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Observational evidence supports a very rich, but highly involved,
version of hot Big Bang cosmology.

Some of its main features are:

an early period of slow-roll inflation, during which the Universe
grew to a large macroscopic size

very high temperature, and symmetry breaking phase transitions

a proportionally large amount of dark matter and dark energy,
dominating the late time evolution . . .



This largely phenomenological model, presents some of the
greatest challenges to fundamental physics.

Two in particular:

If we extrapolate the cosmological evolution arbitrarily back in
time, using the equations of General Relativity and Quantum Field
Theory →

we are driven to an initial singularity, the Big Bang, where these
descriptions are breaking down.



Inflation alleviates some of the problems of the standard hot Big
Bang model, such as the flatness, the large size and the horizon
problems,

→ but it is generally believed that it is not past complete . . .



A second is concerned with the nature of the dark energy,
the simplest explanation for it being a positive, however
unnaturally small, cosmological constant →

many orders of magnitude smaller than the Planck scale . . .

Moreover, if the dark energy persists arbitrarily long, it would imply
that
the Universe approaches de Sitter space far in the future →

and so portions of space will remain out of causal reach of a single
observer . . .

Within the context of General Relativity and the Standard Model
we lack a coherent framework to analyze the cosmology of our
Universe, from beginning to end.



If string theory is a complete theory of quantum gravity, it should
eventually provide us with a coherent framework for studying
cosmology.

The hope is that by incorporating fundamental duality symmetries
and new degrees of freedom of string theory in time-dependent,
cosmological settings →

some of the greatest cosmological puzzles will find a natural
resolution with important implications and new tools for
cosmological model building.



Indeed, string dualities give us profound insights into the nature of
Spacetime,

with many surprising phenomena arising, just when we try to probe
features of spacetime and geometry at short distances, distances of
order the string scale ls or the Planck length lp.

These lead to important properties and consequences such as

• UV finiteness

• The stringy spacetime uncertainty principle: ∆x∆t ∼ l2
s

• T-duality

• Resolution of orbifold and conifold singularities

• Smooth topology changing transitions . . .

illustrating how String Theory can provide concrete answers to
many of the puzzles one has to face in trying to quantize Einstein’s
theory of general relativity.



It could be, for example, that the initial singularity is actually a
transition between a contracting big crunch phase and an
expanding big bang phase

as in pre big bang models (Gasperini, Veneziano)

with a non-singular eternal cosmology emerging in string theory.

Then many puzzles of the standard hot big bang theory, such as
the horizon and entropy problems are absent . . .

A period of inflation may still be needed to wash out probable
inhomogeneities produced at the bounce.



Exact, non-singular cosmological solutions to classical superstring
theory already exist →

described by a two-dimensional worldsheet CFT of the form
SL(2,R)−|k|/U(1) × K (C. Kounnas, D. Lust)

K is an internal, compact CFT.

The exact CFT description allows us to resolve singularities →

that arise in the sigma-model approximation to these backgrounds.

Often the resulting global description is a non-geometrical one, in
terms of T-folds,

where patches of space are glued together using T-duality (C.
Kounnas, NT, J. Troost).



In the rest of this talk, I will be interested in non-trivial string
theory cosmological solutions, which in a large region of moduli
space are characterized by an underlying “no scale” structure.
(Catelin-Jullien, Kounnas, Partouche, NT)

Many of the problems we need to address within the broader
context of Stringy Cosmology can be illustrated using this class of
examples.



Start with a weakly coupled supersymmetric string theory, on an
initially flat background:

R4 × T 6

We then introduce sources of supersymmetry breaking, by utilizing
geometrical fluxes, threading some cycles of the internal toroidal
manifold.

These fluxes can be easily adapted at the full string level in the
framework of Freely Acting Orbifolds,

a generalization in string theory of Scherk-Schwarz
compactification.



