Integrability in the AdS/CFT Correspondence

Jan Plefka

Humboldt-Universität zu Berlin

Corfu 2009, 10. September 2009

Overview

AdS/CFT correspondence provides a fascinating link between conformal quantum field theories without gravity and string theory with (both classical and quantized) gravity

Major (recent) activities:
(1) Integrability in AdS/CFT: Spectral problem solved (?)
(2) Scattering amplitudes in maximally susy Yang-Mills, relation to light-like Wilson loops and dual superconformal symmetry
(3) Novel well understood $A d S_{4} / C F T_{3}$ duality pair: IIA strings on $A d S_{4} \times C P^{3}$ dual to max susy 3d Chern-Simons theory [Aharony, Bergmann, Jafferis, Maldacena '08]
(1) "Applied" AdS/CFT: AdS/QCD and meson spectroscopy, applications to quark-gluon-plasma, condensed matter systems
(0) Use AdS/CFT as tool to study quantum gravity
© ...

Overview

AdS/CFT correspondence provides a fascinating link between conformal quantum field theories without gravity and string theory with (both classical and quantized) gravity

Major (recent) activities:
(1) Integrability in AdS/CFT: Spectral problem solved (?)
(2) Scattering amplitudes in maximally susy Yang-Mills, relation to light-like Wilson loops and dual superconformal symmetry

1: This talk!
2: E. Sokatchev's talk!

$\mathcal{N}=4$ super Yang Mills: The simplest interacting 4d QFT

- Field content: All fields in adjoint of $S U(N), N \times N$ matrices
- Gluons: $A_{\mu}, \mu=0,1,2,3, \Delta=1$
- 6 real scalars: $\Phi_{I}, I=1, \ldots, 6, \Delta=1$
- 4×4 real fermions: $\Psi_{\alpha A}, \bar{\Psi}_{A}^{\dot{\alpha}}, \alpha, \dot{\alpha}=1,2 . A=1,2,3,4, \Delta=3 / 2$
- Covariant derivative: $\mathcal{D}_{\mu}=\partial_{\mu}-i\left[A_{\mu}, *\right], \Delta=1$
- Action: Unique model completely fixed by SUSY

$$
\begin{aligned}
S= & \frac{1}{g_{\mathrm{YM}}{ }^{2}} \int d^{4} x \operatorname{Tr}\left[\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2}\left(D_{\mu} \Phi_{i}\right)^{2}-\frac{1}{4}\left[\Phi_{I}, \Phi_{J}\right]\left[\Phi_{I}, \Phi_{J}\right]+\right. \\
& \left.\bar{\Psi}_{\dot{\alpha}}^{A} \sigma_{\mu}^{\dot{\alpha} \beta} \mathcal{D}^{\mu} \Psi_{\beta A}-\frac{i}{2} \Psi_{\alpha A} \sigma_{I}^{A B} \epsilon^{\alpha \beta}\left[\Phi^{I}, \Psi_{\beta B}\right]-\frac{i}{2} \bar{\Psi}_{\dot{\alpha} A} \sigma_{I}^{A B} \epsilon^{\dot{\alpha} \dot{\beta}}\left[\Phi^{I}, \bar{\Psi}_{\dot{\beta} B}\right]\right]
\end{aligned}
$$

- $\beta_{g_{\mathrm{YM}}}=0$: Quantum Conformal Field Theory, 2 parameters: $N \& \lambda=g_{\mathrm{YM}}{ }^{2} N$
- Shall consider 't Hooft planar limit: $N \rightarrow \infty$ with λ fixed.

Most symmetric 4d gauge theory!

- Symmetry: $\mathfrak{s o}(2,4) \otimes \mathfrak{s o}(6) \subset \mathfrak{p s u}(2,2 \mid 4)$

Poincaré: $\quad p^{\alpha \dot{\alpha}}=p_{\mu}\left(\sigma^{\mu}\right)^{\dot{\alpha} \beta}, \quad m_{\alpha \beta}, \quad \bar{m}_{\dot{\alpha} \dot{\beta}}$
Conformal: $k_{\alpha \dot{\alpha}}, d \quad(c$: central charge)
R-symmetry: $r_{A B}$
Poincaré Susy: $\quad q^{\alpha A}, \dot{q}_{A}^{\dot{\alpha}} \quad$ Conformal Susy: $\quad s_{\alpha A}, \bar{s}_{\dot{\alpha}}^{A}$

- $4+4$ Supermatrix notation $\bar{A}=(\alpha, \dot{\alpha} \mid A)$

$$
J^{\bar{A}}{ }_{\bar{B}}=\left(\begin{array}{ccc}
m^{\alpha}{ }_{\beta}-\frac{1}{2} \delta_{\beta}^{\alpha}\left(d+\frac{1}{2} c\right) & k^{\alpha} \dot{\dot{\beta}} & s^{\alpha}{ }_{B} \\
p^{\alpha}{ }_{\beta} & \bar{m}^{\dot{\alpha}}{ }_{\dot{\beta}}+\frac{1}{2} \delta_{\dot{\dot{\beta}}}^{\alpha}\left(d-\frac{1}{2} c\right) & \bar{q}^{\dot{\alpha}}{ }_{B} \\
q^{A}{ }_{\beta} & \bar{s}^{A}{ }_{\dot{\beta}} & -r^{A}{ }_{B}-\frac{1}{4} \delta_{B}^{A} c
\end{array}\right)
$$

