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I) Introduction

String Theory
 SUSY field 

theories
Black Hole 
Entropies

Geometry: Calabi-Yau spaces, 
mirror symmetry, generalized spaces, 

D-branes, K-theory, ...

Particle physics, 
astrophysics, cosmolgy



Count the number of consistent string vacua ➤
Vast landscape with                               vacua!                 
                

Nsol = 10
500−1500

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); 
Antoniadis, Bachas, Kounnas (1986); Douglas (2003), ....)

Introduction:
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Two (complementary) issues:

Count the number of consistent string vacua ➤
Vast landscape with                               vacua!                 
                

Nsol = 10
500−1500

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); 
Antoniadis, Bachas, Kounnas (1986); Douglas (2003), ....)

Introduction:

● Can we view into the landscape?
 ⇒  information about other vacua?
● Can we by-pass the landscape?

⇒  look for green (promising) spots  

- model independent predictions?
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● Go to the field theory limit - decouple gravity!
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Outline

  ●  Stringy signatures at LHC

(The LHC string hunter’s companion)

  ●  Intersecting D-brane models (type II orientifolds)

Intersecting brane models and their statistics

D-instantons: non-perturbative couplings

(Lecture I)

(Lecture II)
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I) (Intersecting) D-brane models:
(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); 
Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez,  

    Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001); ...)
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I) (Intersecting) D-brane models:
(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst (2000); 
Angelantonj, Antoniadis, Dudas Sagnotti (2000); Ibanez,  

    Marchesano, Rabadan (2001); Cvetic, Shiu, Uranga (2001); ...)

Consider open string compactifications with 
intersecting D-branes  ➠  Type IIA/B orientifolds:

 ●   Non-Abelian gauge bosons live as open strings on 
      lower dimensional world volumes       of D-branes.π

 ●   Chiral fermions are open strings on the intersection    
      locus of two D-branes: NF = Iab ≡ #(πa ∩ πb) ≡ πa ◦ πb

 (Includes F-theory constructions) 
(Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa; Donagi, Wijnholt, ...)

 ●   Gravitons live as closed strings in 10-dimensional 
      lower space time (10-dim. bulk).

Hierarchy of dimensions !

(   ➫     Heterotic constructions: Talks by Faraggi, Rizos, Vaudrevange)
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(Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/0610327)

Perturbative type II orientifolds contain:

 ●  Space-time filling D(4+p)-branes wrapped around 
     internal p-cycles plus orientifold planes:

- Open string matter fields.

●   Strong consistency conditions:
- tadpole cancellation with orientifold planes.
- space-time supersymmetry (brane stability)

(diophantic 
equations with 
finite no. of 
solutions!)

●  Closed string 6-dimensional background geometry: 

-Torus, orbifold, Calabi-Yau space,  
  generalized spaces with torsion, ...
- Background fluxes: HNS

3 , FR
p , ωgeom

M10 = R3,1 ×M6
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IIA: special lagrangian submanifolds: D6 on 3-cycles at angles

IIB: points, (complex lines), divisors, (CY) with gauge bundles:
D3 (D5) D7 (D9)

Mirror symmetry (SYZ)

Orientifold with space-time filling D-branes:
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IIA: special lagrangian submanifolds: D6 on 3-cycles at angles

IIB: points, (complex lines), divisors, (CY) with gauge bundles:
D3 (D5) D7 (D9)

Mirror symmetry (SYZ)

Orientifold with space-time filling D-branes:

R(3,1)I

O6D6 D6’

!

M

M10 = (R3,1 ×M6)/(Ωσ̄)

Orientifold projection:

Ω :
σ̄ :

world sheet parity

spatial reflection
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HSSM

Soft SUSY breaking

Realization of the SM with 
G=SU(3) x SU(2) x U(1) and 

3 generations of quarks and lepton:
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HSSM

Soft SUSY breaking

Realization of the SM with 
G=SU(3) x SU(2) x U(1) and 

3 generations of quarks and lepton:

l

W±

q

(a) baryonic

U(2)

(d) leptonic

U(1)R

(c) right

(b) left

e

u, d

U(3)

U(1)L

g

Natural 
D-brane quiver 

of the SM:

(Antoniadis, Kiritsis, Rizos, Tomaras; Ibanez, Marchesano, Rabadan; Blumenhagen, Körs, D.L. Ott, ...)
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Stacks of D6-branes, wrapped around CY 3-cycles:

Basis of homology 3-cycles: αI , βI (I = 0, . . . h2,1)

IIA Intersecting branes:
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Stacks of D6-branes, wrapped around CY 3-cycles:

Basis of homology 3-cycles: αI , βI (I = 0, . . . h2,1)

Geometrical input data:  
number of D6-branes in each stackNa : (a = 1, . . . , k)
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Stacks of D6-branes, wrapped around CY 3-cycles:

Basis of homology 3-cycles: αI , βI (I = 0, . . . h2,1)
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Stacks of D6-branes, wrapped around CY 3-cycles:

Basis of homology 3-cycles: αI , βI (I = 0, . . . h2,1)

Geometrical input data:  
number of D6-branes in each stackNa : (a = 1, . . . , k)

XI
a , Y I

a : integer wrapping numbers around αI , βI

⇒ cycle Πa = XI
aαI + Y I

a βI

IIA Intersecting branes:

Physical output data:  

Open string 4-dim. gauge group: G =
k∏

a=1

U(Na)

4-dim. massless fermions from open strings at intersection 
points: N

F
a,b = Πa ◦ Πb = X

I
aY

I
b − X

I
b Y

I
a

a

b U(N) 

chiral matter fields 
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IIA intersecting D-branes
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IIA intersecting D-branes
U(Na) = SU(Na) × U(1)aAnomalous U(1)‘s:

The U(1) part is in general massive and anomalous due to 
B ∧ F couplings in the CS action.



