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Overview

AdS/CFT correspondence provides a fascinating link between conformal quantum
field theories without gravity and string theory with (both classical and quantized)
gravity

Major (recent) activities:

1 Integrability in AdS/CFT: Spectral problem solved (?)

2 Scattering amplitudes in maximally susy Yang-Mills, relation to light-like Wilson
loops and dual superconformal symmetry

3 Novel well understood AdS4/CFT3 duality pair: IIA strings on AdS4 × CP 3

dual to max susy 3d Chern-Simons theory [Aharony,Bergmann,Jafferis,Maldacena ’08]

4 “Applied” AdS/CFT: AdS/QCD and meson spectroscopy, applications to
quark-gluon-plasma, condensed matter systems

5 Use AdS/CFT as tool to study quantum gravity

6 . . .
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Overview

AdS/CFT correspondence provides a fascinating link between conformal quantum
field theories without gravity and string theory with (both classical and quantized)
gravity

Major (recent) activities:

1 Integrability in AdS/CFT: Spectral problem solved (?)

2 Scattering amplitudes in maximally susy Yang-Mills, relation to light-like Wilson
loops and dual superconformal symmetry

1: This talk!
2: E. Sokatchev’s talk!

[1/31]



N = 4 super Yang Mills: The simplest interacting 4d QFT

Field content: All fields in adjoint of SU(N), N ×N matrices

Gluons: Aµ, µ = 0, 1, 2, 3, ∆ = 1
6 real scalars: ΦI , I = 1, . . . , 6, ∆ = 1
4× 4 real fermions: ΨαA, Ψ̄α̇

A ,α, α̇ = 1, 2. A = 1, 2, 3, 4, ∆ = 3/2
Covariant derivative: Dµ = ∂µ − i[Aµ, ∗], ∆ = 1

Action: Unique model completely fixed by SUSY

S =
1

gYM
2

∫
d4xTr

[
1
4F

2
µν + 1

2(DµΦi)2 − 1
4 [ΦI ,ΦJ ][ΦI ,ΦJ ]+

Ψ̄A
α̇σ

α̇β
µ DµΨβ A − i

2ΨαAσ
AB
I εαβ [ΦI ,Ψβ B]− i

2Ψ̄α̇ Aσ
AB
I εα̇β̇ [ΦI , Ψ̄β̇ B]

]

βgYM = 0 : Quantum Conformal Field Theory, 2 parameters: N & λ = gYM
2N

Shall consider ’t Hooft planar limit: N →∞ with λ fixed.
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Most symmetric 4d gauge theory!

Symmetry: so(2, 4)⊗ so(6) ⊂ psu(2, 2|4)

Poincaré: pαα̇ = pµ (σµ)α̇β, mαβ, m̄α̇β̇

Conformal: kαα̇, d (c : central charge)
R-symmetry: rAB

Poincaré Susy: qαA, q̄α̇A Conformal Susy: sαA, s̄
A
α̇

4 + 4 Supermatrix notation Ā = (α, α̇|A)

J ĀB̄ =



mα

β − 1
2 δ

α
β (d+ 1

2c) kαβ̇ sαB
pα̇β mα̇

β̇ + 1
2 δ

α̇
β̇

(d− 1
2c) q̄α̇B

qAβ s̄Aβ̇ −rAB − 1
4δ
A
B c




Algebra:

[JiĀB̄ , Jj
C̄
D̄} = δij [δC̄B̄ Ji

Ā
D̄ − (−1)(|Ā|+|B̄|)(C̄|+|D̄|)δĀD̄ Ji

C̄
B̄]
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Observables

Local operators: On(x) = Tr[W1W2 . . .Wn] with Wi ∈ {DkΦ,DkΨ,DkF}

2 point fct: 〈Oa(x1)Ob(x2)〉 =
δab

(x1 − x2)2 ∆a(λ)
∆a(λ) Scaling Dims

3 point fct:
〈
Oa(x1)Ob(x2)Oc(x2)

〉
=

cabc(λ)

x∆a+∆b−∆c
12 x∆b+∆c−∆a

23 x∆c+∆a−∆b
31

n-point functions follow from OPE

Wilson loops:

WC =
〈

TrP exp i
∮

C
ds (ẋµAµ + i|ẋ| θI ΦI)

〉

Scattering amplitudes:

An({pi, hi, ai};λ) =
{

UV-finite
IR-divergent

}

helicities: hi ∈ {0,±1
2 ,±1}

J. Henn On gluon scattering amplitudes DPG Frühjahrstagung München March 12, 2009 - p. 9/10

Symmetries of scattering amplitudes in N = 4 super Yang-Mills

! superconformal symmetry psu(2, 2|4) cf. [Witten 2003]

psu(2, 2|4) algrbra: [Ja, Jb} = fab
c
Jc , Ja =

nX

i=1

Jia

for example

pαα̇ =
nX

i=1

λα
i λ̃α̇

i , q̄α̇
A =

nX

i=1

λ̃α̇
i

∂

∂ηA
i

, kαα̇ =
nX

i=1

∂

∂λα
i

∂

∂λ̃α̇
i

! ‘dual’ superconformal symmetry [Drummond, J.H., Korchemsky, Sokatchev 2008]

! closure of algebra give Yangian Y (psu(2, 2|4)) [Drummond, J.H., Plefka 2009]

level-one Yangian generators:

Qa = fa
cb

X

1≤i<j≤n

JibJjc

! spin chain analogy

1
12 2

3
3

4

n− 1

n
n

. . .
. . .

