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Framework and motivations



Geometric flows

Irreversible continuous evolution of Riemanian geometry gij(t) —
non-linear parabolic equation driven by some tensor Sj; [gj;]

a9gj
ot Si

» Plethora of flows: Ricci, Einstein, Calabi (even D), Cotton
(3D), Bach (4D), ...

» Plethora of behaviours: infinte or finite time, convergence
towards canonical metrics, singular end-points with topology
change, ...



Ricci flows: Sjj = —R;j
» Introduced by R. Hamilton in 1982 as a tool for proving
Poincaré’s (1904) and Thurston's (late 70s) 3D conjectures

» Driven by Hamilton's programme culminating in Perel'man’s
proof (2002-03)

» Appeared to be relevant in physics



Ricci flows and generalizations arise in problems related to gravity
with time foliation

» In non-critical string theory Ricci flow can mimic time
evolution as an RG flow towards the IR — cosmology

» In 4D self-dual gravitational instantons with homogeneous
spatial sections: time evolution is a Ricci flow of the 3D
homogeneous leaves

> In non-relativistic gravity with covariance explicitly broken to
foliation-preserving diffeomorphisms and with detailed-balance
dynamics: time evolution is a geometric flow of the 3D space

Aim: review these properties



Highlights

Reminder on Ricci flows



Basic features

a y

» Volume is not preserved along the flow
dv = 1 [dPx/det g’fag” = —1 [dPx\/detgR
Consequence:

» positive curvature — space contracts
» negative curvature — space expands

» Killing vectors are preserved in time: the isometry group can
only grow or remain unaltered



Example

> At initial time: R,.S-O) = agij(-o) with a constant

» Subsequent evolution: linear rescaling

gi(t) = (1 at)g)”

Ri(t) = R

» Properties

» a > 0 = uniform contraction — singularity at t = 1/a
» a < 0 = indefinite expansion



Roéle in Poincaré’s and Thurston’s conjectures

Poincaré’s conjecture: any closed 3-manifold with trivial fundamental
group is homeomorphic to a 3-sphere

Similar theorem proven for D > 4 in the 60s and for D = 4 in 1982

Thurston’s geometrisation conjecture: extension when the
fundamental group is not trivial

> In direct relation with the classification of 3-manifolds
(obtained e.g. as quotients by discrete isometry groups)

» Consequence: any 3-manifold can be decomposed in locally
homogeneous components



Ricci flow is governed by a non-linear heat-like equation

Smoothes the initial geometry and brings it to a simpler form where
the conjectures can be checked

Singularities and degeneracies can appear (e.g. pinching cycles) with
topology changes

Must be kept under control: Perel'man’s “surgery”



Remarks

To avoid the trivial singularity of shrinking volume: normalised flow

ogij (R)
=—Rj+-58gj
ot i+ i
Consequence: (jT\t/ = 0 although the egs. are identical to the

ordinary ones after appropriate rescaling of gj; and t

Other generalisations to the Ricci flow exist — Perel'man’s flow is not
pure Ricci: an extra scalar participates



The case of homogeneous 3-manifolds

Why?

» Appear in the final stage of Hamilton's programme for
Thurston's geometrisation
» Building blocks for
» Lorentzian 4-manifolds (cosmological solutions)
» Euclidean 4-manifolds (gravitational instantons)
» Ricci flows can be studied by analytic methods — sometimes
related to remarkable integrable systems



Spaces M3 admitting a group Ghom acting transitively (i sp s scor, 19531

» Cosets or products thereof
H3, H2 X 51, 52 X 51
Hs = SL(2.C)/su(2), Hy = SL2R)/u(1), §% = SU(2)/u(1)
(dim Ghom = 6, 4,4 > 3 = action multiply transitive)
» dim Ghom = 3 = action simply transitive: M3 is locally Gpom
> 3 linearly independent Killing vectors tangent to M3:

(81, 8j] = ¢y Ci

» left-invariant Maurer—Cartan forms ¢': do’ = %c"jkaj Aok
> ckl-j = fe,-jgm“‘ +(5,kaj — le-‘a,- = ci,-j = 2a;

3D Ghom are Bianchi groups (simcni 1s97; b, 1951]



