Probing CP Violation with Momentum Reconstruction at the LHC

Krzysztof Rolbiecki IPPP, University of Durham

in collaboration with: G. Moortgat-Pick, J. Tattersall, P. Wienemann arXiv:0908.2631

Corfu Summer Institute, 2 September 2009

www.ippp.dur.ac.uk

- supersymmetry can introduce new sources of CP violation
- these may be needed to explain baryon asymmetry of the universe
- new CP phases can be measured in high energy physics experiments
 - \Rightarrow so far most analyses concentrated on the ILC

see Kittel, arXiv:0904.3241 for a recent review

⇒ challenging at the LHC

Ellis, Moortgat, Moortgat-Pick, Smillie, Tattersall arXiv:0809.1607 Deppisch, Kittel arXiv:0905.3088

We show that in spite of the difficult experimental environment the measurement of CP-odd effects may be possible at the LHC.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

OP-odd asymmetry after momentum reconstruction

Outline

2 CP violation in squark decay chain

3 CP-odd asymmetry after momentum reconstruction

4 Conclusions

A >

Introduction

Minimal Supersymmetric Standard Model

particles		spin 0		spin 1/2		$SU(3)_c, SU(2)_L, U(1)$	$)_Y$	
squarks and quarks	Q	$\left(egin{array}{c} ilde{u}_L \ ilde{d}_L \end{array} ight)$			$\begin{pmatrix} u \\ d \end{pmatrix}_L$	$({f 3},{f 2},rac{1}{6})$		
(3 flavors)	U	$ ilde{u}_I^*$	e R	i	ι_R^{\dagger}	$(ar{3},1,-rac{2}{3})$		
	D	$ ilde{d}_R^n$		6	l_R^\dagger	$(\bar{3}, 1, \frac{1}{3})$		
sleptons and leptons	L	$\left(egin{array}{c} ilde{ u} \\ ilde{e}_{I} \end{array} ight)$			$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)_{L}$	$(1,2,- frac{1}{2})$		
(3 flavors)	E	$ ilde{e}_R^*$		e	\mathcal{E}_R^{\dagger}	$({f 1},{f 1},1)$		
Higgs bosons and	H_u	$\left(\begin{array}{c}H_u^+\\H_u^0\end{array}\right)$			$\left(\begin{array}{c} \tilde{H}_{u}^{+} \\ \tilde{H}_{u}^{0} \end{array} \right)$	$(1,2,rac{1}{2})$		
Higgsinos	H_d	$\left(\begin{array}{c}H_d^0\\H_d^-\\H_d^-\end{array}\right)$			$ \tilde{\tilde{H}_d^0} \\ \tilde{\tilde{H}_d^-} $	$(1,2,- frac{1}{2})$		
particles	sp	$\frac{1}{2}$	spi	n 1	SU(3	$B)_c, SU(2)_L, U(1)_Y$		
gluino, gluon		$ ilde{g}$		g		(8 , 1 , 0)		
winos, W bosons	\tilde{W}	${}^{\pm} \tilde{W}^0$	W^{\pm}	$W^{\pm} W^0$		(1 , 3 , 0)		
bino, B boson		\tilde{B}^0	B^0		(1,1,0)			

K. Rolbiecki (IPPP)

Neutralino sector of MSSM

• neutralino mass matrix in gauge eigenstate basis $(\tilde{B}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u)$

Introduction

 $M_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -m_Z c_\beta s_W & m_Z s_\beta s_W \\ 0 & M_2 & m_Z c_\beta c_W & -m_Z s_\beta c_W \\ -m_Z c_\beta s_W & m_Z c_\beta c_W & 0 & -\mu \\ m_Z s_\beta s_W & -m_Z s_\beta c_W & -\mu & 0 \end{pmatrix}$

diagonalization of mass matrix

 $\operatorname{diag}(m_{\tilde{\chi}^0_1}, m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_3}, m_{\tilde{\chi}^0_4}) = N^* M_{\tilde{\chi}^0} N^{-1}$

- when M_1 and/or μ are complex mixing matrix N has non-trivial complex structure
- complex elements of N appear in neutralino couplings triggering CP-odd effects

CP phases in the MSSM

 CP phases enter in the gaugino/higgsino mass parameters and trilinear couplings:

 $M_i = |M_i|e^{i\phi_i}, \qquad \mu = |\mu|e^{i\phi_\mu}, \qquad A_f = |A_f|e^{i\phi_f}$

