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Motivation-Conclusions

I The AdS/CFT correspondence is a tool to extract information
for gauge theories at strong coupling from gravity. Bound
states of quarks are dual to classical string probe solutions.

I Not all probe solutions are suitable for such a description.
Apart from identifying a correct asymptotic behavior, a
stability analysis of the solution proves to be essential.

I Discrepancies arise in many examples between field theory
/experimental expectations and their gravitational description,
ie multivalued potentials, confinement in N = 4 SYM.

I Discrepancies are resolved as these solutions prove to be
unstable. Findings from the dual gravity side coincide with
gauge theory expectations.



Plan of the talk:

I Construction of bound states within the gravity/gauge theory
duality.

I Calculation of binding energy.

I Applications: heavy mesons, baryons and dyons (comment on
them).

I Stability analysis:

I Based on general statements concerning the perturbative
stability of such string solutions (transcendental equation),
rather than (heavy) numerics.

I Applications and resolutions of the discrepancies.



Quark-antiquark potential within AdS/CFT
I Heavy quark-antiquark potential E (L) is extracted from

Wilson loop expectation values 〈W (C )〉.
I Within AdS/CFT, the interaction potential energy of the

quark-antiquark static pair is given by

e−iET = 〈W (C )〉 ' exp (iS [C ]) ,

where S [C ] is the Nambu–Goto action for a string extending in
the bulk, with its endpoints on the contour C at the boundary.
Note: N = 4 SYM is massless. Quarks are external.

Figure: The string’s turning point is u0. Its minimum is umin.



The Nambu–Goto action is given in terms of the induced metric on
the worldsheet, namely γαβ as

S [C ] = −
∫

dτdσ
√
− det γαβ ; γαβ = Gµν(u, θ)∂αxµ∂βxν .

I At first, for simplicity we consider diagonal metrics of the form

d`2 = Gttdt2 + Guudu2 + Gyydy2 + Gxxdx2 + Gθθdθ2 + . . . ,

where the different type of coordinates are:
u: radial AdS direction, x : generic cyclic coordinate,
y : direction of qq̄ axis, θ: non-cyclic angular coordinate.

I Gauge choice

α ≡ (τ, σ) , τ = t , σ = u .

I Ansatz for the classical solution

y = ycl(u) , x = 0 , θ = θ0 = const. , rest = const. .

I Impose the boundary condition

y(u → ∞) = ±L/2 ,

where L is the separation length of the qq̄ pair.



The potential: Integration of the e.o.m. and the b.c. gives for the
length

L(u0) = 2f 1/2
y0

∫ ∞

u0
du
√

g
fy (fy − fy0)

,

and for the binding energy (heavy quarks)

E (u0) =
∫ ∞

u0
du

(√
gfy

fy − fy0
−√g

)
−
∫ u0

umin

du
√

g ,

where we have substracted the the divergent contribution of
disconnected worldsheets; g ≡ −GttGuu , fy ≡ −GttGyy .
Eliminating u0 determines the qq̄ potential E (L).

I The potential must satisfy the [Baumgartner et al 85, Bachas 86].

concavity condition :
dE
dL

> 0 ,
d2E
dL2 6 0 .

I In conformal case [Maldacena 98, Rey-Yee 98] Coulomb behavior

E (L) ∼ −
√

g2
YMN/L .

I In non-conformal (non-extremal, multicenter), complicated. . .



Examples-Discrepancies
We shall next present two generic examples and consider
applications of the first one.
I. Double-valued potential, maximal length.

L

E

u0

L

I Applications:
N = 4 at finite temperature using black D3-branes: Static qq̄
[Rey et al, Brandhuber et al 98].
Moving: Applications of AdS/CFT to Physics at RHIC.
[Liu-Rajagopal-Wiedemann, Friess-Gubser-Michalogiorgakis-Pufu 06]
Rindler space, similar behavior with generic black holes near
the horizon [ Avramis-Sfetsos-KS 07].

I Upper branch is energetically unfavorable and it violates
concavity. Stability analysis discards it.



II. No critical points, Coulomb/Confining potential

L

E

I Coulomb branch of N = 4, multicenter supersymmetric
D3-brane solutions [Brandhuber-Sfetsos,99]. Confining behavior is
not expected for N = 4 SYM.[Seiberg 1988]
Stability analysis discards the confining behavior.

I Less supersymmetric backgrounds.
I Confining behavior can exist in less SUSY backgrounds.

β-deformed backgrounds ⇔ N = 1 SCFTs
[Hernández-Sfetsos-Zoakos, 05].

I Indeed this proves to be stable [Avramis-Sfetsos-KS, 07].



Stability analysis
Objective: A stability analysis will determine the parametric region
of u0 and the parameters of the problem for which fluctuations
about the classical configurations become unstable-unphysical.