Bianchi classes

class A unimodular: |, II, Vlp—_1, VIl;,—o, VI, IX
T3, Heisenberg, Ej1, E2, SL(2,R), SU(2)

class B non-unimodular: 11, IV, V, VI, Vllp1o

Geometry
» The most general metric: ds? = glo/c/ = (5,-1-9"91
0" =00/, gj = 5/((;@"[@6 (©'; are coordinate-independent)
» Minimalistic (diagonal) ansatz @ij = 'yjéj’-':
N2
ds? =Y vi (o)
not always the most general if the os are in a canonical form



Behaviour under Ricci flow

Bianchi IX class: 3-spheres

» Left-invariant Maurer—Cartan forms of Gpom = SU(2)

ol =sindsinyde + cosp dd
0? =sindcosPde — sinyp dd
03 = cos¥dg + d

with 0 < ¢ < 71,0 < ¢ <2m,0 < p < 45 (Euler angles)
> do’ + 3€", 0/ Aok =0
» The diagonal ansatz is the most general

> If two s are equal the isometry group is promoted to
SU(2) x U(1) (axial symmetry)
> Full isotropy requires 7s be all equal



The Ricci-flow equations ("= d/dT = y1y27y39/dt)

2% = (72— 73)2 — 92 and cyclic perms.

1

Typical behaviour

At large T «y; ~ 1/J/T = convergence toward the round sphere of
vanishing radius

Figure: Behaviour of 7;s for Bianchi IX



Remarks

> If torsion is added (H = dB), the flow

9%j _ _pl-)

ot U

converges towards a finite-radius round sphere

» Other Bianchi classes of homegeneous 3-manifolds exhibit
different behaviours (absence of convergence, pancake
degeneracies, cigar degeneracies, . ..)



A parenthesis: 19th century integrable systems

Bianchi IX Ricci-flow equations are a remarkable integrable system

[Sfetsos, unpubl.; Bakas, Orlando, Petropoulos, 2006; Bourliot, Estes, Petropoulos, Spindel, 2009]

» Darboux equations on “triply orthogonal surfaces” — solved by
Halphen using modular forms [parous 1878 Halphen, 1881]

» Darboux—Halphen system studied extensively by
mathematicians over the recent years [Takhtajan, 1092, Macicjewski,

Strelcyn, 1995; Chakravarty, Halburd, Ablowitz, 2003]

» Darboux—Halphen appeared in the framework of Bianchi IX
self-dual gravitational instantons and in the scattering of
SU(2) BPS m0n0p0|eS [Gibbons, Pope, 1979; Manton, 1981; Atiyah, Hitchin, 1985;

Gibbons, Manton, 1986]

Typical system appearing in general self-dual Yang-Mills reductions
— in the late '70s all integrable systems were even thought to be
SDYM reductions 1w, 19551 — now in geometric flows
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Strings, sigma models and RG flows



String propagation in curved backgrounds

Non-linear sigma models (gpn Lorentzian or Euclidean)

1 -
Y / d?z gy (x)axMoxN

potentially By (axion), ® (dilaton)
Not scale-invariant: gy flows under RG [rricaan, 1085)
> 12 RG 2D mass scale

p /o gy = —PB [gmn] = —Run + O(a)
UV: t— —
IR: t— +o0

RG flow = Ricci flow

» 3 fixed-points — possibly exact 2D CFTs (all-order a')

» t = —logu: RG time{



Application: string cosmology

Original aim: find time-dependent string backgrounds — exact or at
O(a') — address the usual problems

Keep in mind
» Around the big-bang: high curvature — exact solutions

» After the inflation era: adiabatic evolution — O(a’) enough -
higher O(gs) due to V(®)

plus moduli problem, phase transitions, ...



The FRWL paradigm: assume My =T x M3z with M3
homogeneous (even maximally symmetric)

ds? = —dt® 4 exp 20 (t)dO)?

> In general relativity: fluid, A¢, ... — FRWL egs. for o, p, 0
> In string theory: less freedom

» moduli, fluxes, ...
> internal manifold
» curvature and dilaton set the validity of approximations

Example: linear-dilaton solution (exact)

ds? = —dt? + dﬂ?§3 +ds?

int

CI):CI)Q—QI', H:2w53

(a(t) = Q%12 in Einstein frame)

Usually appears in limiting regimes



Central question

Could RG flow mimic cosmological evolution with IR fixed points
being steady-state universes?