- Algebra:

$$
\left[J_{i}{ }^{\bar{A}}{ }_{\bar{B}}, J_{j}{ }^{\bar{C}}{ }_{\bar{D}}\right\}=\delta_{i j}\left[\delta_{\bar{B}}^{\bar{C}} J_{i} \bar{A}_{\bar{D}}-(-1)^{(|\bar{A}|+|\bar{B}|)(\bar{C}|+|\bar{D}|)} \delta_{\bar{D}}^{\bar{A}} J_{i}{ }^{{ }_{C}^{C}}{ }_{\bar{B}}\right]
$$

Observables

- Local operators: $\mathcal{O}_{n}(x)=\operatorname{Tr}\left[\mathcal{W}_{1} \mathcal{W}_{2} \ldots \mathcal{W}_{n}\right]$ with $\mathcal{W}_{i} \in\left\{\mathcal{D}^{k} \Phi, \mathcal{D}^{k} \Psi, \mathcal{D}^{k} F\right\}$

2 point fct: $\quad\left\langle\mathcal{O}_{a}\left(x_{1}\right) \mathcal{O}_{b}\left(x_{2}\right)\right\rangle=\frac{\delta_{a b}}{\left(x_{1}-x_{2}\right)^{2 \Delta_{a}(\lambda)}} \quad \Delta_{a}(\lambda) \quad$ Scaling Dims
3 point fct: $\quad\left\langle\mathcal{O}_{a}\left(x_{1}\right) \mathcal{O}_{b}\left(x_{2}\right) \mathcal{O}_{c}\left(x_{2}\right)\right\rangle=\frac{c_{a b c}(\lambda)}{x_{12}^{\Delta_{a}+\Delta_{b}-\Delta_{c}} x_{23}^{\Delta_{b} \Delta_{c}-\Delta_{a}} x_{31}^{\Delta_{c}+\Delta_{a}-\Delta_{b}}}$ n-point functions follow from OPE

- Wilson loops:

$$
\mathcal{W}_{C}=\left\langle\operatorname{Tr} P \exp i \oint_{C} d s\left(\dot{x}^{\mu} A_{\mu}+i|\dot{x}| \theta^{I} \Phi_{I}\right)\right\rangle
$$

- Scattering amplitudes:

$$
\begin{aligned}
& \mathcal{A}_{n}\left(\left\{p_{i}, h_{i}, a_{i}\right\} ; \lambda\right)=\left\{\begin{array}{c}
\text { UV-finite } \\
\text { IR-divergent }
\end{array}\right\} \\
& \text { helicities: } h_{i} \in\left\{0, \pm \frac{1}{2}, \pm 1\right\}
\end{aligned}
$$

Superstring in $A d S_{5} \times S^{5}$

\times fermi

$$
I=\sqrt{\lambda} \int d \tau d \sigma\left[G_{m n}^{\left(\mathrm{AdS}_{5}\right)} \partial_{a} X^{m} \partial^{a} X^{n}+G_{m n}^{\left(\mathrm{S}_{5}\right)} \partial_{a} Y^{m} \partial^{a} Y^{n}+\text { fermions }\right]
$$

- $d s_{A d S}^{2}=R^{2} \frac{d x_{3+1}^{2}+d z^{2}}{z^{2}} \quad$ has boundary at $z=0$
- $\sqrt{\lambda}=\frac{R^{2}}{\alpha^{\prime}} \quad$, classical limit: $\sqrt{\lambda} \rightarrow \infty$, quantum fluctuations: $\mathcal{O}(1 / \sqrt{\lambda})$
- $A d S_{5} \times S^{5}$ is max susy background (like $\mathbb{R}^{1,9}$ and plane wave)
- Quantization unsolved!
- String coupling constant $g_{s}=\frac{\lambda}{4 \pi N} \rightarrow 0$ in 't Hooft limit
- Isometries: $\mathfrak{s o}(2,4) \times \mathfrak{s o}(6) \subset \mathfrak{p s u}(2,2 \mid 4)$
- Include fermions: Formulate as $\frac{P S U(2,2 \mid 4)}{S O(1,4) \times S O(5)}$ supercoset model

The AdS/CFT landscape

(Picture by N. Beisert)

Gauge Theory - String Theory Dictionary of Observables

$\underset{\text { scaling dimensions }}{\Delta_{a}(\lambda) \text { spectrum of }}$$\Leftrightarrow \quad$| $E(\lambda)$ string excitation |
| :--- |
| spectrum |

$c_{a b c}(\lambda)$ structure constants
$(\Leftrightarrow) \quad$ Only SUGRA: $\quad \mathcal{Z}_{\text {AdS }}\left[\left.\phi\right|_{\partial \mathrm{AdS}}=J\right]=\mathcal{Z}_{\mathrm{CFT}}[J]$
$\mathcal{A}_{n}\left(\left\{p_{i}, h_{i}, a_{i}\right\} ; \lambda\right)$

Wilson loop \mathcal{W}_{C}

The spectral problem and integrability

The spectral problem of AdS/CFT: Symmetry

$$
\begin{array}{ccc}
\text { string energy } & \leftrightarrow & \text { scaling dimension } \\
E(\lambda) & = & \Delta(\lambda)
\end{array}
$$