(Notice that by using (non-perturbative) string dualities, we can
also map this system into a dual one, where the sources of
supersymmetry breaking are due to wrapped branes and other
non-geometrical fluxes)

Provided that the radii of moduli participating in the SUSY
breaking mechanism are large enough, as compared to the string
scale, these models are free of tachyonic instabilities.

At low energies, we get an effective “no-scale” supergravity
theory with spontaneously broken SUSY.

Namely:
At tree level, the moduli participating in the SUSY breaking
mechanism are flat directions, (while many other moduli get a soft
breaking mass proportional to the gravitino mass scale.)



Non-trivial time dependence arises when we take into account
the thermal and quantum corrections.

To analyze it, we first identify a regime of computational control:

T , m3/2 � Ms

In this regime,

• The thermal effective potential is calculable, at the full string
level, and it is free of UV and IR ambiguities

• When the VEVs of moduli that are not participating in the
SUSY breaking mechanism are of order unity, they give
exponentially suppressed contributions to the thermal effective
potential

• Complex structure moduli of the form Rx/Ry , (the
corresponding radii are involved in the SUSY breaking
mechanism), are stabilized (by geometrical fluxes)



The gravitino mass scale is set by a single running modulus, the
no-scale modulus.

Thermal Effective Potential

P ∼ T 4F
(m3/2

T

)
,

The function F can be expressed neatly in terms of Eisenstein
series.

Notice that we do not include exponentially suppressed terms of
the form e−S , e−T . . .
but we keep all corrections involving the ratio of the two SUSY
breaking scales, m3/2, T .



(Adding estimated exponentially suppressed terms randomly,
destroys the no-scale structure)

Incorporating the backreaction on the initially flat background, we
obtain in several cases a cosmological solution that follows the
critical trajectory:

m3/2 = uT =
1

γa
,

a is the scale factor of the universe, u, γ are model dependent
constants (see also the talk by Herve Partouche in this workshop).

The T , a relation, is characteristic of a radiation dominated
cosmological evolution.



This phase persists, but it is eventually interrupted at both ends of
the temperature scale→

1.) by a symmetry breaking phase transition at lower
temperatures, such as the electroweak breaking phase transition

2.) by the onset of Hagedorn instabilities at higher temperatures,
temperatures of order the string scale, before the “Big Bang” .

It is important to look for rich enough models→
to provide a mechanism that stabilizes the SUSY breaking no-scale
modulus (and other relevant moduli), at least just after the
elecroweak symmetry breaking scale.



At around the Hagedorn temperature, new string theoretic degrees
of freedom, oscillators and string winding states, become relevant.

Clearly, to understand the the very early history of these
cosmologies, we need to be able to handle the instabilities of string
theory at high temperature.

(obtaining a concrete realization of the String gas cosmological
scenario (Brandenberger, Vafa)).

I will conclude by describing some new ideas towards this direction
(Angelantonj, Kounnas, Partouche, NT).



Hagedorn divergences of the canonical ensemble: due to an
exponential growth in the density of single string particle states as
a function of the mass.

→ phase transition at the Hagedorn temperature.

TH ∼
1

ls

The partition function can be computed via a Euclidean path
integral on S1 ×M (S1 is the Euclidean time circle with period
β = 1/(2πT )).

At T > TH certain stringy winding modes (n 6= 0) become
tachyonic. → divergence can be thought of as an IR instability and
the phase transition is driven by tachyon condensation.



The IR instability can be removed by deforming appropriately the
underlying Euclidean background.

It has been argued → that in the context of N = 4 Heterotic
strings, the exact tachyon potential has a stable minimum
(Antoniadis, Derendinger, Kounnas).

The potential was derived using properties of N = 4 gauged
supergravity.

A stable high temperature phase exists, with the Free energy
getting a genus zero contribution.

This phase is in fact characterized by thermal duality symmetry:
β → 1/β.



But there is another way to stabilize the high temperature phase
(AKPT):

The winding tachyons are charged under the graviphoton, and axial
vector gauge field, the latter being associated to the Bµν
background field of string theory.