=⇒
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Superstring in AdS5 × S5Planar IIB Superstrings on AdS5 × S5

IIB superstrings propagate on the curved superspace AdS5 × S5

−→ × × fermi

Subspaces

S5 =
SO(6)
SO(5)

=
SU(4)
Sp(2)

, AdS5 =
S̃O(2, 4)
SO(1, 4)

=
S̃U(2, 2)
Sp(1, 1)

, fermi = R32 .

Coset space

AdS5 × S5 × fermi =
P̃SU(2, 2|4)

Sp(1, 1)× Sp(2)
.

MG11, Niklas Beisert 3

I =
√
λ

∫
dτ dσ

[
G(AdS5)
mn ∂aX

m∂aXn +G(S5)
mn ∂aY

m∂aY n + fermions
]

ds2
AdS = R2 dx

2
3+1 + dz2

z2
has boundary at z = 0

√
λ = R2

α′ , classical limit:
√
λ→∞, quantum fluctuations: O(1/

√
λ)

AdS5 × S5 is max susy background (like R1,9 and plane wave)

Quantization unsolved!

String coupling constant gs = λ
4πN → 0 in ’t Hooft limit

Isometries: so(2, 4)× so(6) ⊂ psu(2, 2|4)

Include fermions: Formulate as PSU(2,2|4)
SO(1,4)×SO(5) supercoset model [Metsaev,Tseytlin]
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The AdS/CFT landscape

genus

expansion

loop

expansion

λ0
0

∞

∼ gs

1/Nc
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sigma loopsgauge loops
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classical

stringsplanar AdS/CFT

hard
quantum strings

quantum gauge theory

NB’08

(Picture by N. Beisert)
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Gauge Theory - String Theory Dictionary of Observables

∆a(λ) spectrum of
scaling dimensions

⇔ E(λ) string excitation
spectrum

solved (?)

cabc(λ) structure
constants

(⇔) Only SUGRA: ZAdS [φ|∂AdS = J ] = ZCFT[J ]

An({pi, hi, ai};λ) (⇔) open string amplitude

Wilson loop WC ⇔ minimal surface
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The spectral problem and integrability



The spectral problem of AdS/CFT: Symmetry

The Spectral Problem of AdS/CFT and Integrability

A key prediction of AdS/CFT:

string energy ↔ scaling dimension
E(λ) = ∆(λ)

• Solid Fact I: The AdS5 × S5 string σ-model is classically integrable.
[ Bena,Polchinski,Roiban ‘03 ]

It has been completely solved in terms of an algebraic curve.
[ Kazakov, Marshakov, Minahan, Zarembo ‘04, Beisert, Kazakov, Sakai, Zarembo ‘05 ]

• Solid Fact II: The full one-loop dilatation operator of N = 4 SYM can

be mapped to a quantum integrable spin chain. It has been completely

diagonalized by means of the Bethe ansatz. [ Minahan, Zarembo ‘02, Beisert, MS ‘03 ]

18

String states resp. gauge theory local operators classified by conserved Cartan
charges (E,S1, S2) of so(2, 4) (energy and “spins”) and (J1, J2, J3) of so(6)
(“angular momenta”)

Geometrical picture:

AdS5 : −Z2
0 + Z2

1 + Z2
2 + Z2

3 + Z2
4 − Z2

5 = −R2

S5 : Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 + Y 2
5 + Y 2

6 = R2

The Spectral Problem of IIB Superstrings on
AdS5 × S5

Z0 + i Z5 = ρ3 ei t, Z1 + i Z2 = ρ1 ei α1, Z3 + i Z4 = ρ2 ei α2:

3 angles t, α1, α2 −→ 3 conserved quantities E, S1, S2. E is the energy.

Y1 + i Y2 = r1 ei φ1, Y3 + i Y4 = r2 ei φ2, Y5 + i Y6 = r3 ei φ:

3 angles φ1, φ2, φ −→ 3 conserved angular momenta J1, J2, J3.

- - + +

+ ++ ++ ++ +

9
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The spectral problem of AdS/CFT: Expansions

↑ here: ∆0 = n = # of scalars

String spectrum E = Scaling dimensions ∆

• AdS5 × S5 string spectrum

Ĥ |ψ〉String = E(λ) |ψ〉String E(λ) = ?