- String states resp. gauge theory local operators classified by conserved Cartan charges $\left(E, S_{1}, S_{2}\right)$ of $\mathfrak{s o}(2,4)$ (energy and "spins") and (J_{1}, J_{2}, J_{3}) of $\mathfrak{s o}(6)$ ("angular momenta")
- Geometrical picture:

$$
\begin{array}{lr}
A d S_{5}: & -Z_{0}^{2}+Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}+Z_{4}^{2}-Z_{5}^{2}=-R^{2} \\
S^{5}: & Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}+Y_{5}^{2}+Y_{6}^{2}=R^{2}
\end{array}
$$

$Z_{0}+i Z_{5}=\rho_{3} e^{i t}, Z_{1}+i Z_{2}=\rho_{1} e^{i \alpha_{1}}, Z_{3}+i Z_{4}=\rho_{2} e^{i \alpha_{2}}$:
3 angles $t, \alpha_{1}, \alpha_{2} \longrightarrow 3$ conserved quantities E, S_{1}, S_{2}. E is the energy.
$Y_{1}+i Y_{2}=r_{1} e^{i \phi_{1}}, Y_{3}+i Y_{4}=r_{2} e^{i \phi_{2}}, Y_{5}+i Y_{6}=r_{3} e^{i \phi}$:
3 angles $\phi_{1}, \phi_{2}, \phi \longrightarrow 3$ conserved angular momenta J_{1}, J_{2}, J_{3}.

The spectral problem of AdS/CFT: Expansions

- $A d S_{5} \times S^{5}$ string spectrum

$$
\widehat{H}|\psi\rangle_{\text {String }}=E(\lambda)|\psi\rangle_{\text {String }} \quad E(\lambda)=?
$$

- Central observables in gauge theory: Correlation functions of composite operators e.g.

$$
\mathcal{O}_{\alpha}(x)=\operatorname{Tr}\left[\Phi_{i_{1}} \Phi_{i_{2}} \ldots \Phi_{i_{n}}\right]
$$

Two-point functions determined by scaling dimensions $\Delta(\lambda, N)$

$$
\left\langle\mathcal{O}_{\alpha}(x) \mathcal{O}_{\beta}(y)\right\rangle=\frac{\delta_{\alpha \beta}}{(x-y)^{2 \Delta(\lambda, N)}}
$$

May be computed perturbatively in gauge theory: Loops $(\lambda)+$ genera $\left(1 / N^{2}\right)$

$$
\Delta=\Delta^{0}+\lambda\left(\Delta_{0}^{1}+\frac{1}{N^{2}} \Delta_{1}^{1}+\ldots\right)+\lambda^{2}\left(\Delta_{0}^{2}+\frac{1}{N^{2}} \Delta_{1}^{2}+\ldots\right)+\ldots \stackrel{!}{=} E\left(\lambda, g_{s}\right)
$$

\uparrow here: $\Delta^{0}=n=\#$ of scalars

Spinning string solutions vs. Local Operators

- Example 1: Rotating point particle on S^{5}

$$
t=\kappa \tau \quad \rho=0 \quad \gamma=\frac{\pi}{2} \quad \phi_{1}=\kappa \tau \quad \phi_{2}=\phi_{3}=\psi=0
$$

$$
\begin{aligned}
& d s_{\mathrm{AdS}_{5}}^{2}=d \rho^{2}-\cosh ^{2} \rho d t^{2}+\sinh ^{2} \rho d \Omega_{3} \\
& d s_{\mathrm{S}_{5}}^{2}=d \gamma^{2}+\cos ^{2} \gamma d \phi_{3}^{2}+\sin ^{2} \gamma\left(d \psi^{2}+\cos ^{2} \psi d \phi_{1}^{2}+\sin ^{2} \psi d \phi_{2}^{2}\right)
\end{aligned}
$$

- Solves eqs. of motion \& Virasoro constraint (here $S_{1}, S_{2}, J_{2}, J_{3}=0$)

$$
\begin{aligned}
& E=\sqrt{\lambda} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \dot{X}_{0}=\sqrt{\lambda} \kappa \quad E=J \text { classical } \\
& J_{1}=\sqrt{\lambda} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi}\left(Y_{1} \dot{Y}_{2}-Y_{2} \dot{Y}_{1}\right)=\sqrt{\lambda} \kappa=: J
\end{aligned}
$$

- Dual gauge theory operator: $Z=\Phi_{1}+i \Phi_{2}$
[Berenstein,Madacena,Nastase]

$$
\mathcal{O}_{J}=\operatorname{Tr}\left[Z^{J}\right] \quad \text { with } \quad \Delta(\lambda)=\Delta(\lambda=0)=J
$$

- Actually classical picture only good for $J \rightarrow \infty$

Spinning string solutions vs. Local Operators

- Example 1: Rotating point particle on S^{5}

$$
t=\kappa \tau \quad \rho=0 \quad \gamma=\frac{\pi}{2} \quad \phi_{1}=\kappa \tau \quad \phi_{2}=\phi_{3}=\psi=0
$$

$$
\begin{aligned}
& d s_{\mathrm{AdS}_{5}}^{2}=d \rho^{2}-\cosh ^{2} \rho d t^{2}+\sinh ^{2} \rho d \Omega_{3} \\
& d s_{\mathrm{S}_{5}}^{2}=d \gamma^{2}+\cos ^{2} \gamma d \phi_{3}^{2}+\sin ^{2} \gamma\left(d \psi^{2}+\cos ^{2} \psi d \phi_{1}^{2}+\sin ^{2} \psi d \phi_{2}^{2}\right)
\end{aligned}
$$

