for n = 0, 1 if B ! 10(14)B1

for m2 = 0(−2). At this high magnetic field, however,
we expect that the free energy of a solution with two
n = 1 vortices will be energetically more favorable, as
it happens in Type II superconductors. Indeed, for two
vortices sufficiently separated we expect

F (B) # F0(0) + 2[(F1(0) − F0(0)) − α1B]

+ Eint +
1

2
β1B

2 , (27)

where Eint is the interaction energy between the two vor-
tices. Therefore the difference between the free energy
of two n = 1 vortices and one n = 2 vortex goes as
∆F # Eint − 1.8(3) ln[Rρ1/2]

√
ρ for m2 = 0(−2). As

a consequence a configuration with two n = 1 vortices
will be preferred for Eint < 1.8(3) ln[Rρ1/2]

√
ρ that is

expected for a large superconductor.
On the other hand, as B increases from Bc 1, a con-

figuration with more and more vortices is expected to
be favorable, until we reach a certain critical value Bc 2

at which there is another phase transition; for B > Bc 2

the normal phase is preferred. We estimate this value by
the magnetic field at which the superconducting region
of the n = 0, 1 configurations shrink to zero size. We find
Bc 2 # 3(5)ρ for m2 = 0(−2).

In Fig. 2 we plot the values of the free energy as a
function of B for the configurations n = 0, 1, 2 from the
exact numerical solutions. We can see that the critical
magnetic values at which the lines cross are similar to
the approximate ones given above.

Finally, we calculate the “superconducting density”
ns(r) defined as

ns(r) = 〈JφJφ〉 =
δF

δA2
φ|z=0

= −
∂zδAφ

δAφ

∣

∣

∣

∣

z=0

, (28)
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FIG. 2: Free energy for the m
2 = 0 case as a function of the

external magnetic field for the n = 0 (solid), n = 1 (dashed)
and n = 2 (dotted) vortex configuration. Presented in units
of

√
ρ = 1.

where in the last equality we have used Eq. (16). In
Fig. 3 we show ns(r) for the different configurations.
We notice that the vortex configuration fullfills 〈Jφ〉 =
−ns(r)(δAφ|z=0 − n), as expected from a spontaneously
broken U(1) symmetry. For a non-vortex configura-
tion the superconducting density is constant ns(r) #
0.28(0.48)

√
ρ for m2 = 0(−2). This determines the pene-

tration length λ = 1/(e
√

ns) where e is the electric charge
of the dual superconductor.

0 2 4 6 8 10 12 14
r

0.1

0.2

0.3

0.4

0.5

ns

FIG. 3: Superconducting density ns(r) for the n = 1 (solid)
and n = 2 (dashed) vortex configuration. The lower (upper)
curves correspond to the case m

2 = 0 (−2). Presented in
units of

√
ρ = 1.

Note Added: While finishing this paper, we learned
of Ref. [8] which has also studied the vortex solution in
holographic superconductors.
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• Solitonic physics in holographic models give interesting phenomena 
associated with either 

•        ➦ Baryons of a 5D QCD-like model: We have found the exact 
solution (numerically) and calculated their properties (masses, 
couplings, ...) →  behave like real baryons

•        ➦ Vortices in holographic superconductors: Energetically 
favorable for certain B-fields

• Still a lot of questions to answer:  e.g. Lattice of baryons/vortices   

Conclusions


