Corfu, 10 September 2009

On mass hierarchies in orientifolds

Pascal Anastasopoulos

In collaboration with: E. Kiritsis \& A. Lionetto

Plan of the talk

- Introduction and motivation
- D-brane realizations of the Standard Model
- Mass matrix general forms
- An interesting example
- Hierarchies
- Conclusions

Introduction and Motivation

- One of the biggest puzzles of the Standard Model is the origin and hierarchy of masses and mixings.
- The range of masses between the t-quark and the lightest neutrino spans 15 orders of magnitude!
- Several mechanism have been proposed to explain (parts of) the mass hierarchy in SM.
- In this talk we want to:
- investigate the mechanism for the mass hierarchy in open string models (aka orientifolds).
- To establish the kind of the SM embeddings that can accommodate such mechanism.

Toolkit for Model Building

- Gauge Groups and Representations in Orientifold vacua:

- By these simple rules we can proceed and try to embed the SM in open string vacua.

D-brane Standard Models

- In open string vacua the Standard Model is located on some stacks of branes (intersecting or not):

- All SM particles for $Y=\frac{1}{6} Q_{3}+\frac{1}{2} Q_{1}+\frac{1}{2} Q_{1}^{\prime}$:

$$
\begin{aligned}
& Q:(1,-1,0,0) \text { or }(1,+1,0,0) \\
& U:(-1,0,-1,0) \text { or }(-1,0,0,-1) \\
& D:(-1,0,+1,0) \text { or }(-1,0,0,+1) \\
& L:(0,-1,-1,0) \text { or }(0,-1,0,-1) \\
& \begin{array}{l}
(0,+1,-1,0) \text { or }(0,+1,0,-1)
\end{array}
\end{aligned}
$$

$$
E:(0,0,1,1) \text { or }(0,0,2,0) \text { or }(0,0,0,2)
$$

$$
N^{c}:(0,2,0,0) \text { or }(0,0,1,-1) \text { or }(0,0,-1,1)
$$

$$
H_{u}:(0,-1,+1,0) \text { or }(0,-1,0,+1)
$$

$$
(0,+1,+1,0) \text { or }(0,+1,0,+1)
$$

$$
\begin{aligned}
H_{d}: & (0,-1,-1,0) \text { or }(0,-1,0,-1) \\
& (0,+1,-1,0) \text { or }(0,+1,0,-1)
\end{aligned}
$$

Anastasopoulos Dijkstra Kiritsis Schellekens

- Particles of different families can have different charges.

Model building

- In the last years, there are several approaches towards the search for the Standard Model in String theory.
- However, non of them successfully describes all features of the SM or MSSM... We are working on this...
- Today, several new techniques have been established and can be applied in this task.
- Instead of a blind search, a better technique would be to focus in string vacua with some acceptable phenomenological criteria.
- In this talk, we will focus on the mass-terms and hierarchy in such models.

Masses in D-brane models

- How do fermions get masses in D-brane models?
- The usual $\mathrm{SU}(3) \times \operatorname{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}}$ is embedded in (for example):

$$
\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{3} \times \mathrm{U}(1)_{2} \times \mathrm{U}(1) \times \mathrm{U}(1)^{\prime}
$$

- The "mass-terms" in this case should respect more conditions.
- This forbids several Yukawa terms.
- Could these different terms give an answer to hierarchy?

Leontaris
Anastasopoulos Kiritsis Lionetto
Cvetic Halverson Richter

- Consider some SM particles to be:

$$
\begin{aligned}
& Q:(1,-1,0,0) \\
& D_{1}:(-1,0,+1,0) \\
& H_{d}:(0,1,-1,0) \\
& \phi_{1}:(0,0,1,-1) \\
& \phi_{2}:(0,0,-1,1) \\
& E_{1}:(0,0,1,-1)
\end{aligned}
$$

$$
D_{1}:(-1,0,+1,0) \quad D_{2,3}:(-1,0,0,+1)
$$

- Yukawa terms:

$$
g_{i} Q D H_{d}
$$

- Consider some SM particles to be:

$$
Q:(1,-1,0,0)
$$

$$
D_{1}:(-1,0,+1,0) \quad D_{2,3}:(-1,0,0,+1)
$$

$$
H_{d}:(0,1,-1,0)
$$

$$
\phi_{1}:(0,0,1,-1)
$$

$$
\phi_{2}:(0,0,-1,1)
$$

$$
E_{1}:(0,0,1,-1)
$$

- Yukawa terms:

$$
\begin{aligned}
& g_{i} Q D H_{d} \\
& g_{i} Q D H_{d} \frac{\phi}{M_{s}}
\end{aligned}
$$

