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Geometric flows

Irreversible continuous evolution of Riemanian geometry gij (t) –
non-linear parabolic equation driven by some tensor Sij [gij ]

∂gij

∂t
= Sij

I Plethora of flows: Ricci, Einstein, Calabi (even D), Cotton
(3D), Bach (4D), . . .

I Plethora of behaviours: infinte or finite time, convergence
towards canonical metrics, singular end-points with topology
change, . . .



Ricci flows: Sij = −Rij

I Introduced by R. Hamilton in 1982 as a tool for proving
Poincaré’s (1904) and Thurston’s (late 70s) 3D conjectures

I Driven by Hamilton’s programme culminating in Perel’man’s
proof (2002–03)

I Appeared to be relevant in physics



Ricci flows and generalizations arise in problems related to gravity
with time foliation

I In non-critical string theory Ricci flow can mimic time
evolution as an RG flow towards the IR – cosmology

I In 4D self-dual gravitational instantons with homogeneous
spatial sections: time evolution is a Ricci flow of the 3D
homogeneous leaves

I In non-relativistic gravity with covariance explicitly broken to
foliation-preserving diffeomorphisms and with detailed-balance
dynamics: time evolution is a geometric flow of the 3D space

Aim: review these properties
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Basic features

Ricci-flow equations
∂gij

∂t
= −Rij

I Volume is not preserved along the flow
dV
dt = 1

2

∫
dDx
√
det gg ij ∂gij

∂t = − 1
2

∫
dDx
√
det gR

Consequence:
I positive curvature → space contracts
I negative curvature → space expands

I Killing vectors are preserved in time: the isometry group can
only grow or remain unaltered



Example

I At initial time: R (0)
ij = ag (0)

ij with a constant
I Subsequent evolution: linear rescaling

gij (t) = (1− at)g (0)
ij

Rij (t) = R (0)
ij

I Properties
I a > 0⇒ uniform contraction → singularity at t = 1/a
I a < 0⇒ indefinite expansion



Rôle in Poincaré’s and Thurston’s conjectures

Poincaré’s conjecture: any closed 3-manifold with trivial fundamental
group is homeomorphic to a 3-sphere
Similar theorem proven for D > 4 in the 60s and for D = 4 in 1982

Thurston’s geometrisation conjecture: extension when the
fundamental group is not trivial

I In direct relation with the classification of 3-manifolds
(obtained e.g. as quotients by discrete isometry groups)

I Consequence: any 3-manifold can be decomposed in locally
homogeneous components



Ricci flow is governed by a non-linear heat-like equation
Smoothes the initial geometry and brings it to a simpler form where
the conjectures can be checked

Singularities and degeneracies can appear (e.g. pinching cycles) with
topology changes
Must be kept under control: Perel’man’s “surgery”



Remarks

To avoid the trivial singularity of shrinking volume: normalised flow

∂gij

∂t
= −Rij +

〈R〉
D

gij

Consequence: dV
dt = 0 although the eqs. are identical to the

ordinary ones after appropriate rescaling of gij and t

Other generalisations to the Ricci flow exist – Perel’man’s flow is not
pure Ricci: an extra scalar participates



The case of homogeneous 3-manifolds

Why?

I Appear in the final stage of Hamilton’s programme for
Thurston’s geometrisation

I Building blocks for
I Lorentzian 4-manifolds (cosmological solutions)
I Euclidean 4-manifolds (gravitational instantons)

I Ricci flows can be studied by analytic methods – sometimes
related to remarkable integrable systems



SpacesM3 admitting a group Ghom acting transitively [in 3D see Scott, 1983]

I Cosets or products thereof
H3,H2 × S1, S2 × S1

H3 = SL(2,C)/SU(2),H2 = SL(2,R)/U(1), S2 = SU(2)/U(1)

(dimGhom = 6, 4, 4 > 3⇒ action multiply transitive)
I dimGhom = 3⇒ action simply transitive: M3 is locally Ghom