> Irreversibility and averaging hypothesis [carfora, Piotrkowska, 1995]
» Hints from Liouville theory in non-critical strings 10801001 Do,
David, Kawai, Polyakov, Sen, Wadia, ]
» Popular, not a priori justified
» RG-flow equations are 1st-order in time: 9g;/9t = —p3 [g,-j]
> genuine evolution is second-order: S g, | = 0

Analysed in various contexts to set under which circumstances this
Could be Uﬂlid [Tseytlin, 1992; Schmidhuber, Tseytlin,1994; Bakas, Orlando, Petropoulos, 2006]



Strategy

Promote a flowing 3D spatial sigma model
g;jaxiéxj

into a scale-invariant 4D space—time sigma model with a genuine
time coordinate along which the space—time is foliated

—0tdt + gji(t)ax'ox) + Ryd(t)

> Write B [gu| = B [®] = 0 where g, = {—1, g;}

» Compare to aagt’j = —Bgjl




Simplest situation: 3D space = round sphere (isotropic Bianchi IX
— y1 = 72 = 73 = L? exp 20) with torsion H = 2/Lw53

» 3D: dlogy - —26[220 (1—e*) = IR fixed-point ¢ =0
(radius L)
> 4D: define Q = —d + %(’T
» full equations:
Q=30
F+2Q0 = 22 (1—e %)
» classical motion of a particle at coordlnate o in a potential
V=Vo- < (1-%57)

with a friction force —2Qc¢ due to the dilaton motion (like the
inflaton [lectures by Lazarides and Sasak?])




4D dynamics: steady-state universe = linear dilaton solution
c=0 &= q)o — Qt

space = IR fixed point of the 3D sigma model

4D dynamics: full regime — friction — the kinetic term & becomes
subdominant — first-order 3D equation with

t=—-2Qlogu

4D genuine time evolution ~ RG i.e. Ricci flow in 3D



Evolution towards the RG regime

> At early times the 4D genuine time evolution is
- oscillatory if Qo < v8/L (large initial curvature)
- monotonic if Qy > v8/L (small initial curvature)

> At late times (3D Ricci-flow regime) — monotonic

Figure: Typical behaviour for o(t) in the non-linear system



General result

» RG fixed points in D = steady-state universes in D + 1

» In the vicinity of the fixed points: evolution = generalised
Ricci flow

» Far or between fixed points: dynamics reminiscent of
Zamolodchikov's c-theorem

Origin: dilaton motion (necessary for CFT) — friction

Limitations

» Usual approximations

» Case of marginal lines in 3D sigma models
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Gravitational instantons and geometric flows



Framework

Gravitational instantons: positive action conjecture, tools to handle
non-perturbative transitions in quantum gravity, ... o

» Non-singular solutions of Euclidean Einstein's equations
» Hard task in general — easier with some specific ansatz
» 4D geometry foliated with 3D leaves: My = 7 x M3
» homegeneous spatial sections M3 — 3G}, of Bianchi type

» self-duality in vacuum — first-order equations — consistent if
Ghom algebra is unimodular



Connection with Ricci flows of homogeneous 3D spaces coetic, Givbons, Li,

Pope, 2001; Bourliot, Estes, Petropoulos, Spindel 2009]

» The gravitational instantons on My are in one-to-one
correspondence with the flat SU(2) connections on M3

» In all unimodular cases Euclidean-time evolution of the leaves

is a geometric flow on M3 driven by Ricci plus a flat SU(2)
gauge connection

Aguain the dynamics of Ricci flows seems to capture — exactly —
higher-dimensional gravitational set-ups



Solving 4D Euclidean Einstein equations

Usual set-up: orthonormal frame ds® = 6,,020 invariant under
local SO(4) transformations, connection one-form w?;, curvature
two-form R?,

» Riemann tensor: R?, = dw?, + w?. A w,
» (Anti-)self-dual-curvature solutions:
» R = :I:ﬁab & Cyclic id. = vacuum egs.
» R?, = +R? Sw?, = +@?, up to local SO(4) rotations
(@2, = %eabcdwcd) = several branches of 1st order equations

Curvature and connection € 6 (antisymmetric) of SO(4) — reducible
as (3, 3) under the decomposition SO(4) = SU(2)sg @ SU(2) asd



In the geometries My = T x M3 the decomposition is simple
» Curvature two-form
» S = % (T\’,o,’ + %G;ijjk>
> Ai=3 (ROI - %EUkRjk)
» Connection one-form
> %i=3 (wo/' + %%kw"k)
> A=} (woi - Seje)
> Relations
» S =dY; — eijkz‘j ATk
» A; =dA; +€,'jkAj A Ak