- Higher order terms:
- Consider some SM particles to be:

$$
Q:(1,-1,0,0)
$$

$$
D_{1}:(-1,0,+1,0) \quad D_{2,3}:(-1,0,0,+1)
$$

$$
\mathrm{H}_{\mathrm{d}}:(0,1,-1,0)
$$

$$
\phi_{1}:(0,0,1,-1)
$$

$$
\phi_{2}:(0,0,-1,1)
$$

$$
E_{1}:(0,0,1,-1)
$$

- Yukawa terms:
- Higher order terms:
- Instantonic contributions: $g_{i} Q D H_{d} \times e^{-V o l_{I} I}$

Yukawa-like terms \Leftrightarrow Textures

- The mass terms can a priori be generated by:
- Yukawa terms: $\quad g_{i} Q U H_{u} \quad \sim\left\langle H_{u}\right\rangle$
- Higher order terms: $\quad g_{i} Q U H_{u} \frac{\phi}{M_{s}} \quad \sim\left\langle H_{u}\right\rangle \frac{\langle\phi\rangle}{M_{s}}$
- Instantons: $\quad g_{i} Q U H_{u} \times e^{-V o l_{I} I} \sim\left\langle H_{u}\right\rangle e^{-V o l_{I}}$
- Such terms depend on selection rules based on the $\mathrm{U}(1)$ charges.
- All terms with the same charges under the $\mathrm{U}(1)$'s will have the same mass generating terms.
- Therefore, we can make a list of all possible "orientifold textures".

Quark Textures

- All D-brane realizations of the SM have either:
- $Q_{1}=Q_{2}=Q_{3} \quad$ or $\quad Q_{1} \neq Q_{2}=Q_{3}$
- $\quad U_{1}=U_{2}=U_{3} \quad$ or $\quad U_{1} \neq U_{2}=U_{3}$
- $\quad D_{1}=D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2} \neq D_{3}$
- The form of the mass matrix will be:

$$
M_{1}=\left(\begin{array}{lll}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}\right)
$$

Anastasopoulos Kiritsis Lionetto

Quark Textures

- All D-brane realizations of the SM have either:
- $Q_{1}=Q_{2}=Q_{3} \quad$ or $\quad Q_{1} \neq Q_{2}=Q_{3}$
- $\quad U_{1}=U_{2}=U_{3} \quad$ or $\quad U_{1} \neq U_{2}=U_{3}$
- $\quad D_{1}=D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2} \neq D_{3}$
- The form of the mass matrix will be:

$$
m_{2}=\left(\begin{array}{l|ll}
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Y}
\end{array}\right) \sim\left(\begin{array}{ccc}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\hline \mathcal{Y} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{Y} & \mathcal{Y} & \mathcal{Y}
\end{array}\right)
$$

Anastasopoulos Kiritsis Lionetto

Quark Textures

- All D-brane realizations of the SM have either:
- $Q_{1}=Q_{2}=Q_{3} \quad$ or $\quad Q_{1} \neq Q_{2}=Q_{3}$
- $\quad U_{1}=U_{2}=U_{3} \quad$ or $\quad U_{1} \neq U_{2}=U_{3}$
- $\quad D_{1}=D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2} \neq D_{3}$
- The form of the mass matrix will be:

$$
M_{3}=\left(\begin{array}{c|cc}
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\hline \mathcal{Z} & \mathcal{U} & \mathcal{U} \\
\mathcal{Z} & \mathcal{U} & \mathcal{U}
\end{array}\right)
$$

Anastasopoulos Kiritsis Lionetto

Quark Textures

- All D-brane realizations of the SM have either:
- $Q_{1}=Q_{2}=Q_{3} \quad$ or $\quad Q_{1} \neq Q_{2}=Q_{3}$
- $\quad U_{1}=U_{2}=U_{3} \quad$ or $\quad U_{1} \neq U_{2}=U_{3}$
- $\quad D_{1}=D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2} \neq D_{3}$
- The form of the mass matrix will be:

$$
M_{4}=\left(\begin{array}{c|c|c}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Z}
\end{array}\right)
$$