• Central observables in gauge theory: Correlation functions of composite operators
e.g. Oα(x) = Tr[Φi1 Φi2 . . .Φin ]
Two-point functions determined by scaling dimensions ∆(λ,N)

〈Oα(x)Oβ(y)〉 =
δαβ

(x− y)2 ∆(λ,N)

May be computed perturbatively in gauge theory: Loops (λ) + genera (1/N2)

∆ = ∆0 + λ(∆1
0 + 1

N2∆1
1 + . . .) + λ2(∆2

0 + 1
N2∆2

1 + . . .) + . . . =! E(λ, gs)

5
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Spinning string solutions vs. Local Operators

Example 1: Rotating point particle on S5

t = κ τ ρ = 0 γ =
π

2
φ1 = κ τ φ2 = φ3 = ψ = 0 ×

3

t

S

AdS/CFT correspondence
• Superstring in AdS5 × S5 background: Xm = Xm(τ, σ), Y m = Y m(τ, σ)

I =
√
λ

∫
dτ dσ

[
G(AdS5)

mn ∂aX
m∂aXn + G(S5)

mn ∂aY
m∂aY n + fermions

]

ds
2
AdS5

= dρ
2 − cosh

2
ρ dt

2
+ sinh

2
ρ dΩ3

ds
2
S5

= dγ
2
+ cos

2
γ dφ

2
3 + sin

2
γ (dψ

2
+ cos

2
ψ dφ

2
1 + sin

2
ψ dφ

2
2)

• Quantization unsolved!

•
√
λ = R2

α′ R: Radius of the AdS5 × S5 background

Classical limit:
√
λ→∞, Quantum fluctuations (“σ-model loops”): O(1/

√
λ)

⇒ yields free string theory (gS = 0)

• Plus: String genus expansion in string coupling constant gS & 1

3

Solves eqs. of motion & Virasoro constraint (here S1, S2, J2, J3 = 0)

E =
√
λ

∫ 2π

0

dσ

2π
Ẋ0 =

√
λκ E = J classical

J1 =
√
λ

∫ 2π

0

dσ

2π
(Y1 Ẏ2 − Y2 Ẏ1) =

√
λκ =: J

Dual gauge theory operator: Z = Φ1 + iΦ2 [Berenstein,Madacena,Nastase]

OJ = Tr[ZJ ] with ∆(λ) = ∆(λ = 0) = J

Actually classical picture only good for J →∞
[11/31]



Spinning string solutions vs. Local Operators

Example 1: Rotating point particle on S5

t = κ τ ρ = 0 γ =
π

2
φ1 = κ τ φ2 = φ3 = ψ = 0 ×

3

t

S

AdS/CFT correspondence
• Superstring in AdS5 × S5 background: Xm = Xm(τ, σ), Y m = Y m(τ, σ)

I =
√
λ

∫
dτ dσ

[
G(AdS5)

mn ∂aX
m∂aXn + G(S5)

mn ∂aY
m∂aY n + fermions

]

ds
2
AdS5

= dρ
2 − cosh

2
ρ dt

2
+ sinh

2
ρ dΩ3

ds
2
S5

= dγ
2
+ cos

2
γ dφ

2
3 + sin

2
γ (dψ

2
+ cos

2
ψ dφ

2
1 + sin

2
ψ dφ

2
2)

• Quantization unsolved!

•
√
λ = R2

α′ R: Radius of the AdS5 × S5 background

Classical limit:
√
λ→∞, Quantum fluctuations (“σ-model loops”): O(1/

√
λ)

⇒ yields free string theory (gS = 0)

• Plus: String genus expansion in string coupling constant gS & 1

3

Solves eqs. of motion & Virasoro constraint (here S1, S2, J2, J3 = 0)

E =
√
λ

∫ 2π

0

dσ

2π
Ẋ0 =

√
λκ E = J classical

J1 =
√
λ

∫ 2π

0

dσ

2π
(Y1 Ẏ2 − Y2 Ẏ1) =

√
λκ =: J

Solution 1: Rotating point particle on S5

t = κ τ ρ = 0 γ =
π

2
φ1 = κ τ φ2 = φ3 = ψ = 0 ×

Solves eqs. of motion & Virasoro constraint (here S1, S2, J2, J3 = 0)

E =
√
λ

∫ 2π

0

dσ
2π Ẋ0 =

√
λκ E = J classical

J1 =
√
λ

∫ 2π

0

dσ
2π (Y1 Ẏ2 − Y2 Ẏ1) =

√
λκ =: J

Quantum fluctuations around solution: Xµ = Xµ
sol(τ) + 1

λ1/4 xµ(τ, σ)

⇒ Energy: E =
√
λκ+ E2(κ) +

1√
λ

E4(κ) + . . .

8
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Example 2: Folded spinning string: J1 & J2 6= 0 [Frolov,Tseytlin]

×

2. Solution: Spinning, folded string

Ansatz:
t = κ τ ρ = 0 γ =

π

2
φ1 = ω1 τ φ2 = ω2 τ φ3 = 0 ψ = ψ(σ)

• Charges J1 & J2 "= 0 . Ansatz leads to string action [Frolov,Tseytlin]

I = −
√
λ

4π

∫
dτ

∫ 2π

0

dσ
[
κ2 + ψ′2 − cos2ψ ω1

2 − sin2ψ ω2
2
]

With equation of motion

ψ′′ + sinψ cosψ (ω2
2 − ω1

2) = 0

11

Solution yields Charges and Energy

J1 =
√
λω1

∫ 2π

0

dσ

2π
cos2 ψ(σ) J2 =

√
λω2

∫ 2π

0

dσ

2π
sin2 ψ(σ) .