{Si, £} vectors of SU(2)sq and singlets of SU(2),sq and vice-versa
for {Aj, A}



Self-dual gravitational instantons

Aj =0« flat SU(2) connections on M3

Further assumption M3 homogeneous of Bianchi type locally Ghom
flat SU(2) connections on M3 <> homomorphisms Gpom — SU(2)

Example: Bianchi IX Gpom = SU(2)

1. Trivial homomorphism: Gpom — identity of SU(2), A; =0 Vi
Eguchi-Hanson branch e.g.

2. Isomorphism (rank-3): A; = @'/2 Vi Taub-NUT branch e.g.

Note: non-singular real self-dual gravitational instantons exist only
for unimodular — class A — Bianchi groups and for Bianchi 111



The view from the leaf: geometric flows

4D self-dual gravitational instantons foliated in time with Bianchi-A
homogeneous spaces

ds? = de2 + 5, (vi07)?

» i(T): 1st order differential equations — branches: choice of
flat SU(2) anti-self-dual Levi-Civita connection A; (A; = 0)

» Example: Bianchi IX

20 = (73— 73)? = 93 + 217273 and cyclic

71
o
> /:\ = 0: Taub-NUT - Darboux—Halphen system
» A = 1: Eguchi-Hanson — Lagrange system (Euler top)



The evolution of the leaves in Euclidean time is covariant — resembles
a flow due to the privileged rdle of time in My = T x M3z —what
kind of flow?

Consider a pure 3D set-up: same Bianchi-class M3s — parameter t

> Metric: d32 = ¥, 7i(t) (o)
» SU(2) gauge connection:

Z\ NG = AT 7o
= dA+[AA

™



Define a generalised Ricci flow

0gjj

2Ly g (A
0A; .
5 = 0, F=0

» Dynamics in parametric time = coordinate-time evolution in
the corresponding gravitational instanton — for each branch
defined by a flat connection

» Example: Bianchi IX — A; = —A%'

0: pure Ricci flow (Darboux—Halphen) — Taub-NUT

1: Ricci plus gauge (Lagrange) — Eguchi-Hanson

b}:\:
PA:



Comments

The dynamics of self-dual gravitational instantons in vacuum is a
geometric flow driven by Ricci plus flat SU(2) gauge connection

» Ais a background SU(2) gauge field inherited from the
anti-self-dual part of the 4D Levi—-Civita connection

» The geometric flow is not gauge invariant — not supposed to be

» The gauge field

> does not flow (A = 0)
> its strength is set to F =0



Towards a Ricci plus Yang—Mills flow with F # 0 & A0

» We must relax the self-duality condition: A; # 0
» A similar condition is needed to provide 1st order equations

» introduce a 4D cosmological constant Ac
» impose self-duality on the Weyl tensor to solve R, = Acgap

In the presence of cosmological constant 4D gravitational instantons
with homogeneous spatial sections are equivalent to geometric flows

of 3D leaves with a background SU(2) gauge field As.t. A& F # 0
Example in Bianchi IX: the Fubini-Study solution (metric on CP>)
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Geometric flows in non-relativistic gravity



3D geometric flows in homogeneous spaces versus self-duality in
Einstein dynamics in 4D space—times with time foliation and
homogeneous spatial sections

» Role of 4D: SO(4) = SU(2) x SU(2) = reduction is sd & asd

» Role of the 3D homogeneity: Gpom — SU(2) = gauge choice

> Role of the self-duality: effectively reduces the system from 4D
to 3D — off-shell though: “gj runs”

Hard to generalise in arbitrary dimension (except perhaps is some
hyper-Kiihler or quaternionic spaces)



Horava—Lifshitz gravity: similar properties — similar conclusions

» Similar spaces: foliation M4 =7 x M3

» Major difference: explicit breaking of the diffeomorphism
invariance — previously this breaking was spontaneous

» Similar constraint: detailed balance — previously self-duality

» Similar effect in 4D — 3D: the dynamics is governed by
combined Ricci and Cotton flows

» Consequences:

» valid in D4+ 1 — D dimensions with other flows

> important issue of degrees of freedom and the appearance of
Einstein gravity in the IR

> richer landscape of fixed points — not always isotropic
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Conclusion

Ricci and more general geometric flows appear in a wide palette of
physical problems in diverse dimensions

Here: selection of topics related to gravity and time evolution with
some fundamental questions: (i) Relation time evolution/RG
flow/Liouwille field? (ii) Relation energy evolution/holography?
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