- Solves eqs. of motion \& Virasoro constraint (here $S_{1}, S_{2}, J_{2}, J_{3}=0$)

$$
\begin{aligned}
& E=\sqrt{\lambda} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \dot{X}_{0}=\sqrt{\lambda} \kappa \quad E=J \\
& J_{1}=\sqrt{\lambda} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi}\left(Y_{1} \dot{Y}_{2}-Y_{2} \dot{Y}_{1}\right)=\sqrt{\lambda} \kappa=: J
\end{aligned}
$$

Quantum fluctuations around solution: $X^{\mu}=X_{\text {sol }}^{\mu}(\tau)+\frac{1}{\lambda^{1 / 4}} x^{\mu}(\tau, \sigma)$

$$
\Rightarrow \text { Energy: } \quad E=\sqrt{\lambda} \kappa+E_{2}(\kappa)+\frac{1}{\sqrt{\lambda}} E_{4}(\kappa)+\ldots
$$

- Example 2: Folded spinning string: $J_{1} \& J_{2} \neq 0$

Ansatz:

$$
\begin{array}{r}
t=\kappa \tau \quad \rho=0 \quad \gamma=\frac{\pi}{2} \\
\phi_{1}=\omega_{1} \tau \quad \phi_{2}=\omega_{2} \tau \quad \phi_{3}=0 \quad \psi=\psi(\sigma)
\end{array}
$$

- Solution yields Charges and Energy

$$
\begin{aligned}
J_{1} & =\sqrt{\lambda} \omega_{1} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \cos ^{2} \psi(\sigma) \quad J_{2}=\sqrt{\lambda} \omega_{2} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \sin ^{2} \psi(\sigma) . \\
E & =J\left(1+\frac{\lambda}{J^{2}} E_{2}+\frac{\lambda^{2}}{J^{4}} E_{4}+\ldots\right) \quad J=J_{1}+J_{2}
\end{aligned}
$$

where $E_{2}=\frac{2}{\pi^{2}} K\left(q_{0}\right)\left(E\left(q_{0}\right)-\left(1-q_{0}\right) K\left(q_{0}\right)\right)$ with $\frac{J_{2}}{J}=1-\frac{E\left(q_{0}\right)}{K\left(q_{0}\right)}$
Similarly $E_{2 l}$: l-loop gauge theory prediction.

- Dual gauge theory operator: $Z=\Phi_{1}+i \Phi_{2} \quad W=\Phi_{3}+i \Phi_{4}$

$$
\mathcal{O}_{J}=\operatorname{Tr}\left[Z^{J_{1}} W^{J_{2}}\right]+\ldots \quad \text { with } \quad \Delta(\lambda)=J_{1}+J_{2}+\lambda \Delta_{1}\left(J_{1}, J_{2}\right)+\ldots
$$

Indeed $\lim _{J \rightarrow \infty} \Delta_{1}\left(J_{1}, J_{2}\right)=\frac{\lambda}{J^{2}} E_{2}$!

Operator mixing and the dilatation operator

- Composite operators are renormalized and operators with degenerate $\left(\Delta^{0}, S_{1}, S_{2} ; J_{1}, J_{2}, J_{3}\right.$) charges mix:

$$
\mathcal{O}_{\text {ren }}^{A}=\mathcal{Z}^{A}{ }_{B} \mathcal{O}_{\text {bare }}^{B}
$$

Mixing matrix (dilatation operator $\hat{=} d \in \mathfrak{p s u}(2,2 \mid 4)$)

$$
(\mathfrak{D})^{A}{ }_{B}=\left(\mathcal{Z}^{-1}\right)^{A} C_{C} \frac{d}{\log \Lambda} \mathcal{Z}^{C}{ }_{B}
$$

- Acts on composite operators: $\mathcal{O}(x)=\operatorname{Tr}\left[\Phi_{i_{1}} \Phi_{i_{2}} \ldots \Phi_{i_{n}}\right]$

Eigenvalues yield scaling dims.

$$
\mathfrak{D} \circ \mathcal{O}(x)=\Delta_{\mathcal{O}} \mathcal{O}(x)
$$

- \mathfrak{D} is perturbatively defined:

$$
\mathfrak{D}=\Delta^{0}+\sum_{l=1}^{\infty} \lambda^{l} \mathfrak{D}_{l+1}
$$

The dilatation operator and spin chains

- For simplicity: Consider $\mathfrak{s u}(2)$ subsector

$$
Z=\Phi_{1}+i \Phi_{2} \quad \text { and } \quad W=\Phi_{3}+i \Phi_{4}
$$

\& consider operators $\mathcal{O}=\operatorname{Tr}($ word in $Z \& W)$

- Spin chain picture: Operator $\operatorname{Tr}(Z Z W Z W) \hat{=}$ State $|\downarrow \downarrow \uparrow \downarrow \uparrow\rangle \hat{=}$
- One-loop structure: \mathfrak{D}_{2} is Hamiltonian of the Heisenberg spin chain, an integrable system! [Minahan,Zarembo]

$$
\mathfrak{D}_{2}=2 \sum_{l=1}^{L}\left(1-P_{l, l+1}\right) \quad P_{i, j}: \text { permutation operator }
$$

- Ground state: $|\downarrow \downarrow \ldots \downarrow\rangle \hat{=} \operatorname{Tr}\left(Z^{J}\right)$ with $\Delta=0$
- Excitations: "Magnons": $|m\rangle=|\underbrace{\uparrow \downarrow \ldots \downarrow \uparrow}_{m} \downarrow\rangle\rangle \hat{=} \operatorname{Tr}\left(W Z^{m} W Z^{J-m}\right)$