E = J
(

1 +
λ

J2
E2 +

λ2

J4
E4 + . . .

)
J = J1 + J2

where E2 = 2
π2 K(q0)

(
E(q0)− (1− q0)K(q0)

)
with J2

J = 1− E(q0)
K(q0)

Similarly E2l: l-loop gauge theory prediction.

Dual gauge theory operator: Z = Φ1 + iΦ2 W = Φ3 + iΦ4

OJ = Tr[ZJ1W J2 ] + . . . with ∆(λ) = J1 + J2 + λ∆1(J1, J2) + . . .

Indeed limJ→∞∆1(J1, J2) = λ
J2 E2!
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Operator mixing and the dilatation operator

Composite operators are renormalized and operators with degenerate
(∆0, S1, S2; J1, J2, J3) charges mix:

OAren = ZAB OBbare

Mixing matrix (dilatation operator =̂ d ∈ psu(2, 2|4))

(D)AB = (Z−1)AC
d

log Λ
ZCB

Acts on composite operators: O(x) = Tr[ Φi1 Φi2 . . .Φin ]

Eigenvalues yield scaling dims. D ◦ O(x) = ∆OO(x) [Beisert,Kristjansen,Plefka,Staudacher]

D is perturbatively defined:

D = ∆0 +
∞∑

l=1

λl Dl+1
Dk =

L
∑

p=1

O(x)

p − 1 p p + 1 p + 2 p + 3p − 2 p + 4

Dk

Figure 4: Action of the dilatation operator.

D2(12) =

1 2

D2 =

1 2

+

1 2

+
1

2
1 2

+
1

2
1 2

Figure 5: One-loop contributions to the dilatation operator.

One-Loop. The one-loop correction to the dilatation operator takes two fields into
two fields. Here, few types of Feynman diagrams contribute and the dilatation operator
is determined by their logarithmic pieces (see Fig. 5) First of all for the su(2) subsector
we get after integration simply “identity minus permutation”, i.e. do not modify the two
involved fields minus interchange the two fields [8]

D2(12) = 1 − P(12).

This is exactly isomorphic to the so-called Heisenberg XXX1/2 spin chain Hamiltonian.
The generalization to the supersymmetric subsector is straightforward. Simply replace
the permutation by a graded permutation to account for the presence of fermions [9]

D2(12) = 1 − SP(12).

For the full N = 4 theory it is a bit more involved. The action of the dilatation operator
on two fields is given by the harmonic series up to their total spin [10]

D2(12) = 2h(J(12)), h(s) =
s

∑

k=1

1

k
.

The total spin is a superconformal invariant of two fields in analogy with the total angular
momentum of two spins of the rotation group.

Higher-Loops. The one-loop contribution involves four fields, two incoming and two
outgoing ones. By inspecting Feynman diagrams it is a straightforward to show that the
order gk contribution has no more than k + 2 legs. So at third order in g we have five
legs and so on (see Fig. 6). An exciting feature of higher loops is that now the number
of spin sites can fluctuate and a novel kind of spin chain emerges [9]. Note also that at
higher loops one has to take into account that the order generators of the superconformal
algebra are corrected (see Fig. 7)

4
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The dilatation operator and spin chains

For simplicity: Consider su(2) subsector

Z = Φ1 + iΦ2 and W = Φ3 + iΦ4

& consider operators O = Tr(word in Z & W )

Spin chain picture: Operator Tr(ZZWZW ) =̂ State |↓↓ ↑ ↓ ↑〉 =̂

One-loop structure: D2 is Hamiltonian of the Heisenberg spin chain, an
integrable system! [Minahan,Zarembo]

D2 = 2
L∑

l=1

(1− Pl,l+1) Pi,j : permutation operator

Ground state: |↓↓ . . . ↓〉 =̂ Tr(ZJ) with ∆ = 0
Excitations: “Magnons”: |m〉 = |↑ ↓ . . . ↓ ↑︸ ︷︷ ︸

m

↓〉〉 =̂ Tr(WZmWZJ−m)
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The coordinate Bethe Ansatz 1

. . . ZWZ . . . ZWZ . . .

. . . ZWWZ . . .

x
↑
= x1 x

↑
= x2

The coordinate Bethe-Ansatz

• How to diagonalize D̂? Open up the trace (no cyclicity)

Tr(WZZW . . . WZ) −→ |WZZW . . . WZ〉 L−1 L4321 ....