I 3 linearly independent Killing vectors tangent toM3:[
ξi , ξj

]
= c i

jkξk
I left-invariant Maurer–Cartan forms σi : dσi = 1

2c i
jkσj ∧ σk

I ck
ij = −εij`m`k + δk

i aj − δk
j ai ⇒ c i

ij = 2aj

3D Ghom are Bianchi groups [Bianchi 1897; Taub, 1951]



Bianchi classes

class A unimodular: I, II, VIh=−1, VIIh=0, VIII, IX
T3, Heisenberg, E1,1, E2, SL(2, R), SU(2)

class B non-unimodular: III, IV, V, VIh 6=−1, VIIh 6=0

Geometry

I The most general metric: ds2 = g ijσi σj = δijθ
i θj

θi = Θi
jσ

j , gij = δk`Θk
i Θ

`
j (Θ

i
j are coordinate-independent)

I Minimalistic (diagonal) ansatz Θi
j = γjδ

i
j :

ds2 = ∑i γi
(
σi)2

not always the most general if the σi s are in a canonical form



Behaviour under Ricci flow

Bianchi IX class: 3-spheres

I Left-invariant Maurer–Cartan forms of Ghom ≡ SU(2)
σ1 = sin ϑ sinψ dϕ + cosψ dϑ

σ2 = sin ϑ cosψ dϕ− sinψ dϑ

σ3 = cos ϑ dϕ + dψ

with 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 4π (Euler angles)
I dσi + 1

2εi
jkσj ∧ σk = 0

I The diagonal ansatz is the most general
I If two γs are equal the isometry group is promoted to

SU(2)× U(1) (axial symmetry)
I Full isotropy requires γs be all equal



The Ricci-flow equations ( ˙ = d/dT = γ1γ2γ3d/dt)

2
γ̇1

γ1
= (γ2 − γ3)

2 − γ2
1 and cyclic perms.

Typical behaviour
At large T γi ≈ 1/

√
T ⇒ convergence toward the round sphere of

vanishing radius
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Figure: Behaviour of γi s for Bianchi IX



Remarks

I If torsion is added (H = dB), the flow

∂gij

∂t
= −R (−)

ij

converges towards a finite-radius round sphere
I Other Bianchi classes of homegeneous 3-manifolds exhibit

different behaviours (absence of convergence, pancake
degeneracies, cigar degeneracies, . . . ) [Isenberg, Jackson, 1992]



A parenthesis: 19th century integrable systems
Bianchi IX Ricci-flow equations are a remarkable integrable system
[Sfetsos, unpubl.; Bakas, Orlando, Petropoulos, 2006; Bourliot, Estes, Petropoulos, Spindel, 2009]

I Darboux equations on “triply orthogonal surfaces” – solved by
Halphen using modular forms [Darboux 1878; Halphen, 1881]

I Darboux–Halphen system studied extensively by
mathematicians over the recent years [Takhtajan, 1992; Maciejewski,

Strelcyn, 1995; Chakravarty, Halburd, Ablowitz, 2003]

I Darboux–Halphen appeared in the framework of Bianchi IX
self-dual gravitational instantons and in the scattering of
SU(2) BPS monopoles [Gibbons, Pope, 1979; Manton, 1981; Atiyah, Hitchin, 1985;

Gibbons, Manton, 1986]

Typical system appearing in general self-dual Yang-Mills reductions
– in the late ’70s all integrable systems were even thought to be
SDYM reductions [Ward, 1985] – now in geometric flows
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String propagation in curved backgrounds

Non-linear sigma models (gMN Lorentzian or Euclidean)

S =
1

2πα′

∫
d2z gMN(x)∂xM ∂̄xN

potentially BMN (axion), Φ (dilaton)
Not scale-invariant: gMN flows under RG [Friedan, 1985]

I µ: RG 2D mass scale
µ−1∂/∂µ−1gMN = −β [gMN ] ≡ −RMN +O(α′)

I t = − log µ: RG time
{

UV : t → −∞
IR : t → +∞

RG flow ≡ Ricci flow
I ∃ fixed-points – possibly exact 2D CFTs (all-order α′)



Application: string cosmology

Original aim: find time-dependent string backgrounds – exact or at
O(α′) – address the usual problems
Keep in mind

I Around the big-bang: high curvature → exact solutions
I After the inflation era: adiabatic evolution → O(α′) enough –

higher O(gs) due to V (Φ)
plus moduli problem, phase transitions, . . .