Small fluctuations-Generalities

I Three types of fluctuations:
Transverse δx : cyclic coordinate transverse to qq̄ axis

Longitudinal δy : cyclic coordinate along qq̄ axis
Angular δθ : non-cyclic angular coordinate

I Perturbation of the embedding

x = δx(t, u) , y = ycl(u) + δy(t, u) , θ = θ0 + δθ(t, u) .

I Due to the worldsheet diffeomorphism invariance, we keep the
gauge choice (τ = t, σ = u) fixed.



Perturbation
We expand the action around the classical solution. Writing down
the equations of motion for the quadratic part of the action, using
independence of the various functions from t, we set

δxµ(t, u) = Φµ(u)e−iωt , µ = x , y , θ

and we obtain 3 decoupled differential equations of the general
Sturm–Liouville type for the Φµ’s defined in the infinite interval
u ∈ [u0, ∞).

Boundary Conditions

I We keep the endpoints at the boundary fixed

u → ∞ : Φµ = 0 , for µ = x , y , θ .

I To have a well defined variational problem we obtain the
following conditions at the turning point u = u0 of the string,

Φy + 2(u − u0)Φ′
y = 0 , (u − u0)1/2Φ′

x ,θ = 0 .



The zero mode problem

I In most of the cases, it is impossible to exactly determine the
spectrum of the Sturm-Liuville problem(for these b.c.
ω2 ∈ R). It turns out that we can obtain useful information
by studying the zero-mode problem(simpler).

I The spectrum may become negative if dimensionless
parameters can be formed from those in the supergravity
background and u0. For example in cases with temperature,
angular momentum, velocity, deformation parameter,... there
are instabilities.

I If there are instabilities then, as we lower u0, we must cross a
point u0c where the differential equation has a zero mode.

I Note: For asymptotically AdS spaces and for sufficiently large
u0 we always have positive spectrum (stable).



Zero Modes: Transverse
Transverse fluctuations are stable.

Zero Modes: Longitudinal
The zero mode solution for the longitudinal which vanishes at the
boundary reads

Φy ∼
∫ ∞

u
du

√
gfy

(fy − fy0)3/2 ,

expanding this solution around u = u0 we obtain

Φy ∼ const.(u − u0)−1/2 + 2
∫ ∞

u0

du√
fy − fy0

∂u

(√
gfy
f ′y

)
+ · · · .

I This solution should satisfy the boundary condition for the
longitudinal fluctuations at u0. Satisfying this condition leads
that the constant term in the above expansion of the should
be zero. So, by just solving at most a transcendental equation
we get an indication of an instability.



I On the other hand we have that the derivative of the length
with respect to u0 reads

L′(u0) = 2
f ′y0√
fy0

∫ ∞

u0

du√
fy − fy0

∂u

(√
gfy
f ′y

)
.

I Theorem: Longitudinal zero modes are "1-1" with the
(potential) extrema of L(u0) .

I Existence of a zero mode is an indication of an instability. We
have to perturb the diff. eqn. around u0c, so to examine its
stability behavior. Doing it so, we find

ω2
0 = A(u0 − u0c) + . . . , u0c = u0m ,

where A = const. depends on the parameters of the problem.

Figure: A>0 → The upper branch in Ex. I is unstable, ie u0 < u0m .



Analytic Example:
Non-extremal D3-branes/ Dual to N = 4 SYM at finite temperature.
Metric for stack of non-extremal D3-branes
(in units of πTH , R = 1).

d`2 = u2
[
−
(

1− 1
u4

)
dt2 + d~x2

3

]
+

u2

u4 − 1
du2 + dΩ2

5 .

I Meson separation length and energy in terms of u0

L ∼

√
u4
0 − 1

u3
0

2F1

(
1
2
,
3
4
,
5
4
;

1
u4
0

)
, E ∼ −u0 2F1

(
−1

2
,−1

4
,
1
4
;

1
u4
0

)
+ const.. .

The plots of L = L(u0) and E = E (L), were given in example
A. Maximum of the length yields to a longitudinal instability.
Numerically: u0c ' 1.177, Lm ' 0.869.

I Similar results for mesons moving in hot plasma and for
Rindler space (soap film). [Friess-Gubser-Michalogiorgakis-Pufu 06,
Avramis-Sfetsos-KS 07]



Summary-extensions

I Built up: We constructed configurations dual to bound states.
Gravity side predictions may contradict with gauge theory
/experimental expectations. A stability analysis of the classical
solution is essential.

I Solved puzzles: In line with gauge theory expectations, eg
concavity, no-confinement in N = 4 SYM...

I Simple extensions: Similar methods as the ones described here
could be applied to other classical solutions involving
D-strings, extended branes.
Overwhelming expectations-dyons: Part(s) energetically
unfavorable are pertubatively stable.
Baryons: Colorless states.
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