D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009

IIA intersecting D-branes

3 kind of consistency conditions:

U(Na) = SU(Na) × U(1)aAnomalous U(1)‘s:
The U(1) part is in general massive and anomalous due to 
B ∧ F couplings in the CS action.



D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009

IIA intersecting D-branes
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IIA intersecting D-branes

3 kind of consistency conditions:
● Ramond-Ramond tadpole cancellation:

(O6 = orientifold plane)
k∑

a=1

Na(Πa + Π′

a) = 4ΠO6

●  Supersymmetry condition:
J |Πa

= 0, Im(eiθaΩ|Πa
) = 0

●  K-theory conditions. (A. Uranga)

Large, but finite number of solutions. D-brane statistics!

(R. Blumenhagen, F. Gmeiner, G. Honecker, D. L., M. Stein, T. Weigand; 
M. Douglas, W. Taylor;  T. Dijkstra, L. Huiszoon, A. Schellekens)

U(Na) = SU(Na) × U(1)aAnomalous U(1)‘s:
The U(1) part is in general massive and anomalous due to 
B ∧ F couplings in the CS action.
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 (Intersecting) D-brane statistics

(i) Example: IIA orientifold:M6 = T 6/(Z2 × Z2)

How many orientifold models exist which 
come close to the (spectrum of the) MSSM?

(Blumenhagen, Gmeiner, Honecker, Lüst, Stein, Weigand, hep-th/0411173, hep-th/0510170, hep-th/0703011; 
related work: Dijkstra, Huiszoon, Schellekens, hep-th/0411129;  Anastasopoulos, Dijkstra, Kiritsis, 
Schellekens, hep-th/0605226; Douglas, Taylor, hep-th/0606109; Dienes, Lennek, hep-th/0610319; Rosenhaus, 
Taylor, arXiv:0905.1951)

There exist about  1.66 · 10
8 susy D-brane models

on this orbifold (with restricted complex structure)!
●   Finiteness of models was proven by Douglas, Taylor.

Systematic computer search (NP complete problem):
Look for solutions of a set of diophantic equations:
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Restriction Factor
gauge factor U(3) 0.0816
gauge factor U(2)/Sp(2) 0.992
No symmetric representations 0.839
Massless U(1)Y 0.423
Three generations of quarks 2.92 × 10−5

Three generations of leptons 1.62 × 10−3

Total 1.3 × 10−9
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 (Intersecting) D-brane model building
Require additional further phenomenological restrictions:

Only one in a billion models gives 
rise to a MSSM like vacuum!

Restriction Factor
gauge factor U(3) 0.0816
gauge factor U(2)/Sp(2) 0.992
No symmetric representations 0.839
Massless U(1)Y 0.423
Three generations of quarks 2.92 × 10−5

Three generations of leptons 1.62 × 10−3

Total 1.3 × 10−9

However always chiral, massless exotics!

●   Interesting models for large complex structure moduli   
     (Rosenhaus, Taylor).
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 (ii) Z6-orientifold:    (exceptional, blowing-up 3-cycles!)

In total   susy D-brane models.3.4 · 10
28

5.7 · 10
6 of them possess MSSM like spectra!

(Gmeiner, Lüst, Stein, hep-th/0703011)
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 (ii) Z6-orientifold:    (exceptional, blowing-up 3-cycles!)

In total   susy D-brane models.3.4 · 10
28

5.7 · 10
6 of them possess MSSM like spectra!

(Gmeiner, Lüst, Stein, hep-th/0703011)

(iii) Z6’-orientifold:

Millions of standard models!
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 (ii) Z6-orientifold:    (exceptional, blowing-up 3-cycles!)

In total   susy D-brane models.3.4 · 10
28

5.7 · 10
6 of them possess MSSM like spectra!

(Gmeiner, Lüst, Stein, hep-th/0703011)

(iii) Z6’-orientifold:

Millions of standard models!

(Gmeiner, Honecker, arXiv:0806.3039)
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 (ii) Z6-orientifold:    (exceptional, blowing-up 3-cycles!)

In total   susy D-brane models.3.4 · 10
28

5.7 · 10
6 of them possess MSSM like spectra!

(Gmeiner, Lüst, Stein, hep-th/0703011)

(iii) Z6’-orientifold:

Millions of standard models!

(Gmeiner, Honecker, arXiv:0806.3039)
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are possible!
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Problem of realizing other GUT theories in 
perturbative orientifolds:

●  SO(10) GUT:    no spinor (16) representations 
from open strings

●  No exceptional gauge groups from open strings.

●  SU(5): Some (up or down type) Yukawa couplings are 
absent in perturbation theory.

Additional problem:
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Non-perturbative D-instantons:
(M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger;  
M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; 
N. Dorey, T. Hollowwod, V. Khoze; .... Recent review:  M. Bianchi, S. Kovacs, G. Rossi)
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Non-perturbative D-instantons:

Perturbative effective action:

●  SM-sector: Contains global U(1) symmetries that   
    forbid certain couplings (neutrino masses, Yukawa   
    couplings)

  ●   Unbroken space-time supersymmetry.
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Non-perturbative D-instantons:

Perturbative effective action:

●  SM-sector: Contains global U(1) symmetries that   
    forbid certain couplings (neutrino masses, Yukawa   
    couplings)

  ●   Unbroken space-time supersymmetry.
Take into account non-perturbative instanton 
corrections to the effective action!

(M. Dine, N. Seiberg, X. Wen, E. Witten; K. Becker, M. Becker, A. Strominger;  
M. Green, M. Gutperle; J. Harvey, G. Moore; M. Billo, M. Frau, F. Fucito, A. Lerda, I. Pesandro; 
N. Dorey, T. Hollowwod, V. Khoze; .... Recent review:  M. Bianchi, S. Kovacs, G. Rossi)

    ●  Hidden sector: Moduli stabilization by fluxes.

Very often, not all moduli are stabilized.
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String instanton corrections:

●  String instantons can break axionic shift symmetries 
     and hence global U(1)  symmetries.