The FRWL paradigm: assumeM4 = T ×M3 withM3
homogeneous (even maximally symmetric)

ds2 = −dt2 + exp 2σ(t)dΩ2

I In general relativity: fluid, Λc, . . .→ FRWL eqs. for σ, p, $
I In string theory: less freedom

I moduli, fluxes, . . .
I internal manifold
I curvature and dilaton set the validity of approximations

Example: linear-dilaton solution (exact)

ds2 = −dt2 + dΩ2
S3 + ds2

int
Φ = Φ0 − Q̄t, H = 2ωS3

(a(τ) = Q̄2τ2 in Einstein frame)
Usually appears in limiting regimes



Central question

Could RG flow mimic cosmological evolution with IR fixed points
being steady-state universes?

I Irreversibility and averaging hypothesis [Carfora, Piotrkowska, 1995]

I Hints from Liouville theory in non-critical strings [1989–1991: Das,

David, Kawai, Polyakov, Sen, Wadia, . . . ]

I Popular, not a priori justified
I RG-flow equations are 1st-order in time: ∂gij/∂t = −β

[
gij
]

I genuine evolution is second-order: β
[
gµν

]
= 0

Analysed in various contexts to set under which circumstances this
could be valid [Tseytlin, 1992; Schmidhuber, Tseytlin,1994; Bakas, Orlando, Petropoulos, 2006]



Strategy

Promote a flowing 3D spatial sigma model

gij∂x i ∂̄x j

into a scale-invariant 4D space–time sigma model with a genuine
time coordinate along which the space–time is foliated

−∂t ∂̄t + gij (t)∂x i ∂̄x j + R2Φ(t)

I Write β
[
gµν

]
= β [Φ] = 0 where gµν = {−1, gij}

I Compare to ∂gij
∂t = −β [gij ]



Simplest situation: 3D space ≡ round sphere (isotropic Bianchi IX
→ γ1 = γ2 = γ3 = L2 exp 2σ) with torsion H = 2/LωS3

L

I 3D: dσ
d log µ−1 = − 2e−2σ

L2
(
1− e−4σ

)
⇒ IR fixed-point σ = 0

(radius L)
I 4D: define Q ≡ −Φ̇ + 3

2 σ̇
I full equations:

Q̇ = − 3
2 σ̇2

σ̈ + 2Q σ̇ = − 2e−2σ

L2
(
1− e−4σ

)
I classical motion of a particle at coordinate σ in a potential

V = V0 − e−2σ

L2

(
1− e−4σ

3

)
with a friction force −2Q σ̇ due to the dilaton motion (like the
inflaton [lectures by Lazarides and Sasaki])



4D dynamics: steady-state universe ≡ linear dilaton solution

σ = 0, Φ = Φ0 − Q̄t

space ≡ IR fixed point of the 3D sigma model

4D dynamics: full regime→ friction→ the kinetic term σ̈ becomes
subdominant→ first-order 3D equation with

t = −2Q log µ

4D genuine time evolution ' RG i.e. Ricci flow in 3D



Evolution towards the RG regime

I At early times the 4D genuine time evolution is
- oscillatory if Q0 <

√
8/L (large initial curvature)

- monotonic if Q0 >
√

8/L (small initial curvature)
I At late times (3D Ricci-flow regime) → monotonic
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Figure: Typical behaviour for σ(t) in the non-linear system



General result [Schmidhuber, Tseytlin, 1994]