• Consider two-magnon states |ψ〉 =
∑

1≤x1<x2≤L

ψ(x1, x2) | . . . ZWZ . . . ZWZ . . .〉

• One-loop Schrödinger eq.
∑L

i=1(1− Pi,i+1) |ψ〉 = E2 |ψ〉 in “position space”:

x2 > x1 + 1 E2 ψ(x1, x2) = 2 ψ(x1, x2)− ψ(x1 − 1, x2)− ψ(x1 + 1, x2)

2 ψ(x1, x2)− ψ(x1, x2 − 1)− ψ(x1, x2 + 1)

x2 = x1 + 1 E2 ψ(x1, x2) = 2 ψ(x1, x2)− ψ(x1 − 1, x2)− ψ(x1, x2 + 1)

23
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The coordinate Bethe Ansatz 2

↓ S-matrix

x2 > x1 + 1 E2 ψ(x1, x2) = 2 ψ(x1, x2)− ψ(x1 − 1, x2)− ψ(x1 + 1, x2)

2 ψ(x1, x2)− ψ(x1, x2 − 1)− ψ(x1, x2 + 1) (1)

x2 = x1 + 1 E2 ψ(x1, x2) = 2 ψ(x1, x2)− ψ(x1 − 1, x2)− ψ(x1, x2 + 1) (2)

• Solved by Bethe’s ansatz (1931):

ψ(x1, x2) = ei(p1 x1+p2 x2) + S(p2, p1) ei(p2 x1+p1 x2)

• Then (1) is solved for any S(p2, p1) with E2 =
∑M

k=1 4 sin2(pk
2 )

N.B. 2− e−ip − eip = 4 sin2 p
2

• (2) determines S-matrix: S(p2, p1) = ϕ(p1)−ϕ(p2)+i
ϕ(p1)−ϕ(p2)−i with ϕ(p) = 1

2 cot(p
2)

24
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Bethe equations 1

Scatters off all
other magnons
exactly once

Bethe-equations: Follow from periodicity

• Demand ψ(x1, x2) = ψ(x2, x1 + L)
321 .... L+1 L+4.... ....L+2 L+3....

x1+Lx1 x2

L

⇒ eip1L = S(p1, p2) and eip2L = S(p2, p1)

solve for p1 & p2 ⇒ E2(p1, p2) =
∑2

k=1 4 sin2 pk
2 spectrum!

• Big leap (⇔ factorized scattering from integrability): M-body problem

Total phase acquired by one magnon cycling around the chain:

eipkL =
M∏

i=1,i !=k

S(pk, pi) k = 1, . . . ,M

25
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Bethe equations 2

• Energy additive:

E2(p1, . . . , pM) =
M∑

k=1

4 sin2 pk
2

• Cyclicity of trace condition:
∑M

k=1 pk = 0 ⇔ vanishing total momentum

• Example: Two magnons: p := p1 = −p2

eipL =
cot p

2 + i

cot p
2 − i

= eip ⇒ eip(L−1) = 1 ⇒ p =
2π n

L− 1

E2 = 8 sin2

(
π n

L− 1

)
L→∞→ 8π2 n2

L2
,

Recall ∆1 = λ
8π2 E2 → n2 λ/L2

Agrees with plane-wave string spectrum Elight−cone = 2
√

1 + n2 λ/J2

26
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Integrability

Heisenberg spin chain is integrable: Existence of L commuting charges Qn:

[Qm, Qn] = 0 ∀(m,n)!

Spectrum determined by Bethe equations:

eipkL =
M∏

i=1,i 6=k
S(pk, pi) k = 1, . . . ,M

With S-Matrix:

S(pi, pk) =
x+(pi)− x−(pk)
x−(pi)− x+(pk)

with x±(p) =
1
2

(cot(
p

2
)± i)

Energy (one loop scaling dimensions) additive:

∆ = L+ λE2 with E2(p1, . . . , pM ) =
M∑

k=1

4 sin2 pk
2

+ Cyclicity of trace condition:
∑M

k=1 pk = 0
[19/31]



The asymptotic Bethe Ansatz

What happens at higher loops?

λ deformed variables: x±(p) = e±i p/2

4 sin p
2

(1 +
√

1 + λ
π2 sin2 p

2 ) ⇔ eip = x+(p)
x−(p)

Asymptotic all loop conjecture: x±k := x±(pk) [Beisert,Staudacher]

(x+
k

x−k

)L
=

M∏

j=1,j 6=k

x+
k − x−j
x−k − x+

j

1− λ
16π2 x+

k x
−
j

1− λ
16π2 x−k x

+
j

· S0({pk}, λ)2 S0 : dressing factor

Valid for L >loop order, completely fixed by psu(2, 2|4) symmetry up to S0.

Conjectured all loop form of S0 exists [Beisert,Hernandez,Lopez;Beisert,Eden,Staudacher]

Perturbatively: S0 ∼ O(λ4) [Bern,Czakon,Dixon,Kosower,Smirnov]

Scaling dimensions then ∆ = ∆0 +
M∑

k=1

√
1 +

λ

π2
sin2 pk

2
− 1 .
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Integrability in the AdS/CFT system

AdS5 × S5 string σ-model is classically integrable [Bena,Polchinski,Roiban]

Can be solved completely in terms of algebraic curve
[Kazakov,Marshakov,Minahan,Zarembo; Beisert,Kasazkov,Sakai,Zarembo]

Full one-loop dilatation operator has been constructed in terms of an integrable
super-spin chain and diagonalized by Bethe ansatz. [Minahan,Zarembo;Beisert,Staudacher]

Super-magnon excitations scatter according to matrix Bethe equations:

eipkL |Ψ〉 =




M∏

j=1,j 6=i
S(pk, pj)


 · |Ψ〉 , E =

M∑

k=1

q2(pk) .