 \Rightarrow strong bounds from EDMs

- ⇒ large phases possible if accidental cancellations occur see e.g. Ellis, Lee, Pilaftsis arXiv:0808.1819
- \Rightarrow or 1st and 2nd generation of squarks are heavy
- CP phases can be probed by asymmetries in cross sections and decay widths, asymmetries of triple products of momenta and/or spins
 - ⇒ such CP- and T-odd observables provide unambiguous way of detecting CP violation in the model

Triple products

Triple product correlations of momenta are a useful tool for studying CP violation effects

• construct a T_N-odd observable:

 $\mathcal{T} = \overrightarrow{p_1} \cdot \left(\overrightarrow{p_2} \times \overrightarrow{p_3} \right)$

- it is CP-odd if higher order effects and finite widths can be neglected
- originates from Dirac traces in matrix element

$$\mathrm{Tr}\left[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{5}\right]\longrightarrow i\epsilon_{\mu\nu\rho\sigma}p_{a}^{\mu}p_{b}^{\nu}p_{c}^{\rho}p_{d}^{\sigma}$$

⇒ together with imaginary part of couplings gives rise to CP-odd asymmetries

Introduction

CP-sensitive asymmetries

Example: triple product in decay chain $\tilde{t} \rightarrow \tilde{\chi}_2^0 t \rightarrow \tilde{\chi}_1^0 l^+ l^- t$

$$\mathcal{T}_t = ec{p_t} \cdot (ec{p_{l^+}} imes ec{p_{l^-}})$$

- count the number of events N₊ where p
 it points above the plane defined by leptons vs. the number of events N₋ when it points below it
- define the asymmetry as:

$$A_{\rm CP} = \frac{N_+ - N_-}{N_+ + N_-}$$

•
$$A_{\rm CP} = 0$$
 when phases vanish

Introduction

CP violation in squark decay chain

3 CP-odd asymmetry after momentum reconstruction

4 Conclusions

3 1 4

4 A N

Chosen scenario

• mSUGRA parameters:

 $m_0 = 150 \; {\rm GeV}, \, m_{1/2} = 200 \; {\rm GeV}, \, A_0 = -650 \; {\rm GeV}, \, {\rm tan} \, \beta = 10$

resulting masses in GeV and branching ratios:

$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}^0_2}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{ ilde{g}}$	$m_{\tilde{q}_L}$	$m_{\tilde{t}_1}$	
78.1	148.4	148.2	496.5	480	171.0	

Mode	$\tilde{g} \rightarrow \tilde{t}_1 \bar{t} + \text{c.c.}$	$\tilde{q}_L o \tilde{\chi}_1^{\pm} q'$	$\tilde{q}_L \to \tilde{\chi}_2^0 q$	$\tilde{t}_1 \to \tilde{\chi}_1^+ b$	
BR	53.8%	65%	33%	98.1%	
Mode	$\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \tau^+ \nu_{\tau}$	$\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \ell^+ \nu_\ell$	$\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \tau^+ \tau^-$	$\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 \ell^+ \ell^-$	
BR	37.2%	$2\times 12.2\%$	59.3%	$2 \times 4.5\%$	

introduce the complex phase for the bino mass parameter

 $M_1 = |M_1| e^{i\phi_1} \qquad 0 \le \phi_1 < 2\pi$

Squarks production and decay

production rates at 14 TeV

Particle	Total Coloured	$ ilde{g}$	\tilde{q}_L	\tilde{q}_L^*	$\tilde{q}_L + \tilde{g}$	$\tilde{q}_L^* + \tilde{g}$
Cross Section (pb)	148	59.2	30.0	8.3	18.2	3.1

- high production rate of squarks
- squarks dominate over antisquarks
- left squarks decay to $\tilde{\chi}_2^0$ with BR = 33%

CP asymmetry in neutralino 3-body decay

- neutralinos $\tilde{\chi}_2^0$ appear copiously in the \tilde{q}_L decay chain
- leptonic 3-body decay of neutralino

 $\tilde{q}_L \to \tilde{\chi}_2^0 + q \to \tilde{\chi}_1^0 \ \ell^+ \ \ell^- + q$

Choi, Chung, Kalinowski, Kim, KR hep-ph/0504122 Aguilar-Saavedra hep-ph/0403243

• triple product of lepton momenta and a quark from \tilde{q}_L decay

 $\mathcal{T}_{q\ell\ell} = \vec{p}_q \cdot \left(\vec{p}_{\ell^+} \times \vec{p}_{\ell^-} \right)$