The coordinate Bethe Ansatz 1

- How to diagonalize $\widehat{\mathcal{D}}$? Open up the trace (no cyclicity)

$$
\operatorname{Tr}(W Z Z W \ldots W Z) \longrightarrow|W Z Z W \ldots W Z\rangle
$$

- Consider two-magnon states $\left.|\psi\rangle=\sum_{1 \leq x_{1}<x_{2} \leq L} \psi\left(x_{1}, x_{2}\right)|\ldots Z W Z \ldots Z W Z \ldots\rangle\right)$
- One-loop Schrödinger eq. $\sum_{i=1}^{L}\left(1-P_{i, i+1}\right)|\psi\rangle=E_{2}|\psi\rangle$ in "position space":

$$
\begin{aligned}
& x_{2}>x_{1}+1 \quad E_{2} \psi\left(x_{1}, x_{2}\right)=2 \psi\left(x_{1}, x_{2}\right)-\psi\left(x_{1}-1, x_{2}\right)-\psi\left(x_{1}+1, x_{2}\right) \\
& 2 \psi\left(x_{1}, x_{2}\right)-\psi\left(x_{1}, x_{2}-1\right)-\psi\left(x_{1}, x_{2}+1\right) \\
& x_{2}=x_{1}+1 \quad E_{2} \psi\left(x_{1}, x_{2}\right)=2 \psi\left(x_{1}, x_{2}\right)-\psi\left(x_{1}-1, x_{2}\right)-\psi\left(x_{1}, x_{2}+1\right)
\end{aligned}
$$

.. $Z W W Z \ldots$

The coordinate Bethe Ansatz 2

$$
\begin{array}{r}
x_{2}>x_{1}+1 \quad E_{2} \psi\left(x_{1}, x_{2}\right)= \\
\\
 \tag{2}\\
\\
\\
x_{2}=x_{1}+1 \psi\left(x_{1}, x_{2}\right)-\psi\left(x_{1}-1, x_{2}\right)-\psi\left(x_{1}, x_{1}, x_{2}\right) \\
E_{2} \psi\left(x_{1}, x_{2}\right)=
\end{array}
$$

- Solved by Bethe's ansatz (1931):

$$
\downarrow \text { S-matrix }
$$

$$
\psi\left(x_{1}, x_{2}\right)=e^{i\left(p_{1} x_{1}+p_{2} x_{2}\right)}+S\left(p_{2}, p_{1}\right) e^{i\left(p_{2} x_{1}+p_{1} x_{2}\right)}
$$

- Then (1) is solved for any $S\left(p_{2}, p_{1}\right)$ with $E_{2}=\sum_{k=1}^{M} 4 \sin ^{2}\left(\frac{p_{k}}{2}\right)$ N.B. $2-e^{-i p}-e^{i p}=4 \sin ^{2} \frac{p}{2}$
- (2) determines S-matrix: $S\left(p_{2}, p_{1}\right)=\frac{\varphi\left(p_{1}\right)-\varphi\left(p_{2}\right)+i}{\varphi\left(p_{1}\right)-\varphi\left(p_{2}\right)-i}$ with $\varphi(p)=\frac{1}{2} \cot \left(\frac{p}{2}\right)$

Bethe equations 1

- Demand $\psi\left(x_{1}, x_{2}\right)=\psi\left(x_{2}, x_{1}+L\right)$

$$
\Rightarrow \quad e^{i p_{1} L}=S\left(p_{1}, p_{2}\right) \quad \text { and } \quad e^{i p_{2} L}=S\left(p_{2}, p_{1}\right)
$$

solve for $p_{1} \& p_{2} \Rightarrow E_{2}\left(p_{1}, p_{2}\right)=\sum_{k=1}^{2} 4 \sin ^{2} \frac{p_{k}}{2} \quad$ spectrum! \|

- Big leap (\Leftrightarrow factorized scattering from integrability): M-body problem Total phase acquired by one magnon cycling around the chain:

$$
e^{i p_{k} L}=\prod_{i=1, i \neq k}^{M} S\left(p_{k}, p_{i}\right) \quad k=1, \ldots, M
$$

Scatters off all
other magnons
exactly once

Bethe equations 2

- Energy additive:

$$
E_{2}\left(p_{1}, \ldots, p_{M}\right)=\sum_{k=1}^{M} 4 \sin ^{2} \frac{p_{k}}{2}
$$

- Cyclicity of trace condition: $\sum_{k=1}^{M} p_{k}=0 \Leftrightarrow$ vanishing total momentum
- Example: Two magnons: $p:=p_{1}=-p_{2}$

$$
\begin{aligned}
e^{i p L} & =\frac{\cot \frac{p}{p}+i}{\cot \frac{p}{2}-i}=e^{i p} \Rightarrow e^{i p(L-1)}=1 \quad \Rightarrow \quad p=\frac{2 \pi n}{L-1} \\
E_{2} & =8 \sin ^{2}\left(\frac{\pi n}{L-1}\right) \xrightarrow{L \rightarrow \infty} 8 \pi^{2} \frac{n^{2}}{L^{2}}
\end{aligned}
$$