Anastasopoulos Kiritsis Lionetto

Quark Textures

- All D-brane realizations of the SM have either:
- $Q_{1}=Q_{2}=Q_{3} \quad$ or $\quad Q_{1} \neq Q_{2}=Q_{3}$
- $\quad U_{1}=U_{2}=U_{3} \quad$ or $\quad U_{1} \neq U_{2}=U_{3}$
- $\quad D_{1}=D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2}=D_{3} \quad$ or $\quad D_{1} \neq D_{2} \neq D_{3}$
- The form of the mass matrix will be:

$$
M_{5}=\left(\begin{array}{c|c|c}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\hline \mathcal{U} & \mathcal{V} & \mathcal{W} \\
\mathcal{U} & \mathcal{V} & \mathcal{W}
\end{array}\right)
$$

Anastasopoulos Kiritsis Lionetto

Lepton Textures

- Similar textures also for the Lepton mass matrix:

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{lll}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}\right) \\
& M_{2}=\left(\begin{array}{c|cc}
\mathcal{X} & \mathcal{y} & \mathcal{y} \\
\mathcal{X} & \mathcal{y} & \mathcal{y} \\
\mathcal{X} & \mathcal{y} & \mathcal{y}
\end{array}\right) \sim\left(\begin{array}{ccc}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\hline \mathcal{Y} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{y} & \mathcal{y} & \mathcal{y}
\end{array}\right) \\
& M_{3}=\left(\begin{array}{c|cc}
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\hline \mathcal{Z} & \mathcal{U} & \mathcal{U} \\
\mathcal{Z} & \mathcal{U} & \mathcal{U}
\end{array}\right) \\
& M_{4}=\left(\begin{array}{l|l|l}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Z}
\end{array}\right) \\
& M_{5}=\left(\begin{array}{c|c|c}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\hline \mathcal{U} & \mathcal{V} & \mathcal{W} \\
\mathcal{U} & \mathcal{V} & \mathcal{W}
\end{array}\right) \\
& \text { - In this case, there is an extra } \\
& \text { possibility: } \\
& M_{6}=\left(\begin{array}{c|c|c}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\hline \mathcal{U} & \mathcal{V} & \mathcal{W} \\
\hline \mathcal{R} & \mathcal{S} & \mathcal{T}
\end{array}\right) \\
& \text { for } L_{1} \neq L_{2} \neq L_{3}, \quad E_{1} \neq E_{2} \neq E_{3} .
\end{aligned}
$$

8 Madrid type models

- We are interested in bottom-up configurations where in all mass matrices appear Yukawas- and Higher- and Instantonic-terms.
- This pluralism might allow for solutions where the three masses from each matrix will be in 1-1 correspondence with the Yukawas-, Higher- and Instantonic-terms.
- Even if that is not general, it provides however a general first assessment of D-brane vacua as to their ability to generate multiple scales for masses and mixings.
- Within the "Madrid" class of models we have found 8 charge assignments with a single H_{u} and a single H_{d}, free of anomalies with the above property.

The MSSM Particles:

$$
E_{1}:(0,-2,0,0)
$$

$$
V_{u}=\left\langle H_{u}\right\rangle, v_{\phi_{i}}=\left\langle\phi_{i}\right\rangle / M_{s}, E_{i}=e^{-S_{i}}
$$

$$
\begin{aligned}
& Q_{1}:(1,-1,0,0) \quad Q_{2,3}:(1,+1,0,0) \\
& U_{1}:(-1,0,-1,0) \\
& \mathrm{U}_{2,3}:(-1,0,0,-1) \\
& D_{1}:(-1,0,1,0) \\
& D_{2,3}:(-1,0,0,+1) \\
& L_{1,2,3}:(0,-1,-1,0) \\
& E_{1}:(0,0,2,0) \quad E_{2}:(0,0,1,1) \quad E_{3}:(0,0,1,1) \\
& N_{1,2,3}:(0,2,0,0) \\
& H_{u}:(0,1,1,0) \\
& H_{d}:(0,1,-1,0) \\
& \phi_{1}:(0,0,-1,+1) \\
& \phi_{2}:(0,0,+1,-1) \\
& \text { The U-quark mass matrix: } \\
& M_{U}=V_{u}\left(\begin{array}{lllll}
g_{1} & & g_{2} & v_{\phi_{1}} & g_{3} \\
g_{4} & E_{1} & g_{5} & E_{2} & g_{6} \\
g_{7} & E_{2} \\
g_{7} & E_{1} & g_{8} & E_{2} & g_{9}
\end{array} E_{2} .\right) \\
& \text { where }
\end{aligned}
$$