●   Can generate new matter couplings (Majorana masses, 
      Yukawa couplings) → see in a moment.

  ●  String instantons arise in a geometric way from 
      branes wrapped around internal cycles.

●   Can generate new moduli dependent terms in the 
     superpotential and hence are important for the 
     moduli stabilization and supersymmetry breaking.

(S. Kachru, R. Kallosh, A. Linde, S. Trivedi (2003);F. Denef, M. Douglas, B. Florea, A. Grassi, S. 
Kachru (2005); R. Blumenhagen, M. Cvetic, T. Weigand; D.L., S. Reffert, E. Scheidegger, W. 
Schulgin, S. Stieberger; Ibanez, Uranga (2006)......)

 ●   It is possible to compute string instanton 
      corrections from open string CFT (not only guess 
      them from field theory).
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Geometry: Non space-time filling Euclidean D-
branes:

Two kinds of string instantons:

●   World-sheet instantons: .  Tree-level in CFT!exp(−J/α′)

These are non-space time filling D(p)=E(p) branes 
wrapped around internal (p+1)-cycles:

IIA: special lagrangian submanifolds: E2 on 3-cycles 

IIB:          points, (complex lines), divisors, (CY) 

     E(-1) (E1) E3 (E5)

Mirror symmetry (SYZ)

Space-time instantons: exp(−1/gs)●
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(R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arXiv:0707.1871)

Non-perturbative Yukawa couplings:
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SU(5) GUT intersecting D6-brane models:
(R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arXiv:0707.1871)

Non-perturbative Yukawa couplings:
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SU(5) GUT intersecting D6-brane models:
(R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arXiv:0707.1871)

Non-perturbative Yukawa couplings:

Consider two stack a and b of D6-branes:

G = U(5)a × U(1)b = SU(5)a × U(1)a × U(1)b

Open strings:

sector number U(5)a × U(1)b reps. U(1)X

(a′, a) 3 + (1, 1) 10(2,0)
1
2

(a, b) 3 5(−1,1) −
3
2

(b′, b) 3 1(0,−2)
5
2

(a′, b) 1 5H
(1,1) + 5

H

(−1,−1) (−1) + (1)
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SU(5) GUT intersecting D6-brane models:
(R. Blumenhagen, M. Cvetic, D. Lüst, R. Richter, T. Weigand, arXiv:0707.1871)

Non-perturbative Yukawa couplings:

U(1)X

One anomalous linear combination: global symmetry

Abelian symmetries: U(1)a × U(1)b

One anomaly free linear combination

Consider two stack a and b of D6-branes:

G = U(5)a × U(1)b = SU(5)a × U(1)a × U(1)b

Open strings:

sector number U(5)a × U(1)b reps. U(1)X

(a′, a) 3 + (1, 1) 10(2,0)
1
2

(a, b) 3 5(−1,1) −
3
2

(b′, b) 3 1(0,−2)
5
2

(a′, b) 1 5H
(1,1) + 5

H

(−1,−1) (−1) + (1)
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From U(1)X charges it follows that:

Perturb. allowed couplings(e.g. u,c,t-quarks): 〈10(2,0) 5̄(−1,1) 5̄
H
(−1,−1)〉,

Perturb. forbidden couplings (e.g. d,s,b-quarks): 〈10(2,0) 10(2,0) 5
H
(1,1)〉
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O(1)and carrying gauge group
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From U(1)X charges it follows that:

Perturb. allowed couplings(e.g. u,c,t-quarks): 〈10(2,0) 5̄(−1,1) 5̄
H
(−1,−1)〉,

Perturb. forbidden couplings (e.g. d,s,b-quarks): 〈10(2,0) 10(2,0) 5
H
(1,1)〉

These can be generated by E2-instantons:

The instanton has to wrap a rigid 3-cycle Ξ

invariant under the orientfold projection Ωσ̄

O(1)and carrying gauge group

(   ➫     Talks by Anastasopolous, Blumenhagen)
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Non-perturbative constructions:

(i) IIA orientifolds with intersecting D6-branes 
⇒  M-theory on 7-dim. G2 manifolds

(Acharya, Atiyah, Witten, ....)

● Gauge bosons live on 3-dimensional singularities Q3

  ⇔  D6-branes

● Chiral fermions live on 0-dimensional conical 
singularities (points on 7-dim manifolds)

  ⇔  Intersections of D6-branes

Local ALE fibrations over  Q3 were recently constructed: Pantev, Wijnholt, arXiv:0905.1968.
                                                                                        .
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(ii) IIB orientifolds with intersecting D7-branes ⇒  

F-theory on 8-dim. CY 4-folds (GUT models)
(Beasly, Heckman, Vafa; Donagi, Wijnholt, ...)

● Gauge bosons live on 4-dimensional ADE-singularities
  ⇔  D7-branes

● Chiral fermions live on 2-dimensional singularities 
  ⇔  Intersections of D7-branes

Local set up:
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(ii) IIB orientifolds with intersecting D7-branes ⇒  

F-theory on 8-dim. CY 4-folds (GUT models)
(Beasly, Heckman, Vafa; Donagi, Wijnholt, ...)

● Gauge bosons live on 4-dimensional ADE-singularities
  ⇔  D7-branes

● Chiral fermions live on 2-dimensional singularities 
  ⇔  Intersections of D7-branes

F-theory models contain several non-perturbative features:
 ☺ exceptional gauge groups
 ☺ matter in spinor representations
 ☺ non zero Yukawa coupl. (intersections of 3 matter curves)

Global models: Blumenhagen, Grimm, Jurke, Weigand, arXiv:0908.1784,  arXiv:0906.0013; 
                                          Marsano, Saulina, Schafer-Nameki, arXiv:0906.4672, arXiv:0904.3932.