Recall $\Delta_{1}=\frac{\lambda}{8 \pi^{2}} E_{2} \rightarrow n^{2} \lambda / L^{2}$
Agrees with plane-wave string spectrum $E_{\text {light-cone }}=2 \sqrt{1+n^{2} \lambda / J^{2}}$

Integrability

- Heisenberg spin chain is integrable: Existence of L commuting charges Q_{n} : $\left[Q_{m}, Q_{n}\right]=0 \quad \forall(m, n)$!
- Spectrum determined by Bethe equations:

$$
e^{i p_{k} L}=\prod_{i=1, i \neq k}^{M} S\left(p_{k}, p_{i}\right) \quad k=1, \ldots, M
$$

With S-Matrix:

$$
S\left(p_{i}, p_{k}\right)=\frac{x^{+}\left(p_{i}\right)-x^{-}\left(p_{k}\right)}{x^{-}\left(p_{i}\right)-x^{+}\left(p_{k}\right)} \quad \text { with } \quad x^{ \pm}(p)=\frac{1}{2}\left(\cot \left(\frac{p}{2}\right) \pm i\right)
$$

Energy (one loop scaling dimensions) additive:

$$
\Delta=L+\lambda E_{2} \quad \text { with } \quad E_{2}\left(p_{1}, \ldots, p_{M}\right)=\sum_{k=1}^{M} 4 \sin ^{2} \frac{p_{k}}{2}
$$

+ Cyclicity of trace condition: $\sum_{k=1}^{M} p_{k}=0$

The asymptotic Bethe Ansatz

What happens at higher loops?
λ deformed variables: $x^{ \pm}(p)=\frac{e^{ \pm i p / 2}}{4 \sin \frac{p}{2}}\left(1+\sqrt{1+\frac{\lambda}{\pi^{2}} \sin ^{2} \frac{p}{2}}\right) \quad \Leftrightarrow e^{i p}=\frac{x^{+}(p)}{x^{-}(p)}$
Asymptotic all loop conjecture: $\quad x_{k}^{ \pm}:=x^{ \pm}\left(p_{k}\right)$
[Beisert,Staudacher]

$$
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{L}=\prod_{j=1, j \neq k}^{M} \frac{x_{k}^{+}-x_{j}^{-}}{x_{k}^{-}-x_{j}^{+}} \frac{1-\frac{\lambda}{16 \pi^{2} x_{k}^{+} x_{j}^{-}}}{1-\frac{\lambda}{16 \pi^{2} x_{k}^{-} x_{j}^{+}}} \cdot S_{0}\left(\left\{p_{k}\right\}, \lambda\right)^{2} \quad S_{0} \text { : dressing factor }
$$

- Valid for $L>$ loop order, completely fixed by $\mathfrak{p s u}(2,2 \mid 4)$ symmetry up to S_{0}.
- Conjectured all loop form of S_{0} exists [Beisert,Hermandez,Lopez;Beisert,Eden,Staudacher]
- Perturbatively: $S_{0} \sim \mathcal{O}\left(\lambda^{4}\right)$ [Bern,Czakon, Dixon,Kosower,Smirnov]

Scaling dimensions then $\Delta=\Delta_{0}+\sum_{k=1}^{M} \sqrt{1+\frac{\lambda}{\pi^{2}} \sin ^{2} \frac{p_{k}}{2}}-1$.

Integrability in the AdS/CFT system

- $\operatorname{Ad} S_{5} \times S^{5}$ string σ-model is classically integrable [Bena,Polchinski,Roiban] Can be solved completely in terms of algebraic curve
[Kazakov,Marshakov,Minahan,Zarembo; Beisert,Kasazkov,Sakai,Zarembo]
- Full one-loop dilatation operator has been constructed in terms of an integrable super-spin chain and diagonalized by Bethe ansatz. [Minanan,Zarembo;Beisert,Staudacher] Super-magnon excitations scatter according to matrix Bethe equations:

$$
e^{i p_{k} L}|\Psi\rangle=\left(\prod_{j=1, j \neq i}^{M} S\left(p_{k}, p_{j}\right)\right) \cdot|\Psi\rangle, \quad E=\sum_{k=1}^{M} q_{2}\left(p_{k}\right)
$$

(Asymptotic) S-matrix is assumed to be factorized. So far only proven at one-loop for all and up to four-loop for some operators.

- Wrapping problem: For finite size chains and long-range interactions not allowed to assume exactness of S-matrix!