The MSSM Particles:

$$
E_{1}:(0,-2,0,0)
$$

$$
V_{u}=\left\langle H_{u}\right\rangle, v_{\phi_{i}}=\left\langle\phi_{i}\right\rangle / M_{s}, E_{i}=e^{-S_{i}}
$$

$$
\begin{aligned}
& \begin{array}{ll}
Q_{1}:(1,-1,0,0) & Q_{2,3}:(1,+1,0,0) \\
U_{1}:(-1,0,-1,0) & U_{2,3}:(-1,0,0,-1)
\end{array} \\
& D_{1}:(-1,0,1,0) \\
& D_{2,3}:(-1,0,0,+1) \\
& L_{1,2,3}:(0,-1,-1,0) \\
& E_{1}:(0,0,2,0) \quad E_{2}:(0,0,1,1) \quad E_{3}:(0,0,1,1) \\
& N_{1,2,3}{ }^{\prime}:(0,2,0,0) \\
& H_{u}:(0,1,1,0) \\
& H_{d}:(0,1,-1,0) \\
& \begin{array}{l}
\phi_{1}:(0,0,-1,+1) \\
\phi_{2}:(0,0,+1,-1)
\end{array} \\
& \text { where }
\end{aligned}
$$

- The MSSM Particles:

$$
\begin{aligned}
& Q_{1}:(1,-1,0,0) \\
& 2_{2,3}:(1,+1,0,0) \\
& \mathrm{U}_{2,3}:(-1,0,0,-1) \\
& D_{1}:(-1,0,1,0) \\
& D_{2,3}:(-1,0,0,+1) \\
& L_{1,2,3}:(0,-1,-1,0) \\
& E_{1}:(0,0,2,0) \quad E_{2}:(0,0,1,1) \\
& E_{3}:(0,0,1,1) \\
& N_{1,2,3}^{c}:(0,2,0,0) \\
& H_{u}:(0,1,1,0) \\
& H_{d}:(0,1,-1,0) \\
& \phi_{1}:(0,0,-1,+1) \\
& \phi_{2}:(0,0,+1,-1) \\
& E_{1}:(0,-2,0,0) \\
& \text { where } \\
& V_{u}=\left\langle H_{u}\right\rangle, v_{\phi_{i}}=\left\langle\phi_{i}\right\rangle / M_{s}, E_{i}=e^{-S_{i}}
\end{aligned}
$$

All Mass Matrices

- The U-quark, D-quark, Lepton and Neutrino mass matrices:

$$
M_{U}=V_{u}\left(\begin{array}{lllll}
g_{1} & g_{2} & v_{\phi_{1}} & g_{3} & v_{\phi_{1}} \\
g_{4} & E_{1} & g_{5} & E_{2} & g_{6} \\
E_{2} \\
g_{7} & E_{1} & g_{8} & E_{2} & g_{9}
\end{array} E_{2} .\right) \quad M_{D}=V_{d}\left(\begin{array}{lllll}
q_{1} & q_{2} & v_{\phi_{2}} & q_{3} & v_{\phi_{2}} \\
q_{4} & E_{1} & q_{5} & E_{3} & q_{6} \\
E_{3} \\
q_{7} & E_{1} & q_{8} & E_{3} & q_{9}
\end{array}\right)
$$

$$
\begin{gathered}
M_{L}=V_{d}\left(\begin{array}{ccccc}
l_{1} & E_{4} & l_{2} & v_{\phi_{1}} & l_{3} \\
l_{4} & E_{4} & l_{5} & v_{\phi_{1}} & l_{6} \\
l_{7} & E_{4} & l_{8} & v_{\phi_{1}} & l_{9}
\end{array}\right) \\
M_{N} \sim\left(\begin{array}{llllll}
0 & 0 & 0 & V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} \\
0 & 0 & 0 & V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} \\
0 & 0 & 0 & V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} \\
V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} & M_{s} E_{5} & M_{s} E_{5} & M_{s} E_{5} \\
V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} & M_{s} E_{5} & M_{s} E_{5} & M_{s} E_{5} \\
V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} & M_{s} E_{5} & M_{s} E_{5} & M_{s} E_{5}
\end{array}\right)
\end{gathered}
$$