Local set up:
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(ii) IIB orientifolds with intersecting D7-branes ⇒  

F-theory on 8-dim. CY 4-folds (GUT models)
(Beasly, Heckman, Vafa; Donagi, Wijnholt, ...)

● Gauge bosons live on 4-dimensional ADE-singularities
  ⇔  D7-branes

● Chiral fermions live on 2-dimensional singularities 
  ⇔  Intersections of D7-branes

F-theory models contain several non-perturbative features:
 ☺ exceptional gauge groups
 ☺ matter in spinor representations
 ☺ non zero Yukawa coupl. (intersections of 3 matter curves)

Global models: Blumenhagen, Grimm, Jurke, Weigand, arXiv:0908.1784,  arXiv:0906.0013; 
                                          Marsano, Saulina, Schafer-Nameki, arXiv:0906.4672, arXiv:0904.3932.

Local set up:

(   ➫     Talks by Blumenhagen, Klemm, Tatar, Wijnholt)



Outline

  ●  Stringy signatures at LHC

(The LHC string hunter’s companion)

  ●  Intersecting D-brane models

(D. Lüst, S. Stieberger, T. Taylor, arXiv:0807.3333; 
L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arXiv:0808.0497 
[hep-ph]; arXiv:0904.3547 [hep-ph]
D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, arXiv:0908.0409)

(Lecture I)

(Lecture II)
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(   ➫     Talk by Antoniadis)
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Recall basic set-up of  type IIA/B orientifolds:

 ●   Non-Abelian gauge bosons live as open strings on 
      lower dimensional D-branes.

 ●   Chiral fermions are open strings on the intersection    
      locus of two D-branes:

 ●   Gravitons live as closed strings in 10-dimensional bulk.

II) The LHC String Hunter‘s Companion:



3 basic assumptions:
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(a) baryonic
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(d) leptonic

U(1)R

(c) right
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e
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U(1)L

g
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(ii) Consider orientifold compactifications which allow 
    for low string scale (solve hierarchy problem without SUSY)

⇒ Low scale for quantum gravity & large extra dimensions.
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(iii) Perturbation theory is valid, i.e. small string coupling.

(ii) Consider orientifold compactifications which allow 
    for low string scale (solve hierarchy problem without SUSY)

⇒ Low scale for quantum gravity & large extra dimensions.
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i.e. contain the SM D-brane quiver:
l

W±

q

(a) baryonic

U(2)

(d) leptonic

U(1)R

(c) right

(b) left

e

u, d

U(3)

U(1)L

g

(iii) Perturbation theory is valid, i.e. small string coupling.

(ii) Consider orientifold compactifications which allow 
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⇒ Low scale for quantum gravity & large extra dimensions.

(iv) Longitudinal space along D-branes is un-warped.
(Discussion of warped case: Perelstein, Spray, arXiv:0907.3496)
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3 basic assumptions:
(i) Consider orientifold compact. which realize the SM,

i.e. contain the SM D-brane quiver:
l

W±

q

(a) baryonic

U(2)

(d) leptonic

U(1)R

(c) right

(b) left

e

u, d

U(3)

U(1)L

g

(iii) Perturbation theory is valid, i.e. small string coupling.

(ii) Consider orientifold compactifications which allow 
    for low string scale (solve hierarchy problem without SUSY)

⇒ Low scale for quantum gravity & large extra dimensions.

⇒  Universal predictions that are true for all points 

in the landscape, i.e. independent from any details of 
the compact space!

(iv) Longitudinal space along D-branes is un-warped.
(Discussion of warped case: Perelstein, Spray, arXiv:0907.3496)
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There are 3 basic mass scales in D-brane 
compactifications:

Mass scales in D-brane models:

(1) : Ms =
1√
α′String scale:

(2) : M6 =
1

V 1/6
6

Compatification scale:

(3) : M‖
p =

1

(V ‖
p )1/p

, (3′) : M⊥
6−p =

1
(V ⊥

6−p)1/(6−p)

V6 = V ‖
p V ⊥

6−p

Scale of wrapped D(p+3)-branes (e.g. IIB: p=0,4),
                                                    (IIA: p=3):
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Strength of 4D gravitational interactions:

(A) : M2
Planck !M8

s V6 ! 1019 GeV
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There are 2 basic 4D observables:
Strength of 4D gravitational interactions:

(A) : M2
Planck !M8
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Strength of 4D gauge interactions:

=⇒ (V ‖
p )−1/p "Ms

(B) : g−2
Dp !Mp

s V ‖
p ! O(1)
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There are 2 basic 4D observables:

is a free parameter in D-brane compactifications !            Ms

(A) and (B):   leave one free parameter.

Strength of 4D gravitational interactions:

(A) : M2
Planck !M8

s V6 ! 1019 GeV

Strength of 4D gauge interactions:

=⇒ (V ‖
p )−1/p "Ms

(B) : g−2
Dp !Mp

s V ‖
p ! O(1)
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There are 4 natural scenarios for the 
string scale:

(o) Planck scale scenario:

Ms ≡MPlanck " 1019 GeV

Gauge coupling unification at the Planck 
scales needs further effects (string threshold 
corrections, ...)

 is the gravitational 4D Planck scale Ms
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Alternatively relate the string scale to particles physics 
mass scales.

Ms ≡MGUT " 1016 GeV

MGUT = MSM exp
(

g−2
Dp(MSM )−g−2

Dp(MGUT )

bp

)

(i) GUT scale scenario:
 is the 4D scale of gauge coupling unificationMs
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Alternatively relate the string scale to particles physics 
mass scales.