(Asymptotic) S-matrix is assumed to be factorized. So far only proven at
one-loop for all and up to four-loop for some operators.

Wrapping problem: For finite size chains and long-range interactions not
allowed to assume exactness of S-matrix!
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Full set of conjectured nested psu(2, 2|4) Bethe equations
[Beisert,Staudacher]
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K4Y
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1

4
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1 + 16g2 sin2 pk/2)
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K2Y

j=1
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with η1, η2 related to four different choices of psu(2, 2|4) Dynkin labels, e.g.

{η1, η2} = {+1, +1}: !
K1

!
K2

!
K3

!
K4

!
K5

!
K6

!
K7

!" !" !" !"− + −

{η1, η2} = {+1,−1}: ! ! ! ! ! ! !!" !" !" !" !"− +

{η1, η2} = {−1, +1}: ! ! ! ! ! ! !!" !" !" !" !"+ −

{η1, η2} = {−1,−1}: ! ! ! ! ! ! !!" !" !" !"+ − +

Figure 1: Four different choices of Dynkin diagrams of su(2, 2|4) specified by the grading

η1 and η2. The signs in the white nodes indicate the sign of the diagonal elements of the

Cartan matrix [7].

Note that we have chosen to write down the Bethe equations in a more compact
“dynamically” transformed language. In order to convert (3.1)-(3.6) to the form

found in table 5 of Beisert and Staudacher [7] one introduces the K1 resp. K7 roots
x1,k and x7,k by splitting off the ‘upper’ x3,k and x5,k roots via

x1,k := g2/x3,K3+k k = 1, . . .K1 x7,k := g2/x5,K5+k k = 1, . . .K7 . (3.10)

This coordinate renaming unfolds the equations associated to the fermionic roots

(3.2) and (3.5) into two structurally new sets of K1 and K7 equations and removes
the K1 and K7 dependent exponent in the central equation (3.4).

The first equation (3.1) of the form we will be using is the cyclicity constraint on

the total momentum of the spin chain. The following K2+(K1+K3)+K4+(K5+K7)+
K6 equations in (3.2)-(3.6) determine the sets of Bethe roots {x2,k, x3,k, x

±
4,k, x5,k, x6,k}.

Let us stress once more that it is only the combinations (K1 + K3) and (K5 + K7)

which enter in the Bethe equations. Moreover the gradings η1 and η2 take the val-
ues ±1 corresponding to four different choices of Dynkin diagrams for psu(2, 2|4) as

discussed in [7] see figure 1.

These four different choices of diagrams can be traced back to the derivation
of the nested Bethe ansatz in the su(1, 1|2) sector in the gauge theory spin chain
language. In this sector there are four distinct excitations placed on a vacuum of

Z fields. These four excitations are the two bosonic X and DZ fields and the two
fermionic U and U̇ fields. In the nested Bethe ansatz [30] one selects one out of these

four excitations as a second effective vacuum of a shorter spin chain, after having
eliminated all the sites Z from the original chain. Depending on this choice η1, η2

take the values ±1.

Finally, the undetermined function S2
0 in (3.4) is the famous scalar dressing factor

which is conjectured to take the form S2
0 = S2

0(x4,k, x4,j) = e2iθ(x4,k ,x4,j) [21], where

θ(x4,k, x4,j) =
∞∑

r=2

∞∑

s=r+1

cr,s(g)
[
qr(x

±
4,k) qs(x

±
4,j) − qr(x

±
4,j) qs(x

±
4,k)

]
(3.11)

– 8 –
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↑ magnon momentum

g :=
√
λ/4π

↑ Dressing factor



The AdS/CFT (internal) S-matrix

Describes scattering of two super-magnons, should be unitary and satisfy
Yang-Baxter equation:
[Arutyunov,Frolov,Staudacher ’04; Beisert, Staudacher ’05 + ’06; Beisert, Hernandez,Lopez ’06, Beisert,Eden,Staudacher ’06]

S12 S21 = 1 , S12 S13 S23 = S23 S13 S12

Was (ad hoc) conjectured to possess crossing symmetry: [Janik, ’06]

S12 S1̄2 = f2
12

⇒ can be used to fix dressing factor S0.

AdS/CFT S-matrix has the structure [Beisert ’05]

S12 =
(
S

psu(2|2)L
12 ⊗ Spsu(2|2)R

12

)
S2

0

Invariant under a residual J ∈ psu(2|2) symmetry: [J1 + J2, S
psu(2|2)L
12 ] = 0 .

First motivated from gauge theory spin chain, subsequently found in light-cone
quantized string theory [Arutyunov,Frolov,Plefka,Zamaklar ’06]
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Large Spin Limit of Twist Operators

Consider twist operators: S1: Spin J3: “twist”

OS1,J3 = Tr(DS1 ZJ3) + . . .

with D = D+ covariant derivative in light-cone direction.