Solving for the Unknowns

- The U-quark mass matrix is:

$$
M_{U}=V_{u}\left(\begin{array}{lllll}
g_{1} & & g_{2} & v_{\phi_{1}} & g_{3} \\
g_{4} & E_{1} & g_{5} & E_{2} & g_{6}
\end{array} E_{2}\right)
$$

- We are looking for solutions where:

$$
\begin{array}{ll}
\lambda_{1}^{U} \sim V_{u} v_{\phi_{1}} & =m_{u} \\
\lambda_{2}^{U} \sim V_{u} E_{2} & =m_{c} \\
\lambda_{3}^{U} \sim V_{u} & =m_{t}
\end{array}
$$

in the perturbative regime $\left|g_{i}\right| \in[0.1-0.5]$.

- This type of solutions could naturally explain the hierarchy in the u, c, t quark masses.

Solutions for all the Unknowns

- An interesting solution for all scales $\left(1 \mathrm{TeV}, 10^{15} \mathrm{MeV}, \Lambda_{\mathrm{GUT}}\right)$:

$$
\begin{array}{ll}
V_{u} \sim m_{t}, & \\
E_{1} \sim E_{2} \sim m_{c} / m_{t} & \\
E_{3} \sim E_{4} \sim m_{s} / m_{b} \\
v_{\phi_{1}} \sim m_{u} / m_{t} & \\
v_{\phi_{2}} \sim m_{d} / m_{b}
\end{array}
$$

- The last instanton related to the Majorana term:

$$
\begin{array}{rll}
1 \mathrm{TeV} \text { scale } & : & E_{5} \sim 0.654 \\
10^{15} \mathrm{MeV} \text { scale } & : & E_{5} \sim 0.754 \\
\Lambda_{\mathrm{GUT}} \text { scale } & : & E_{5} \sim 2.5 \times 10^{-7}
\end{array}
$$

- The last instanton appears always as $E_{5} \times M_{s}$ and initiates the seesaw mechanism.
- The CKM matrix:

$$
\operatorname{CKM}(1 \mathrm{TeV})=\left(\begin{array}{lll}
0.970 & 0.240 & 0.007 \\
0.240 & 0.970 & 0.013 \\
0.010 & 0.011 & 0.999
\end{array}\right)
$$

- The mixing-neutrino matrix:

$$
\mathrm{U}_{\mathrm{N}}=\left(\begin{array}{rrr}
-0.42-0.23 i & -0.53+0.38 i & -0.19-0.54 i \\
0.69-0.21 i & -0.34+0.10 i & -0.55+0.17 i \\
0.20-0.44 i & 0.65 & -0.16-0.55 i
\end{array}\right)
$$

- Comparing with Data:

$$
\text { CKM(Data) }=\left(\begin{array}{rrr}
0.97419 \pm 0.00022 & 0.2257 \pm 0.0010 & 0.00359 \pm 0.00016 \\
0.2256 \pm 0.0010 & 0.97334 \pm 0.00023 & 0.0415 \pm 0.001 \\
0.00874_{-0.00037}^{+0.00026} & 0.0407 \pm 0.0010 & 0.999133_{-0.0000043}^{+0.000044}
\end{array}\right)
$$

- This model could give a natural explanation of the hierarchy.

More/Less D-brane stacks

- The smaller is the number of different Yukawa-type terms \Rightarrow the more related are the mass matrices \Rightarrow the more difficult is to find the previous hierarchical solutions.
- Therefore, it is easy to show that in:
- 3-stacks models: No such solutions.
- 4-stacks models: Only few such solutions (Madrid).
- 5-stacks (or more) models: More solutions are expected/found...

"Bad" terms

- A bonus: undesired terms could be absent due to the extended symmetries.
- So, apart from the mass terms, some extra terms could be present:

- However, now they can be present due to instantonic effect.
- There are non-dangerous and dangerous terms (for small M_{s}).
- All 8 bottom-up models have no dangerous terms.

Conclusions

- Open string textures are different from the traditional ones.
- Yukawa-, Higher- and Instantonic-terms can generate the full hierarchy of the Standard Model: From the t-quark down to neutrinos.
- Undesired terms can be eliminated without problems due to the extended additional $U(1)$ symmetries.
- Search for optimal embeddings in consistent orientifolds (with cancelled tadpoles) is very interesting (and in progress).