Ms ≡MGUT " 1016 GeV

MGUT = MSM exp
(

g−2
Dp(MSM )−g−2

Dp(MGUT )

bp

)

(i) GUT scale scenario:
 is the 4D scale of gauge coupling unificationMs

 Recent GUT string model building in F-theory and    
  IIB orientifolds: (Beasly, Heckman, Marsano, Saulina, Schafer-Nameki, Vafa;

Donagi, Wijnholt; Blumenhagen, Braun, Grimm, Weigand)

●   D7-branes wrapped on del Pezzo surfaces
●   GUT gauge group is broken by              flux   U(1)Y
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Ms ≡MSUSY " 1011 GeV

MSUSY ∼
√

MSMMPlanck

(ii) SUSY breaking scenario:

 is the intermediate 4D scale of supersymmetry 
breaking

Ms

Gravity mediation:

(No natural gauge coupling unification!)

(Balasubramanian, Conlon, Quevedo, Suruliz, ...)
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Ms ≡MSM " 103 GeV

(iii) Low string scale scenario:
(Antoniadis, Arkani-Hamed, Dimopoulos, Dvali)

Dimensionless volumes in string units, 
corresponding to the four scenarios:

V′
6 = V6M6

s = M2
Planck
M2

s
= 1, 106, 1016, 1032

 is the Standard Model (TeV) scale:Ms

(No natural gauge coupling unification!)

(Effective scale of gravity is high (i.e. gravity is weak), 
since the gravitons can propagate into the large 6-

dim. bulk space!)
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There are 4 generic types of particles:
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There are 4 generic types of particles:

Open string excitations: completely universal (model 
independent),  carry SM gauge quantum numbers:

        higher spin excitations of 

(i) Stringy Regge excitations:
MRegge =

√
n Ms =

√
n
V ′

6
MPlanck , (n = 1, . . . ,∞)

g,W,Z,γ, q, l



D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009

Open strings, depend on the details of the internal 
geometry, carry SM gauge quantum numbers 

(ii) D-brane cycle Kaluza Klein excitations:

M‖
KK =

m

(V ‖
p )1/p

! m Ms = m
MPlanck

(V ′
6)1/2

(m = 1, . . . ,∞)

Internal momenta excitations of g, W,Z, γ, q, l
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Open strings, depend on the details of the internal 
geometry, carry SM gauge quantum numbers 

(ii) D-brane cycle Kaluza Klein excitations:

The string Regge excitations and the D-brane cycle KK 
modes  are charged under the SM and have mass
of order           ➠   can they be seen at LHC  ?!          Ms

M‖
KK =

m

(V ‖
p )1/p

! m Ms = m
MPlanck

(V ′
6)1/2

(m = 1, . . . ,∞)

Internal momenta excitations of g, W,Z, γ, q, l
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MT =
MPlanck

(V ′
6)3/2

= 1019, 1010, 10−5, 10−29 GeV

Problem: the very light mass causes a fifth force.

(iii) Overall volume modulus:

Closed string, model independent, neutral under the SM, 
interacts only gravitationally 

Would rule out TeV string scale !



D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009

MT =
MPlanck

(V ′
6)3/2

= 1019, 1010, 10−5, 10−29 GeV

Problem: the very light mass causes a fifth force.

(iii) Overall volume modulus:

Closed string, model independent, neutral under the SM, 
interacts only gravitationally 

Would rule out TeV string scale !
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MT =
MPlanck

(V ′
6)3/2

= 1019, 1010, 10−5, 10−29 GeV

Problem: the very light mass causes a fifth force.

(iii) Overall volume modulus:

Closed string, model independent, neutral under the SM, 
interacts only gravitationally 

Would rule out TeV string scale !

∆MT !
< Tµ

µ Tµ
µ >

M2
Planck

! M4
s

M2
Planck

! 10−13 GeV

But one expects a mass shift by radiative corrections:
(G. Dvali, D. Lüst, work in progress)



D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009

(iv) Mini black holes (string balls):

These are non-perturbative states, associated to the 
higher dimensional gravity scale:

Mb.h. =
Ms

g2
s

>> Ms if gs < 1

Weakly coupled string theory:  gravity effects occur 
much above          ! Ms

Regge excitations: MRegge !Ms
√

n

If gs = 0.1 =⇒
string states before one reaches black hole ! n = 1/g4

s ∼ 104
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Type IIB orientifolds: Realization of low string scale 
compatifications on „Swiss Cheese“ Manifolds:

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; 
Blumenhagen, Moster, Plauschinn;  

for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)
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Type IIB orientifolds: Realization of low string scale 
compatifications on „Swiss Cheese“ Manifolds:

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; 
Blumenhagen, Moster, Plauschinn;  

for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)

QL

Q

eL
U(2)

U(3)

R

U(1)

U(1)

eR

BULK
BLOW!UP

- SM lives on D7-branes around 
small cycles of the CY. One needs 
at least one blow-up mode 
(resolves point like singularity).

2 requirements: 
- Negative Euler number.
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Type IIB orientifolds: Realization of low string scale 
compatifications on „Swiss Cheese“ Manifolds:

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; 
Blumenhagen, Moster, Plauschinn;  

for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)

QL

Q

eL
U(2)

U(3)

R

U(1)

U(1)

eR

BULK
BLOW!UP

- SM lives on D7-branes around 
small cycles of the CY. One needs 
at least one blow-up mode 
(resolves point like singularity).

2 requirements: 
- Negative Euler number.

Moduli potential:

Kähler potential: K = Kcs − 2 log
(

V6 +
ξ

2g
3
2
s

)

Superpotential: W = Wcs +
∑

Ai exp(−aiti)

Minima: Large hierarchical scales with V6M
6
s = 1016, 1032

Moduli stabilization     ➣         

(Becker,Becker, 
Haack, Louis)



(G. Dvali, arXiv:0706.2050; G. Dvali, D. Lüst, arXiv:0801.1287)

Consider a theory with N species of particles with mass M:

N < Nmax =

M2

Planck

M2

This bound must be satisfied in every effective string 
vacuum that is consistently coupled to gravity!