General spin chain state of length J3 is Tr
[

(Ds1Z) (Ds2Z) . . . (DsJ3Z)
]

where

S1 = s1 + s2 + . . . sJ3 =: M = Magnon number.

Scaling dims in S1 →∞ limit:

∆OS1,J3
− S1 − J3 = γ(λ) logS1 +O(S1

0)

γ(λ): Universal scaling function, aka cusp anomalous dimension.

γ(λ) also appears in 4 gluon MHV amplitudes A4,MHV and in light-cone
segmented Wilson loops W! [Bern,Dixon,Smirnov]

Aall- loop
4,MHV ∼ exp

[
γ(λ)Aone-loop

4,MHV

]
, Aall- loop

4,MHV ∼ 〈W〉
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The Beisert-Eden-Staudacher Integral Equation

Asymptotic Bethe equations reduce in S1 →∞, L = J3 →∞ with L� logS1

to integral equation for density σ̂ of Bethe roots: (g =
√
λ/4π)

The Interpolating Integral Equation

The non-linear asymptotic Bethe equations reduce in the limit S1 → ∞,

where L → ∞ with L << log S1, to a linear integral equation for the

density σ̂ of Bethe roots. These describe the one-dimensional “motion”

of the covariant derivatives of the twist operators: [ Beisert, Eden, MS ‘06 ]

σ̂(t) =
t

e t − 1

[
K̂(2 g t, 0)− 4 g2

∫ ∞

0

dt′ K̂(2 g t, 2 g t′) σ̂(t′)
]
.

The universal scaling function f(g) is then given by

f(g) = 16 g2 σ̂(0) .

The kernel K̂ is of a rather involved structure, it will not be written here.

37

Cusp anomalous dimensions: γ(g) = 16 g2 σ̂(0) All loop prediction!

Solution yields weak and strong coupling predictions: [BES, Basso, Korchemsky, Kotanski ’07]

γ(g) =

{
8g2 − 8

3π
2 g4 + 88

45 π
4 g6 − 16( 73

630π
6 + 4 ζ(3)2) g8 + . . . g � 1

4g − 3 log 2
π − K

4π2
1

g−3 log 2/4π −
27 ζ(3)
29 π3

1
g2
− . . . g � 1

Agrees with:
1) Four loop gauge theory calculation [Bern,Czakon,Dixon,Kosower,Smirnov ’06]

2) 2 loop superstring calculation [Roiban,Tseytlin ’07]
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Cusp anomalous dimension of N = 4 SYM:
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(Plot by N. Beisert)
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Wrapping interactions

Asymptotic Bethe equations yield
‘half’ of the perturbative spectrum of
N = 4 SYM:

Wrapping Restrictions
Wrapping Restrictions
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TBA  

48

Wrapping interactions

Compute anomalous dimensions from 2-point functions

〈O(x)O(y)〉 =
const

|x − y |2∆

Asymptotic Bethe Ansatz conjecturaly incorporates all graphs of the type

But does not capture ‘wrapping interactions’ i.e. graphs of the type

These graphs appear generically at order g2L

Sometimes there may be cancellations due to supersymmetry

One should believe Asymptotic Bethe Ansatz results up to order g2L−2

Romuald A. Janik (Krakow) Four-loop Konishi from strings IGST 08 Utrecht 6 / 33

incorporated Feynman graphs

Wrapping interactions

Compute anomalous dimensions from 2-point functions

〈O(x)O(y)〉 =
const

|x − y |2∆

Asymptotic Bethe Ansatz conjecturaly incorporates all graphs of the type

But does not capture ‘wrapping interactions’ i.e. graphs of the type

These graphs appear generically at order g2L

Sometimes there may be cancellations due to supersymmetry

One should believe Asymptotic Bethe Ansatz results up to order g2L−2

Romuald A. Janik (Krakow) Four-loop Konishi from strings IGST 08 Utrecht 6 / 33

missing wrapping interactions

Wrapping graphs contribute generically at order g2L.

Asymptotic Bethe eqs. describes L→∞ spin chain or string with worldsheet
geometry R2 ⇒ Exsistence of S-Matrix and asymptotic states
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Thermodynamic Bethe Ansatz

Magnitude of finite size corrections: ∼ e−ETBA(pTBA)L with ETBA = −ip and
pTBA = −iE in ‘mirror’ theory, i.e. original theory with space and time
interchanged [Arutyunov,Frolov]

Approach was successfully implemented by generalization of Lüscher’s formulas
for 2d Lorentz invariant FT: Computation of four loop scaling dimension of
Konishi operator Tr([Z,W ][Z,W ]) from asymptotic S-matrix [Bajnok,Janik ’08]

Agrees with perturbative four loop supergraph calculation!
[Fiamberti,Santambrogio,Sieg,Zanon ’08]

∆ = ∆aBE + ∆wrapping ∆wrapping = (324 + 864ζ(3)1440ζ(5))g8

Highly nontrivial test of AdS/CFT!!
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The Y system