I RG fixed points in D ≡ steady-state universes in D + 1
I In the vicinity of the fixed points: evolution ≡ generalised

Ricci flow
I Far or between fixed points: dynamics reminiscent of

Zamolodchikov’s c-theorem

Origin: dilaton motion (necessary for CFT) → friction

Limitations

I Usual approximations
I Case of marginal lines in 3D sigma models
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Framework

Gravitational instantons: positive action conjecture, tools to handle
non-perturbative transitions in quantum gravity, . . . [70s]

I Non-singular solutions of Euclidean Einstein’s equations
I Hard task in general – easier with some specific ansatz

I 4D geometry foliated with 3D leaves: M4 = T ×M3
I homegeneous spatial sectionsM3 – ∃Ghom of Bianchi type
I self-duality in vacuum → first-order equations – consistent if

Ghom algebra is unimodular



Connection with Ricci flows of homogeneous 3D spaces [Cvetič, Gibbons, Lü,

Pope, 2001; Bourliot, Estes, Petropoulos, Spindel 2009]

I The gravitational instantons onM4 are in one-to-one
correspondence with the flat SU(2) connections onM3

I In all unimodular cases Euclidean-time evolution of the leaves
is a geometric flow onM3 driven by Ricci plus a flat SU(2)
gauge connection

Again the dynamics of Ricci flows seems to capture – exactly –
higher-dimensional gravitational set-ups



Solving 4D Euclidean Einstein equations

Usual set-up: orthonormal frame ds2 = δabθaθb invariant under
local SO(4) transformations, connection one-form ωa

b, curvature
two-formRa

b

I Riemann tensor: Ra
b = dωa

b + ωa
c ∧ωc

b
I (Anti-)self-dual-curvature solutions:

I Ra
b = ±R̃a

b & Cyclic id. ⇒ vacuum eqs.
I Ra

b = ±R̃a
b⇔ωa

b = ±ω̃a
b up to local SO(4) rotations

(ω̃a
b = 1

2εa d
bc ωc

d )⇒ several branches of 1st order equations

Curvature and connection ∈ 6 (antisymmetric) of SO(4) – reducible
as (3, 3) under the decomposition SO(4) ∼= SU(2)sd ⊗ SU(2)asd



In the geometriesM4 = T ×M3 the decomposition is simple

I Curvature two-form
I Si = 1

2

(
R0i + 1

2εijkRjk
)

I Ai = 1
2

(
R0i − 1

2εijkRjk
)

I Connection one-form
I Σi = 1

2

(
ω0i + 1

2εijkωjk
)

I Ai = 1
2

(
ω0i − 1

2εijkωjk
)

I Relations
I Si = dΣi − εijkΣj ∧ Σk

I Ai = dAi + εijkAj ∧ Ak

{Si , Σi} vectors of SU(2)sd and singlets of SU(2)asd and vice-versa
for {Ai ,Ai}



Self-dual gravitational instantons

Ai = 0↔ flat SU(2) connections onM3

Further assumptionM3 homogeneous of Bianchi type locally Ghom

flat SU(2) connections onM3 ↔ homomorphisms Ghom → SU(2)

Example: Bianchi IX Ghom ≡ SU(2)

1. Trivial homomorphism: Ghom → identity of SU(2),Ai = 0 ∀i
Eguchi–Hanson branch e.g.

2. Isomorphism (rank-3): Ai = σi/2 ∀i Taub–NUT branch e.g.

Note: non-singular real self-dual gravitational instantons exist only
for unimodular – class A – Bianchi groups and for Bianchi III



The view from the leaf: geometric flows
4D self-dual gravitational instantons foliated in time with Bianchi-A
homogeneous spaces

ds2 = dt2 + ∑i
(
γi σ

i)2
I γi (T ): 1st order differential equations – branches: choice of

flat SU(2) anti-self-dual Levi–Civita connection Ai (Ai = 0)
I Example: Bianchi IX

2
γ̇1

γ1
= (γ2 − γ3)

2 − γ2
1 + 2λ̃γ2γ3 and cyclic

Ai =
(
1− λ̃

) σi

2

I λ̃ = 0: Taub–NUT – Darboux–Halphen system
I λ̃ = 1: Eguchi–Hanson – Lagrange system (Euler top)



The evolution of the leaves in Euclidean time is covariant – resembles
a flow due to the privileged rôle of time inM4 = T ×M3 – what
kind of flow?