Full set of conjectured nested $\mathfrak{p s u}(2,2 \mid 4)$ Bethe equations

$$
\begin{aligned}
& 1=\prod_{j=1}^{K_{4}} \frac{x_{4, k}^{+}}{x_{4, k}^{-}} \quad \text { Spectral parameter: } x_{4, k}^{ \pm}=\frac{1}{4}\left(\cot p_{k} / 2 \pm i\right)\left(1+\sqrt{1+16 g^{2} \sin ^{2} p_{k} / 2}\right) \\
& 1=\prod_{\substack{j=1 \\
j \neq k}}^{K_{2}} \frac{u_{2, k}-u_{2, j}-i \eta_{1}}{u_{2, k}-u_{2, j}+i \eta_{1}} \prod_{j=1}^{K_{3}+K_{1}} \frac{u_{2, k}-u_{3, j}+\frac{i}{2} \eta_{1}}{u_{2, k}-u_{3, j}-\frac{i}{2} \eta_{1}} \quad \begin{array}{l}
\text { magnon mo } \\
g:=\sqrt{\lambda} / 4 \pi
\end{array} \\
& 1=\prod_{j=1}^{K_{2}} \frac{u_{3, k}-u_{2, j}+\frac{i}{2} \eta_{1}}{u_{3, k}-u_{2, j}-\frac{i}{2} \eta_{1}} \prod_{j=1}^{K_{4}} \frac{x_{4, j}^{+\eta_{1}}-x_{3, k}}{x_{4, j}^{-\eta_{1}}-x_{3, k}} \\
& 1=\left(\frac{x_{4, k}^{-}}{x_{4, k}^{+}}\right)^{L-\eta_{1} K_{1}-\eta_{2} K_{7}} \prod_{\substack{j=1 \\
j \neq k}}^{K_{4}}\left(\frac{x_{4, k}^{+\eta_{1}}-x_{4, j}^{-\eta_{1}}}{x_{4, k}^{-\eta_{2}}-x_{4, j}^{+\eta_{2}}} \frac{1-g^{2} /\left(x_{4, k}^{+} x_{4, j}^{-}\right)}{1-g^{2} /\left(x_{4, k}^{-} x_{4, j}^{+}\right)} \mathrm{S}_{\mathrm{O}}^{2}\right){ }_{\uparrow} \text { Dressing factor } \\
& \times \prod_{j=1}^{K_{3}+K_{1}} \frac{x_{4, k}^{-\eta_{1}}-x_{3, j}}{x_{4, k}^{+\eta_{1}}-x_{3, j}} \prod_{j=1}^{K_{5}+K_{7}} \frac{x_{4, k}^{-\eta_{2}}-x_{5, j}}{x_{4, k}^{+\eta_{2}}-x_{5, j}} \\
& 1=\prod_{j=1}^{K_{6}} \frac{u_{5, k}-u_{6, j}+\frac{i}{2} \eta_{2}}{u_{5, k}-u_{6, j}-\frac{i}{2} \eta_{2}} \prod_{j=1}^{K_{4}} \frac{x_{4, j}^{+\eta_{2}}-x_{5, k}}{x_{4, j}^{-\eta_{2}}-x_{5, k}} \quad u_{i, k}:=x_{i, k}+g^{2} / x_{i, k} \\
& 1=\prod_{\substack{j=1 \\
j \neq k}}^{K_{6}} \frac{u_{6, k}-u_{6, j}-i \eta_{2}}{u_{6, k}-u_{6, j}+i \eta_{2}} \prod_{j=1}^{K_{5}+K_{7}} \frac{u_{6, k}-u_{5, j}+\frac{i}{2} \eta_{2}}{u_{6, k}-u_{5, j}-\frac{i}{2} \eta_{2}} .
\end{aligned}
$$

with η_{1}, η_{2} related to four different choices of $\mathfrak{p s u}(2,2 \mid 4)$ Dynkin labels, e.g.

The AdS/CFT (internal) S-matrix

- Describes scattering of two super-magnons, should be unitary and satisfy Yang-Baxter equation:
[Arutyunov,Frolov,Staudacher '04; Beisert, Staudacher '05 + '06; Beisert, Hernandez,Lopez '06, Beisert,Eden,Staudacher '06]

$$
S_{12} S_{21}=1, \quad S_{12} S_{13} S_{23}=S_{23} S_{13} S_{12}
$$

- Was (ad hoc) conjectured to possess crossing symmetry:

$$
S_{12} S_{\overline{1} 2}=f_{12}^{2}
$$

\Rightarrow can be used to fix dressing factor S_{0}.

- AdS/CFT S-matrix has the structure

$$
S_{12}=\left(S_{12}^{\mathbf{p s u}(2 \mid 2)_{L}} \otimes S_{12}^{\mathbf{p s u}(2 \mid 2)_{R}}\right) S_{0}^{2}
$$

Invariant under a residual $\mathfrak{J} \in \mathfrak{p s u}(2 \mid 2)$ symmetry: $\left[\mathfrak{J}_{1}+\mathfrak{J}_{2}, S_{12}^{\mathfrak{p s u}(2 \mid 2)_{L}}\right]=0$.

- First motivated from gauge theory spin chain, subsequently found in light-cone quantized string theory

Large Spin Limit of Twist Operators

- Consider twist operators: $\quad S_{1}$: Spin J_{3} : "twist"

$$
\mathcal{O}_{S_{1}, J_{3}}=\operatorname{Tr}\left(\mathcal{D}^{S_{1}} Z^{J_{3}}\right)+\ldots
$$

with $\mathcal{D}=\mathcal{D}_{+}$covariant derivative in light-cone direction.

- General spin chain state of length J_{3} is $\operatorname{Tr}\left[\left(\mathcal{D}^{s_{1}} Z\right)\left(\mathcal{D}^{s_{2}} Z\right) \ldots\left(\mathcal{D}^{s_{J_{3}}} Z\right)\right]$ where $S_{1}=s_{1}+s_{2}+\ldots s_{J_{3}}=: M=$ Magnon number.
- Scaling dims in $S_{1} \rightarrow \infty$ limit:

$$
\Delta_{\mathcal{O}_{S_{1}, J_{3}}}-S_{1}-J_{3}=\gamma(\lambda) \log S_{1}+\mathcal{O}\left(S_{1}{ }^{0}\right)
$$

$\gamma(\lambda)$: Universal scaling function, aka cusp anomalous dimension.