Moortgat-Pick, KR, Tattersall, Wienemann

- sensitive to the phase of M_1
- asymmetry up to 15% in *q̃*_L rest frame

$$\mathcal{A}_{CP} = \frac{N(\mathcal{T}_{q\ell\ell} > 0) - N(\mathcal{T}_{q\ell\ell} < 0)}{N(\mathcal{T}_{q\ell\ell} > 0) + N(\mathcal{T}_{q\ell\ell} < 0)}$$

Dilution due to boosts

- asymmetry as a function of the squark momentum in the laboratory frame
- high and undetermined boost decreases the asymmetry
- the highest asymmetry in the squark rest frame

Hadron level asymmetry

- dilution due to boost of squarks and admixture of antisquarks (# q̃_L / # q̃^{*}_L ~ 3.6)
- high production rate of $\tilde{q}_L + \tilde{q}_L^* \sim 38$ pb gives high statistics
- hints could be seen at the LHC at higher luminosity
- if we could go back to the neutralino rest frame...

Hadron level asymmetry

- dilution due to boost of squarks and admixture of antisquarks (# q̃_L / # q̃_L^{*} ~ 3.6)
- high production rate of $\tilde{q}_L + \tilde{q}_L^* \sim 38$ pb gives high statistics
- hints could be seen at the LHC at higher luminosity
- if we could go back to the neutralino rest frame...

Hadron level asymmetry

- dilution due to boost of squarks and admixture of antisquarks (# q̃_L / # q̃_L^{*} ~ 3.6)
- high production rate of $\tilde{q}_L + \tilde{q}_L^* \sim 38$ pb gives high statistics
- hints could be seen at the LHC at higher luminosity
- if we could go back to the neutralino rest frame...

Outline

Introduction

2 CP violation in squark decay chain

OP-odd asymmetry after momentum reconstruction

4 Conclusions

Momentum reconstruction

Momentum reconstruction

Further steps

• combine the momenta of $\tilde{\chi}^0_{1B}$ and ν_ℓ as they cannot be resolved

$$P_{\tilde{g}ME} = P_{\tilde{\chi}^0_{1B}} + P_{\nu_\ell}$$

8 unknowns:

$$\begin{pmatrix} E_{\tilde{\chi}_{1A}^{0}}, \ p_{\tilde{\chi}_{1A}^{0}}(x), \ p_{\tilde{\chi}_{1A}^{0}}(y), \ p_{\tilde{\chi}_{1A}^{0}}(z) \end{pmatrix} \\ \begin{pmatrix} E_{\tilde{g}ME}, \ p_{\tilde{g}ME}(x), \ p_{\tilde{g}ME}(y), \ p_{\tilde{g}ME}(z) \end{pmatrix}$$

• form the system of 6 linear and 2 quadratic equations

Some tricky details

- up to 4 possible real solutions
 - ⇒ take only events where all solutions have the same sign of triple product
- background due to signal process with \$\tilde{\chi}_2^0\$ decaying to taus followed by leptonic tau decays to same flavor leptons
 \$\tilde{\chi}_2^0 → \tilde{\chi}_1^0 \tau^+ \tau^- → \tilde{\chi}_1^0 \ell^+ \nu_\ell \bar{\nu}_\epsilon \ell^- \bar{\nu}_\epsilon \nu_\epsilon
 \$\$ usually does not give the same sign triple product for different solutions
 \$\$ difference dif
- combinatorics
 - ⇒ no real solutions in case of wrong assignments of particles in most cases

CP-odd asymmetry after momentum reconstruction

Effect of boost on triple product

- using reconstructed momenta we can calculate triple product in the rest frame of the neutralino $\tilde{\chi}_2^0$
- asymmetry becomes clearly visible after boost in the triple product distribution
- use Herwig++ to validate analytical results and generate the events

< >> < >>

< 47 ▶

CP-odd asymmetry after momentum reconstruction

Asymmetry after reconstruction

- asymmetry returns to parton level magnitude
- substantially increases statistical significance of any result
- good prospects for 3σ discovery or exclusion for wide range of φ₁ values

글 🕨 🖌 글

selection cuts

$$E_T(j_1) \ge 100 \text{ GeV}, \qquad E_T(j) \ge 25 \text{ GeV}$$

 $E_T(\ell_{e,\mu}) \ge 10 \text{ GeV}, \qquad M_{\ell^+\ell^-} \ge 20 \text{ GeV}, \qquad |\eta| \le 2.5$

momenta of final particles smeared in the detector

$$\frac{\sigma_E}{E} = \frac{a_{j,e}}{\sqrt{E}} \oplus \frac{b_{j,e}}{E} \oplus c_{j,e}$$