Recent conjecture: Implementation of TBA through a “Y-system” to describe
planar AdS/CFT at finite size. Passes all known tests! [Gromov, Kazakov,Vieira ’09]
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(from talk of V. Kazakov at KITP 02/09)
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Konishi: Tr(ΦI ΦI)

Exact AdS/CFT spectrum:
Konishi dimension at any coupling

Nikolay Gromov,1 Vladimir Kazakov,2 and Pedro Vieira3

1DESY Theory, Hamburg, Germany & II. Institut f̈ur Theoretische Physik Universiẗat, Hamburg, Germany &
St.Petersburg INP, St.Petersburg, Russia

2Ecole Normale Superieure, LPT, 75231 Paris CEDEX-5,
France & l’Université Paris-VI, Paris, France & Institut Universitaire de France

3Max-Planck-Institut für Gravitationphysik, Albert-Einstein-Institut, 14476 Potsdam, Germany &
Centro de F́ısica do Porto, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal

We compute the full dimension of Konishi operator in planar N=4 SYM theory for a wide range
of couplings, from weak to strong coupling regime, and predict the subleading terms in its strong
coupling asymptotics. For this purpose we solve numerically the integral form of the AdS/CFT
Y-system equations for the exact energies of excited states proposed by us and A. Kozak.

PACS numbers:

INTRODUCTION

N=4 supersymmetric Yang-Mills theory recently gave
us serious hopes for a better understanding of the dynam-
ics of strongly interacting 4-dimensional gauge theories.
Due to the AdS/CFT correspondence [1], as well as to
the quantum integrability discovered on both sides of this
duality in the planar limit [2, 3, 4, 5, 6, 7, 8, 10, 11, 12],
we acquire little by little tools for the study of the most
important quantities in N=4 SYM, such as the planar
spectrum of dimensions ∆(λ) of local operators, where
’t Hooft coupling λ is the scale independent parameter
in this superconformal 4D theory. Their weak coupling
behaviour (λ → 0) was studied by Feynman perturba-
tion theory. The dual string worldsheet σ-model allows
to find the strong coupling asymptotics of various dimen-
sions. Integrability allows us to connect the two regimes.
In particular, the asymptotic Bethe ansatz (ABA) of [13]
gives us the asymptotic spectrum of single trace opera-
tors when the number of elementary fields is very large.

However for short operators, such as Konishi operator
Tr[D, Z]2 [39], the calculation of anomalous dimensions
is still an interesting and important challenge.

Recently we proposed the Y-system for the planar
AdS/CFT [14], a set of functional equations defining the
anomalous dimensions of all operators of planar N=4
SYM theory at any coupling. The integral form of the
Y -system for excited states in SL(2) sector, including the
one corresponding to Konishi operator, was presented in
[15]. The integral equations for the BPS vacuum energy
were independently obtained in [16, 17] by the thermody-
namical Bethe ansatz (TBA) technique based on the dy-
namics of bound states [18, 19, 20, 21, 22, 23, 24] (see also
[10, 25]) of the mirror theory [26, 27]. The solutions of
the integral Y-system are also solutions of the functional
Y-system [15, 16, 17, 28]. The combination of functional
and integral versions of the Y-system appears to be quite
efficient to compute numerically the exact spectrum. In
this work, we use the functional form of the Y-system to

Figure 1: Numerical solution of exact finite size integral Y-
system equations for the Konishi dimension ∆K(λ) in a wide
range of ’t Hooft couplings λ, compared to the asymptotic
Bethe ansatz curve and to the predicted large λ asymptotics
∆K(λ) ! 2λ1/4 + 2/λ1/4 obtained by fit.

derive the large volume (L) [40] asymptotic solution and
then, departing from it, we solve the integral form of the
Y-system iteratively. As a demonstration of the power of
our method, we calculate numerically the dimension of
Konishi operator in a wide range of the ’t Hooft coupling
covering both the weak and strong coupling regimes. The
results appear to be quite satisfactory: we manage to
compute the dimension of Konishi operator in the inter-
val of couplings 0 ! λ ! 700 and to confirm, within the
precision of our numerics, all the existing data concern-
ing this quantity: the perturbative results [41] up to 4
loops (up to λ4 terms) [29, 30, 31, 32] and the large λ
asymptotics 2λ1/4 predicted by [33]. Fitting our numer-
ical data with λ > 60 we find (with uncertainty in last
digit)

∆K = 2λ1/4

(
1.0002 +

0.994
λ1/2

− 1.30
λ

+
3.1
λ3/2

+ . . .

)

(1)

∆K(λ) = 2λ1/4 +
2

λ1/4
+ . . .

Konishi at any coupling

(from talk of P. Vieira at Strings 09)
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Conclusions

Great progress in our understanding of the maximally supersymmetric AdS5/CFT4

system due to integrable structures!

Spectral problem (close) to exact solution!

1 Exact AdS5 × S5 closed string spectrum!

2 All loop form of two-point functions in 4d gauge theory!

Outlook:

Next talk: Integrability in scattering amplitudes at higher loops?

What can be said about gauge theory three-point functions?
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