We can lift the tachyonic instabilities by turning on appropriate
geometrical fluxes associated with these gauge fields.

The analogue to keep in mind is the motion of a charged particle
on a plane, under an inverted harmonic oscillator potential:

A large enough magnetic field can stabilize the motion of the
particle.



The gravito-magnetic fluxes correspond in fact to gauge field
condensates, of zero field strength, but with a non-zero value of
the Wilson line

U = P exp(i

∫ β

0
A0dX 0)

At finite temperature, (abelian) vacuum potentials in the range
0 ≤ A0

T ≤ π are gauge inequivalent.

These Wilson lines refine the canonical ensemble, and it turns out
that they are also described by thermal duality symmetry.



The Model

Consider type IIB on T 2 × T 8.

*T 8 is a very large eight-torus

*T 2 is a rectangular torus S1
T × S1, the first circle is the Euclidean

time circle of radius R0.

Initially the model is supersymmetric

Z = 1
4

∫
F

d2τ

τ2

1

(ηη̄)12
Γ(1,1)(R0)Γ(1,1)(R1) Γ(8,8)

×
∑

a,b=0,1

(−1)a+b+ab θ4
[a

b

] ∑
ā,b̄=0,1

(−1)ā+b̄+āb̄ θ̄4

[
ā

b̄

]



Or in terms of the SO(8) characters

O8 =
θ4

3 + θ4
4

2 η4
, V8 =

θ4
3 − θ4

4

2 η4
,

S8 =
θ4

2 − θ4
1

2 η4
, C8 =

θ4
2 + θ4

1

2 η4
,

Z =

∫
F

d2τ

τ2

1

(ηη̄)8
|V8 − S8|2 Γ(1,1)(R0) Γ(1,1)(R1) Γ(8,8)

• All oscillators along the X 0, X 1 directions can be gauged away

• When we decompactify the T 8 torus, we get an SO(8)
symmetry



Spacetime fermion number receives contributions from both the
left and right worldsheet movers

F = FL + FR

Under (−1)FL the left moving R sector changes sign, similarly for
FR .

Conventional thermal deformation: Insert the phase

(−1)m̃0(a+ā)+n0(b+b̄)

Instead we consider the asymmetric deformation:

R0√
τ2

∑
m̃0,n0

e
−πR2

0
τ2
|m̃0+n0τ |2(−)m̃0a+n0b+m̃0n0

R1√
τ2

∑
m̃1,n1

e
−πR2

1
τ2
|m̃1+n1τ |2(−)m̃1ā+n1b̄+m̃1n1



In this way, the X 0 lattice is “thermally” coupled to the left-moving
world-sheet degrees of freedom, while the X 1 lattice is “thermally”
coupled to the right-moving world-sheet degrees of freedom.

In the n0 (n1) odd winding sector the left (right) GSO projection is
reversed

The string partition function takes the form

Z =

∫
F

d2τ

τ2

Γ(8,8)

(ηη̄)8

×
∑
m0,n0

(
V8 Γm0,2n0 + O8 Γm0+ 1

2
,2n0+1 − S8 Γm0+ 1

2
,2n0
− C8 Γm0,2n0+1

)
×
∑
m1,n1

(
V̄8 Γm1,2n1 + Ō8 Γm1+ 1

2
,2n1+1 − S̄8 Γm1+ 1

2
,2n1
− C̄8 Γm1,2n1+1

)
.



→ The OŌ sector appears in the spectrum, which typically
becomes tachyonic in some regions of moduli space.

Here, however it carries non-zero momentum and winding charges
and so

2 m2
OŌ

=

(
1√
2R0

−
√

2R0

)2

+

(
1√
2R1

−
√

2R1

)2

It is never tachyonic. Massless when R0 = R1 = 1√
2

, dual fermionic

point.



Spectrum

Only the V V̄ (Gµν , Bµν , Φ) sector is massless.