Bounds from black hole decays:
M: scale of new physics

E.g. if a scalar field in the effective potential gives mass to 
N particles via the Higgs effect: M = M(φ)

(A quantum black hole can emit at most  N      different   
 particles)

max

M(φ)2 <
M2

Planck

N

Bound forbids essentially 
large trans-planckian vevs:

In general:

D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009



E.g:

This bound gives also a possible  explanation of 
the hierarchy problem:

N = 10
32

=⇒ M < 10
−16

MPlanck " 1 TeV

M can be seen as the fundamental scale of gravity, which 
is diluted by the presence on the N particle species.
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E.g:

This bound gives also a possible  explanation of 
the hierarchy problem:

N = 10
32

=⇒ M < 10
−16

MPlanck " 1 TeV

M can be seen as the fundamental scale of gravity, which 
is diluted by the presence on the N particle species.

⇒  dramatic effects at the LHC.
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E.g:

This bound gives also a possible  explanation of 
the hierarchy problem:

N = 10
32

=⇒ M < 10
−16

MPlanck " 1 TeV

M can be seen as the fundamental scale of gravity, which 
is diluted by the presence on the N particle species.

⇒  dramatic effects at the LHC.

Is there a stringy realization
of the large N species scenario?

(G. Dvali, D. Lüst, work in progress)

D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009



Test of D-brane models at the LHC:

In string perturbation theory production of:

gg , qq, , qg −→ X −→ g, γ, Z,W, q, l
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Test of D-brane models at the LHC:

In string perturbation theory production of:

gg , qq, , qg −→ X −→ g, γ, Z,W, q, l

- Regge excitations of higher spin:

    spin 0,1,2   &          spin 1/2, 3/2g∗ q∗First resonances:
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Test of D-brane models at the LHC:

- Kaluza Klein (KK) (and winding) modes

In string perturbation theory production of:

gg , qq, , qg −→ X −→ g, γ, Z,W, q, l

- Regge excitations of higher spin:

    spin 0,1,2   &          spin 1/2, 3/2g∗ q∗First resonances:
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Test of D-brane models at the LHC:

- Kaluza Klein (KK) (and winding) modes

In string perturbation theory production of:

(-  Z‘ gauge bosons,  black holes)

gg , qq, , qg −→ X −→ g, γ, Z,W, q, l

- Regge excitations of higher spin:

    spin 0,1,2   &          spin 1/2, 3/2g∗ q∗First resonances:
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Test of D-brane models at the LHC:

- Kaluza Klein (KK) (and winding) modes

One has to compute the parton model cross sections of 
SM fields into new stringy states !

In string perturbation theory production of:

(-  Z‘ gauge bosons,  black holes)

gg , qq, , qg −→ X −→ g, γ, Z,W, q, l

- Regge excitations of higher spin:

    spin 0,1,2   &          spin 1/2, 3/2g∗ q∗First resonances:
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The string scattering amplitudes exhibit 
some interesting properties:

●  Interesting mathematical structure

(ii) They contain stringy corrections.

●  They go beyond the N=4 Yang-Mills amplitudes:

(i) The contain quarks & leptons in fundamental repr.

Quark, lepton vertex operators:

Fermions: boundary changing (twist) operators!

Vq,l(z, u, k) = uαSα(z)Ξa∩b(z)e−φ(z)/2eik·X(z)

Striking relation between quark and gluon amplitudes!
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●  n-point tree amplitudes with 0 or 2 open string 
fermions (quarks, leptons)  and N or N-2 gauge bosons 
(gluons)  are completely model independent.

⇒  Information about the string Regge spectrum.

● KK modes are seen in scattering processes with 
more than 2 fermions.

⇒  Information about the internal geometry.

q1

q2

gN

gN−1

g4

g3

g

q1

q2
q4

q3

g5

gN−1

gN

KK
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Parton model cross sections of SM-fields:

D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009



Parton model cross sections of SM-fields:

A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk

Disk amplitude n among external SM fields                       :(q, l, g, γ, Z0, W±)

e.g. n=4:
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Parton model cross sections of SM-fields:

l

W±

q

(a) baryonic

U(2)

(d) leptonic

U(1)R

(c) right

(b) left

e

u, d

U(3)

U(1)L

g

A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk

Disk amplitude n among external SM fields                       :(q, l, g, γ, Z0, W±)

e.g. n=4:
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Parton model cross sections of SM-fields:

These amplitudes are dominated by the following poles:

A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk

Disk amplitude n among external SM fields                       :(q, l, g, γ, Z0, W±)

e.g. n=4:
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Parton model cross sections of SM-fields:

These amplitudes are dominated by the following poles:

 ● Exchange of SM fields

A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk

Disk amplitude n among external SM fields                       :(q, l, g, γ, Z0, W±)

e.g. n=4:
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Parton model cross sections of SM-fields:

These amplitudes are dominated by the following poles:

 ● Exchange of SM fields
● Exchange of string  Regge resonances (Veneziano like ampl.) 

⇒ new contact interactions:
k1

k2

k3

k4

| k; n 〉
α′2 ζ(2) trF 4α′2⇒     

A(k1, k2, k3, k4;α′) ∼ −
Γ(−α′s) Γ(1− α′u)

Γ(−α′s− α′u)
=

∞∑

n=0

γ(n)
s−M2

n

∼ t

s
− π2

6
tu (α′)2 + . . .

Vs(α′) =
Γ(1− s/M2

string)Γ(1− u/M2
string)

Γ(1− t/M2
string)

= 1− π2

6
M−4

stringsu− ζ(3)M−6
stringstu + · · ·→ 1|α′→0

A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk

Disk amplitude n among external SM fields                       :(q, l, g, γ, Z0, W±)

e.g. n=4:
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Parton model cross sections of SM-fields:

These amplitudes are dominated by the following poles:

 ● Exchange of SM fields

● Exchange of KK and winding modes (model dependent)

● Exchange of string  Regge resonances (Veneziano like ampl.) 
⇒ new contact interactions:

k1

k2

k3

k4

| k; n 〉
α′2 ζ(2) trF 4α′2⇒     

A(k1, k2, k3, k4;α′) ∼ −
Γ(−α′s) Γ(1− α′u)

Γ(−α′s− α′u)
=

∞∑

n=0

γ(n)
s−M2

n

∼ t

s
− π2

6
tu (α′)2 + . . .