Consider a pure 3D set-up: same Bianchi-classM3s – parameter t

I Metric: ds̃2 = ∑i γi (t)
(
σi)2

I SU(2) gauge connection:
I Ã = Ãi

√
γi σ

i = Ã j
i Tj
√

γi σ
i

I F̃ = dÃ + [Ã, Ã]



Define a generalised Ricci flow
∂g̃ij

∂t
= −R̃ij −

1
2
tr
(
Ãi Ãj

)
∂Ãi

∂t
= 0, F̃ = 0

I Dynamics in parametric time ≡ coordinate-time evolution in
the corresponding gravitational instanton – for each branch
defined by a flat connection

I Example: Bianchi IX → Ãi = − λ̃Ti σ
i

√
γi

I λ̃ = 0: pure Ricci flow (Darboux–Halphen) – Taub–NUT
I λ̃ = 1: Ricci plus gauge (Lagrange) – Eguchi–Hanson



Comments

The dynamics of self-dual gravitational instantons in vacuum is a
geometric flow driven by Ricci plus flat SU(2) gauge connection

I Ã is a background SU(2) gauge field inherited from the
anti-self-dual part of the 4D Levi–Civita connection

I The geometric flow is not gauge invariant – not supposed to be
I The gauge field

I does not flow ( ˙̃A = 0)
I its strength is set to F̃ = 0



Towards a Ricci plus Yang–Mills flow with F̃ 6= 0 & ˙̃A 6= 0

I We must relax the self-duality condition: Ai 6= 0
I A similar condition is needed to provide 1st order equations

I introduce a 4D cosmological constant Λc
I impose self-duality on the Weyl tensor to solve Rab = Λcgab

In the presence of cosmological constant 4D gravitational instantons
with homogeneous spatial sections are equivalent to geometric flows
of 3D leaves with a background SU(2) gauge field Ã s.t. ˙̃A & F̃ 6= 0
Example in Bianchi IX: the Fubini–Study solution (metric on CP2)
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3D geometric flows in homogeneous spaces versus self-duality in
Einstein dynamics in 4D space–times with time foliation and
homogeneous spatial sections

I Role of 4D: SO(4) ∼= SU(2)× SU(2)⇒ reduction is sd ⊕ asd
I Role of the 3D homogeneity: Ghom → SU(2)⇒ gauge choice
I Role of the self-duality: effectively reduces the system from 4D

to 3D – off-shell though: “gij runs”

Hard to generalise in arbitrary dimension (except perhaps is some
hyper-Kähler or quaternionic spaces)



Horava–Lifshitz gravity: similar properties→ similar conclusions
[Horava 2008-09]

I Similar spaces: foliationM4 = T ×M3

I Major difference: explicit breaking of the diffeomorphism
invariance – previously this breaking was spontaneous

I Similar constraint: detailed balance – previously self-duality
I Similar effect in 4D → 3D: the dynamics is governed by

combined Ricci and Cotton flows
I Consequences:

I valid in D + 1→ D dimensions with other flows
I important issue of degrees of freedom and the appearance of

Einstein gravity in the IR
I richer landscape of fixed points – not always isotropic [Bakas,

Bourliot, Lüst, Petropoulos 2009]
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Conclusion

Ricci and more general geometric flows appear in a wide palette of
physical problems in diverse dimensions

Here: selection of topics related to gravity and time evolution with
some fundamental questions: (i) Relation time evolution/RG
flow/Liouville field? (ii) Relation energy evolution/holography?
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