- for jets $a_j = 0.6 \text{ GeV}^{\frac{1}{2}}$, $b_j = 1.5 \text{ GeV}$ and $c_j = 0.03$
- for electrons $a_e = 0.12 \text{ GeV}^{\frac{1}{2}}$, $b_e = 0.2 \text{ GeV}$ and $c_e = 0.01$
- missing energy resolution

$$\frac{\sigma_{MET}^x}{E_T} = \frac{\sigma_{MET}^y}{E_T} = \frac{0.57}{\sqrt{E_T/\text{GeV}}}$$

CP-odd asymmetry after momentum reconstruction

Asymmetry with experimental effects

- momentum smearing reduces the number of reconstructed events and increases dilution
- includes uncertainty in particle masses

Outline

1 Introduction

2 CP violation in squark decay chain

3 CP-odd asymmetry after momentum reconstruction

4 Conclusions

< 17 ▶

Conclusions

- squark decays are a promising channel for studying CP violation at the LHC
- suppression of asymmetries by boosts can be overcome by momentum reconstruction
- reconstruction significantly improves sensitivity by enhancing the signal
- information from LHC on CP violation could direct future searches at a linear collider
- Outlook:
 - ⇒ more detailed experimental study is in progress

Appendix

Momentum reconstruction matrix

$$\mathcal{M}\begin{pmatrix} A\\ B\\ C\\ D\\ E\\ F \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(m_{\tilde{\chi}_{1}^{0}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}) + P_{\ell_{a}^{+}} \cdot P_{\ell_{a}^{-}} + E_{\tilde{\chi}_{1a}^{0}}(E_{\ell_{a}^{+}} + E_{\ell_{a}^{-}}) \\ \frac{1}{2}(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{q}}^{2}) + P_{\ell_{a}^{+}} \cdot P_{q} + P_{\ell_{a}^{-}} \cdot P_{q} + E_{\tilde{\chi}_{1a}^{0}}E_{q} \\ \frac{1}{2}(m_{b}^{2} + m_{\tilde{\chi}_{1}^{+}}^{2} - m_{\tilde{t}}^{2}) + P_{\ell_{b}^{+}} \cdot P_{b} + E_{\tilde{g}ME}E_{b} \\ \frac{1}{2}(m_{\tilde{t}}^{2} + m_{t}^{2} - m_{\tilde{g}}^{2}) + P_{\ell_{b}^{+}} \cdot P_{t} + P_{b} \cdot P_{t} + E_{\tilde{g}ME}E_{t} \\ \frac{p_{miss}^{T}(x)}{p_{miss}^{T}(y)} \end{pmatrix}$$

where

$$\mathcal{M} = \begin{pmatrix} \overrightarrow{p}_{\ell_{a}^{+}\ell_{a}^{-}} \overrightarrow{p}_{\ell_{a}^{+}} & \overrightarrow{p}_{\ell_{a}^{+}\ell_{a}^{-}} \overrightarrow{p}_{\ell_{a}^{-}} & \overrightarrow{p}_{q}^{-} & \overrightarrow{p}_{q}^{$$

26/28

Appendix

Asymmetry before reconstruction with cuts

With high luminosity wide range of ϕ_1 covered: $0.15 \pi \leq \phi_1 \leq 0.9 \pi \quad \cup \quad 1.1 \pi \leq \phi_1 \leq 1.85 \pi$

(日)

Backgrounds

• SUSY backgrounds:

$$\begin{split} \tilde{g}\tilde{q}_L &\to (\tilde{b}_{1,2}b) + (\tilde{\chi}_2^0 q) \to (\tilde{\chi}_1^- tb) + (\tilde{\chi}_2^0 q) \to (\ell tb) + (\ell \ell q) + E_{miss} \\ \tilde{g}\tilde{q}_L &\to (\tilde{b}_{1,2}b) + (\tilde{\chi}_2^0 q) \to (\tilde{t}_1 W b) + (\tilde{\chi}_2^0 q) \to (\ell b W b) + (\ell \ell q) + E_{miss} \\ \tilde{g}\tilde{g} \to (\tilde{t}_1 t) + (\tilde{b}_{1,2}b) \to (\tilde{\chi}_1^- b t) + (\tilde{t}_1 W b) \to (\ell b t) + (\ell b \ell b) + E_{miss} \\ \tilde{g}\tilde{g} \to (\tilde{t}_1 t) + (\tilde{t}_1 t) \to (\tilde{\chi}_1^- b t) + (\tilde{\chi}_1^- b \ell b) \to (\ell b t) + (\ell b \ell b) + E_{miss} \end{split}$$

- \Rightarrow need further studies
- ⇒ hopefully cannot pass reconstruction process