Vs(α′) =
Γ(1− s/M2

string)Γ(1− u/M2
string)

Γ(1− t/M2
string)

= 1− π2

6
M−4

stringsu− ζ(3)M−6
stringstu + · · ·→ 1|α′→0

A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk

Disk amplitude n among external SM fields                       :(q, l, g, γ, Z0, W±)

e.g. n=4:
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4 gauge boson amplitudes:

z4

Aa3Aa2

Aa1

a

a

z3

a

a

z1

z2

Aa4

Disk amplitude:
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4 gauge boson amplitudes:

z4

Aa3Aa2

Aa1

a

a

z3

a

a

z1

z2

Aa4

Only string Regge resonances are exchanged    ⇒
These amplitudes are completely model independent!

Disk amplitude:
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4 gauge boson amplitudes:

z4

Aa3Aa2

Aa1

a

a

z3

a

a

z1

z2

Aa4

Only string Regge resonances are exchanged    ⇒
These amplitudes are completely model independent!

Examples:

Disk amplitude:
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4 gauge boson amplitudes:

z4

Aa3Aa2

Aa1

a

a

z3

a

a

z1

z2

Aa4

Only string Regge resonances are exchanged    ⇒
These amplitudes are completely model independent!

Examples:

   ⇒  dijet events

(Anchordoqui,Goldberg,
Nawata, Taylor, 
arXiv:0712.0386)Observable at LHC for Mstring = 3 TeV

(Stieberger, Taylor)

|M(gg → gg)|2 = g4
3

( 1
s2

+
1
t2

+
1
u2

)[
9
4
s2V 2

s (α′)− 1
3
( sVs(α′))2 + (s↔ t) + (s↔ u)

]

|M(gg → gγ(Z0))|2 = g4
3
5
6
Q2

A

( 1
s2

+
1
t2

+
1
u2

)
( sVs(α′) + tVt(α′) + uVu(α′) )2

Disk amplitude:
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4 gauge boson amplitudes:

z4

Aa3Aa2

Aa1

a

a

z3

a

a

z1

z2

Aa4

Only string Regge resonances are exchanged    ⇒
These amplitudes are completely model independent!

Examples:

|M(gg → gg)|2α′→0 →
( 1

s2
+

1
t2

+
1
u2

)9
4
(
s2 + t2 + u2

)

|M(gg → γ(Z0))|2α′→0 → 0

agreement with SM!α′ → 0 :

Disk amplitude:
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2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged   ⇒
These amplitudes are completely model independent!

Note: Cullen, Perelstein, Peskin (2000)
considered:

e+e− → γγ

z3

z4

z1
z2

a b

a

ψ
β4

α4

ψα3
β3

Aa Ab

z4
ψ

β4

α4

ψα3
β3Aa

Aa

b

b

a

z3

a

a

z1

z2

   ⇒  dijet events

|M(qg → qg)|2 = g4
3
s2 + u2

t2

[
Vs(α′)Vu(α′)− 4

9
1
su

(sVs(α′) + uVu(α′))2
]

|M(qg → qγ(Z0))|2 = −1
3
g4
3Q2

A
s2 + u2

sut2
(sVs(α′) + uVu(α′))2
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2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged   ⇒
These amplitudes are completely model independent!

Note: Cullen, Perelstein, Peskin (2000)
considered:

e+e− → γγ

z3

z4

z1
z2

a b

a

ψ
β4

α4

ψα3
β3

Aa Ab

z4
ψ

β4

α4

ψα3
β3Aa

Aa

b

b

a

z3

a

a

z1

z2

α′ → 0 : agreement with SM !

|M(qg → qg)|2α′→0 = g4
3
s2 + u2

t2

[
1− 4

9
1
su

(s + u)2
]

|M(qg → qγ(Z0))|2α′→0 = −1
3
g4
3Q2

A
s2 + u2

sut2
(s + u)2
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These stringy corrections can be 
seen in dijet events at LHC:

(Anchordoqui, Goldberg, Lüst, Nawata, 
Stieberger, Taylor, arXiv:0808.0497[hep-ph])

ΓRegge = 15− 150 GeV

Widths can be computed in a 
model independent way !

(Anchordoqui, Goldberg, Taylor, 
arXiv:0806.3420)

MRegge = 2 TeV
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These stringy corrections can be 
seen in dijet events at LHC:

(Anchordoqui, Goldberg, Lüst, Nawata, 
Stieberger, Taylor, arXiv:0808.0497[hep-ph])

ΓRegge = 15− 150 GeV

Widths can be computed in a 
model independent way !

(Anchordoqui, Goldberg, Taylor, 
arXiv:0806.3420)

MRegge = 2 TeV
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4 fermion amplitudes:

These amplitudes are more model dependent 
and test the internal CY geometry.

Exchange of Regge, KK and winding resonances.

Constrained by FCNC’s

d

z2

ψ
γ4

α4

ψδ3
γ3

z1z4

b

z3

ψα1
β1

c

a

d

X1
X4

ψ
γ4

α4

a

θ4

c

θ2

X2

d

b

X z

ψ
β2

δ2

ψα1
β1

X3

ψδ3
γ3

θ3 θ2

θ1θ4

ψ
β2

δ2

θ1

θ3

(Abel, Lebedev, Santiago, hep-th/0312157)

|M(qq → qq)|2 =
2
9

1
t2

[(
sF bb

tu (α′)
)2 +

(
sF cc

tu (α′)
)2 +

(
uGbc

ts(α
′)

)2 +
(
uGcb

ts(α
′)

)2
]

+
2
9

1
u2

[(
sF bb

ut (α
′)

)2

+
(
sF cc

ut (α
′)

)2 +
(
tGbc

us(α
′)

)2 +
(
tGcb

us(α
′)

)2
]
− 4

27
s2

tu
F

bb

tu
(α′)F bb

ut (α
′) + F cc

tu (α′)F cc
ut (α

′)
)

depend on internal geometry

(see: L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arXiv:0904.3547 [hep-ph])



4 fermion amplitudes:

These amplitudes are more model dependent 
and test the internal CY geometry.