Fermions

2 m2
VS̄

=
1

(
√

2R1)2
, 2 m2

SV̄
=

1

(
√

2R0)2

and from the odd winding sectors

2 m2
VC̄

= (
√

2R1)2 , 2 m2
CV̄

= (
√

2R0)2

• At large radii the spinors S , S̄ are light.

• At small radii the conjugate spinors C , C̄ are light.

All RR fields are massive since these are charged under (−1)FL and
(−1)FR .



In fact the spectrum is T-duality invariant under

R0, R1 →
1

2R0
,

1

2R1

S , S̄ → C , C̄

Supersymmetry is restored at both ends of moduli space.
At large radii: chiral IIB model
At small radii: the equivalent chiral IIB’ model.

At the self-dual point R0 = R1 = 1√
2

, we get additional massless

states from the OŌ, V Ō and OV̄ sectors →

SU(2)L × SU(2)R enhanced gauge symmetry



Observe also that when

R0 >> 1, R1 ∼ 1

the light states arise in the V V̄ and SV̄ sectors with masses

m2
VV̄

= 0 , 2 m2
SV̄

=
1

(
√

2R0)2

→ the light spectrum is precisely thermal.



Thermal Interpretation

Shift
m̃1 → m̃1 + m̃0 , n1 → n1 + n0

We obtain a thermally coupled Γ(2,2) torus lattice, where there is a
non-trivial B field background

B01 = −B10 =
1

2

and a non-diagonal metric

ds2 = R2
0 (dx0)2 + R2

1 (dx1 + G dx0)2

G01

R2
1

= G = 1



R0 R1

τ2

∑
m̃,n

e
− π

τ2
[R2

0 |m̃0+τn0|2+R2
1 |m̃1+Gm̃0+τ(n1+Gn0)|2]

×e2iπB(m̃1n0−m̃0n1)

×(−1)m̃0(a+ā)+n0(b+b̄) (−1)m̃1ā+n1b̄+m̃1n1

X 0-cycle: the deformation acts as a standard thermal deformation.

X 1-cycle: couples only to the right-moving fermion number FR .

Special point: 2B = G = 1



We think of the model as follows:

Start with the 10D type IIB theory and compactify the X 1

direction on a circle.

Coupling this circle to FR , breaks the initial (4, 4) susy to (4, 0).

In addition we get two U(1) gauge fields:

• The graviphoton field: Aµ = G1µ

• The axial gauge field: Ãµ = B1µ

We then heat the system, giving vevs to A0 → G = 1 and to
Ã0 → B = 1/2

Or turn on Polyakov loops for these gauge fields.



The 1-loop partition function is finite and is characterized by a
“thermal duality” symmetry: R0 → 1/2R0.

In terms of the T-dual variables, the system at small R0 is
effectively cold.

The line in moduli space, R = R0 = R1, is interesting.

As we decrease R, the system contracts and heats up, until we
reach the fermionic point. Then it expands and cools.



It would be interesting to see if the Euclidean state, at self-dual
radii, can define an initial, non-singular state, or a bounce, for a
Lorentzian cosmological evolution.

The Euclidean system is characterized by both a→ 1/a and
β → 1/β dualities.

We need to obtain a Lorentzian dilaton/gravity action,
incorporating the thermal effective potential, with these
symmetries manifest.

Hopefully, the T ∼ 1/a relation of the radiation dominated era
gets replaced by a duality symmetric relation, restricting the values
of the scale factor to the fundamental domain, and bounding the
curvature of the cosmology.

It would be interesting to see if we can achieve this in the context
of weak coupling . . .



One can also find models, where at points in moduli space susy is
broken but the massive spectrum is characterized by a
boson/fermion degeneracy symmetry. (Kounnas; Kounnas,
Florakis)
(see the talk by Ioannis Florakis to this workshop)

It would be interesting to see if we can use these models to
generate non-singular cosmologies.