- $\gamma(\lambda)$ also appears in 4 gluon MHV amplitudes $\mathcal{A}_{4, M H V}$ and in light-cone segmented Wilson loops \mathcal{W} !
[Bern,Dixon,Smirnov]

$$
\mathcal{A}_{4, M H V}^{\text {all- loop }} \sim \exp \left[\gamma(\lambda) \mathcal{A}_{4, M H V}^{\text {one-loop }}\right], \quad \mathcal{A}_{4, M H V}^{\text {all- loop }} \sim\langle\mathcal{W}\rangle
$$

The Beisert-Eden-Staudacher Integral Equation

- Asymptotic Bethe equations reduce in $S_{1} \rightarrow \infty, L=J_{3} \rightarrow \infty$ with $L \ll \log S_{1}$ to integral equation for density $\hat{\sigma}$ of Bethe roots: $(g=\sqrt{\lambda / 4 \pi})$

$$
\hat{\sigma}(t)=\frac{t}{e^{t}-1}\left[\hat{K}(2 g t, 0)-4 g^{2} \int_{0}^{\infty} d t^{\prime} \hat{K}\left(2 g t, 2 g t^{\prime}\right) \hat{\sigma}\left(t^{\prime}\right)\right] .
$$

Cusp anomalous dimensions:

$$
\gamma(g)=16 g^{2} \hat{\sigma}(0)
$$

All loop prediction!

- Solution yields weak and strong coupling predictions: [BES, Basso, Korchemsky, Kotanski 0 or]

$$
\gamma(g)= \begin{cases}8 g^{2}-\frac{8}{3} \pi^{2} g^{4}+\frac{88}{45} \pi^{4} g^{6}-16\left(\frac{73}{630} \pi^{6}+4 \zeta(3)^{2}\right) g^{8}+\ldots & g \ll 1 \\ 4 g-\frac{3 \log 2}{\pi}-\frac{K}{4 \pi^{2}} \frac{1}{g-3 \log 2 / 4 \pi}-\frac{27(3)}{2^{9} \pi^{3}} \frac{1}{g^{2}}-\ldots & g \gg 1\end{cases}
$$

- Agrees with:

1) Four loop gauge theory calculation [Bern, Czakon,Dixon, Kosower, Smirnov '06]
2) 2 loop superstring calculation [Roiban,Tseytiin ${ }^{\text {or] }}$

Cusp anomalous dimension of $\mathcal{N}=4$ SYM:

(Plot by N. Beisert)

Wrapping interactions

Asymptotic Bethe equations yield 'half' of the perturbative spectrum of $\mathcal{N}=4 \mathrm{SYM}:$
length

incorporated Feynman graphs

missing wrapping interactions

- Wrapping graphs contribute generically at order $g^{2 L}$.
- Asymptotic Bethe eqs. describes $L \rightarrow \infty$ spin chain or string with worldsheet geometry $\mathbb{R}^{2} \Rightarrow$ Exsistence of S-Matrix and asymptotic states

Thermodynamic Bethe Ansatz

- Magnitude of finite size corrections: $\sim e^{-E_{\text {TBA }}\left(p_{\text {TBA }}\right) L}$ with $E_{\text {TBA }}=-i p$ and $p_{\text {TBA }}=-i E$ in 'mirror' theory, i.e. original theory with space and time interchanged
- Approach was successfully implemented by generalization of Lüscher's formulas for 2d Lorentz invariant FT: Computation of four loop scaling dimension of Konishi operator $\operatorname{Tr}([Z, W][Z, W])$ from asymptotic S-matrix
[Bajnok,Janik '08]
- Agrees with perturbative four loop supergraph calculation!
[Fiamberti,Santambrogio,Sieg,Zanon '08]

$$
\Delta=\Delta_{\mathrm{aBE}}+\Delta_{\text {wrapping }} \quad \Delta_{\text {wrapping }}=(324+864 \zeta(3) 1440 \zeta(5)) g^{8}
$$

- Highly nontrivial test of AdS/CFT!!

The Y system

Recent conjecture: Implementation of TBA through a " Y-system" to describe planar AdS/CFT at finite size. Passes all known tests!

Result:

- Y-system

$$
\frac{Y_{a, s}^{+} Y_{a, s}^{-}}{Y_{a+1, s} Y_{a-1, s}}=\frac{\left[1+Y_{a, s+1}\right]\left[1+Y_{a, s-1}\right]}{\left[1+Y_{a+1, s}\right]\left[1+Y_{a+1, s}\right]}
$$

- Asymptotics $\quad Y_{a, s \neq 0}(u \rightarrow \infty) \rightarrow$ const $_{a, s}$

$$
Y_{a, \mathrm{O}}(u \rightarrow \infty) \rightarrow\left(\frac{x^{[-a]}}{x^{[+a]}}\right)^{L} \times \text { const }_{a}
$$

(from talk of V. Kazakov at KITP 02/09)

Konishi: $\operatorname{Tr}\left(\Phi_{I} \Phi_{I}\right)$

Konishi at any coupling

(from talk of P. Vieira at Strings 09)

Conclusions

Great progress in our understanding of the maximally supersymmetric $A d S_{5} / C F T_{4}$ system due to integrable structures!

Spectral problem (close) to exact solution!
(1) Exact $\operatorname{AdS} S_{5} \times S^{5}$ closed string spectrum!
(2) All loop form of two-point functions in 4d gauge theory!

Outlook:

- Next talk: Integrability in scattering amplitudes at higher loops?
- What can be said about gauge theory three-point functions?