Exchange of Regge, KK and winding resonances.

Constrained by FCNC’s

d

z2

ψ
γ4

α4

ψδ3
γ3

z1z4

b

z3

ψα1
β1

c

a

d

X1
X4

ψ
γ4

α4

a

θ4

c

θ2

X2

d

b

X z

ψ
β2

δ2

ψα1
β1

X3

ψδ3
γ3

θ3 θ2

θ1θ4

ψ
β2

δ2

θ1

θ3

(Abel, Lebedev, Santiago, hep-th/0312157)

α′ → 0 : agreement with SM !

|M(qq → qq)|2α′→0 →
4
9

[s2 + u2

t2

]
+

4
9

[s2 + t2

u2

]
− 8

27
s2

tu

(see: L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arXiv:0904.3547 [hep-ph])



● KK modes are seen in scattering processes with 
more than 2 fermions.

(L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. 
Stieberger, T. Taylor, arXiv:0904.3547 [hep-ph])

|A(qq → qq)|2 =
2
9

1
t2

[(
sF bb

tu (α′)
)2 +

(
sF cc

tu (α′)
)2 +

(
uGbc

ts(α
′)

)2 +
(
uGcb

ts(α
′)

)2
]

+
2
9

1
u2

[(
sF bb

ut (α
′)

)2

+
(
sF cc

ut (α
′)

)2 +
(
tGbc

us(α
′)

)2 +
(
tGcb

us(α
′)

)2
]
− 4

27
s2

tu
F

bb

tu
(α′)F bb

ut (α
′) + F cc

tu (α′)F cc
ut (α

′)
)

Squared 4-quark amplitude with identical flavors:

Squared 4-quark amplitude with different flavors:

|A(qq′ → qq′)|2 =
2
9

1
t2

[(
sF bb

tu (α′)
)2 +

(
sG̃cc′

tu (α′)
)2 +

(
uGbc

ts(α
′)

)2 +
(
uGbc′

ts (α′)
)2

]
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Dominant contribution:

F bb
tu = 1 +

g2
b t

g2
au

+
g2

b t

g2
a

Np ∆
u−M2

ab

∆ ∼ e−M2
ab/M2

sM2
ab = (M (b)

KK)2 + (M (a)
wind.)

2 ,

Np : Np = 3Degeneracy of KK-states;     take

∆ : Thickness of D-branes

KK of SU(2) branes and winding 
modes of SU(3) branes:

Mab :
Mab = 0.7Ms

Gbc
tu = G̃bc

tu = 1

D. Lüst, Orientifolds and Strings at LHC, Corfu Summer School 2009



Dijet angular contribution by t-channel exchange:

CMS detector simulation:

1fb−1 10fb−1Luminosity
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Five point scattering amplitudes (3 jet events):

z2

a

z3

a

a

a

z1

z4z5

Aa5

Aa1 Aa3

Aa4

Aa2

a

z2

a

z3

b

a

a

z1

z4z5

ψ
β5

α5

Aa1 Aa3

ψα4

β4

Aa2

a

(i) 5 gluons:

(ii) 3 gluons, 2 quarks: 

Field theory factors:

(Stieberger, Taylor (2006))

A(g−1 , g−2 , g+
3 , g+

4 , g+
5 ) =

(
V (5)(α′, ki)− 2iε(1, 2, 3, 4)P (5)(α′, ki)

)
×M(5)

YM

A(g−1 , g+
2 , g+

3 , q−4 , q+
5 ) =

(
V (5)(α′, ki)− 2iε(1, 2, 3, 4)P (5)(α′, ki)

)
×N (5)

YM

N (5)
YM =

4g3
YM〈15〉〈14〉3

〈12〉〈23〉 . . . 〈51〉

M(5)
YM =

4g3
YM〈12〉4

〈12〉〈23〉 . . . 〈51〉

(Computation of higher point amplitudes for LHC: D. Lüst, 
O. Schlotterer, S. Stieberger, T. Taylor, arXiv:0908.0409).
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k3

k2

k1

k4

k5

| k; n 〉 | k′
; n′ 〉

k3

k2

k1

k4

k5

| k; n 〉

The two kinds of amplitudes are universal: the 
same Regge states are exchanged:
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(iii)1 gluon, 4 quarks:

z1

b

z2

d

c

a

z5

z3z4

ψδ4
γ4

ψ
γ5

α5
ψα2

β2

ψ
β3

δ3

Aa

a

(1,2,3,4,5)

This amplitude has a similar structure as the 4 quark 
amplitude: exchange of Regge and KK modes.

Factorization on the 
4 quark amplitude:

Factorization on the 
2 quark - 2 gluon amplitude:

ψα4

β4
ψ

β3

α3

ψ
β5

α5

ψα2

β2

Aa

Aa

ψα2

β2

ψ
β5

α5

ψ
β3

α3

ψα4

β4
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Conclusions
 ●    There exists many ISB models with SM like spectra  
       without chiral exotics.

Computations done at weak string coupling !
      Black holes are heavier than Regge states:

Question: do loop and non-perturbative corrections 
change tree level signatures? Onset of n.p. physics: Mb.h.

●   One can make some model independent predictions:

String tree level, 4-point processes with 2 or 4 gluons   
☛ observable at LHC ??  -     

(Independent of amount of (unbroken) supersymmetry!) 

Mstring??
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If nature choses weakly coupled strings 
with a string  scale at a few TeV,  LHC 

should find them !
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Thank you !


