INTRODUCTION	A TRACKING QUINTESSENTIAL MODEL	WIMP RELIC DENSITY	e^{\pm} -CRs From χ Annihilation	Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane	CONCLUSIONS
	0	0	0	0	
	0	0	0	0	

TRACKING QUINTESSENCE, WIMP RELIC DENSITY, PAMELA AND FERMI LAT

C. PALLIS

DEPARTMENT OF PHYSICS UNIVERSITY OF PATRAS

BASED ON:

- S. LOLA, C.P. AND E. TZELATI, arxiv:0907.2941;
- C.P, Work in Progress

OUTLINE

INTRODUCTION

A TRACKING QUINTESSENTIAL MODEL THE QUINTESSENTIAL DYNAMICS

The Allowed Parameter Space

WIMP RELIC DENSITY

THE BOLTZMANN EQUATION

The $\Omega_{\chi} h^2$ Enhancement

e^{\pm} -CRs From χ Annihilation

THE BASIC FORMALISM

FITTING THE PAMELA AND FERMI LAT DATA

Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane

IMPOSED REQUIREMENTS

RESULTS

CONCLUSIONS

C. PALLIS

イロト イロト イヨト イヨト

INTRODUCTION	A TRACKING QUINTESSENTIAL MODEL	WIMP RELIC DENSITY	e^{\pm} -CRs From χ Annihilation	Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane	Conclusions
	0	0	0	0	
	0	0	0	0	

CMB AND SNIE OBSERVATIONAL DATA

THE ACCURATE DETERMINATION OF COSMOLOGICAL PARAMETERS BY WMAP5 ESTABLISHES CONVINCING EVIDENCE FOR THE CONSTITUTION OF THE UNIVERSE:

 $\Omega_{\rm CDM} = 0.214 \pm 0.027, \ \ \Omega_{\rm DE} = 0.74 \pm 0.12 \ \ \text{and} \ \ w_{\rm DE} < -0.86.$

• NATURAL CANDIDATES TO ACCOUNT FOR THE CDM ARE THE Weakly Interacting Massive Particles (WIMPs), χ . WE Require:

 $0.097 \leq \Omega_{\chi} h^2 \leq 0.12$ Where $\Omega_{\chi} h^2 = f(m_{\chi}, \langle \sigma v \rangle)$ Within the Standard Cosmology (SC).

 $(m_{\chi} \text{ is the } \chi \text{ Mass and } \langle \sigma v \rangle$ is the Thermal-Averaged Cross Section of χ Times Its Velocity).

 DE can be Explained With the Introduction of a Slowly Evolving Today Scalar Field, q, Called Quintessence¹. An Open Possibility in This Scenario is the Existence of an Early Kination Dominated (KD)² era.

Impact of KD Era on $\Omega_{\chi} h^2$

• The Presence of a KD Era Increases³ Drastically (up to 3 Orders of Magnitude) $\Omega_{\chi}h^2$.

 $\Omega_{\chi}h^2=f\left(m_{\chi},\langle\sigma v\rangle, \ \ {\rm Quintessential Parameters}\right).$

 As a Consequence, (σv)'s Larger Than Those Allowed in SC are Required in a Quintessential Kination Scenario (QKS). I.E,

$$0.097 \lesssim \Omega_{\chi} h^2 \lesssim 0.12 \quad \Rightarrow \begin{array}{l} \left\{ \langle \sigma v \rangle \sim 2 \cdot 10^{-9} \text{ GeV}^{-2}, & \text{ in the SC}, \\ \left\langle \sigma v \rangle \sim (10^{-7} - 10^{-6}) \text{ GeV}^{-2}, & \text{ in the QKS} \end{array} \right. \text{ for } m_{\chi} \sim (0.1 - 1) \text{ TeV}.$$

¹R.R. Caldwell et al. (1997)

³ P. Salati (2002); S. Profumo and P. Ullio (2003); C.P. (2005).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

² B. Spokoiny (1993); M. Joyce (1997)

INTRODUCTION	A TRACKING QUINTESSENTIAL MODEL	WIMP RELIC DENSITY	e^{\pm} -CRs From χ Annihilation	Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane	Conclusions
	0	0	0	0	
	0	0	0	0	

OBSERVATIONS ON THE e[±]-Cosmic Ray (CR) FLUXES

RECENTLY PAMELA⁴ and Fermi LAT⁵ Have Reported (Confirming, More Or Less, Previous Experiments⁶) A Rise of:

• PAMELA REPORTS NO EXCESS ON \bar{p} -CR Fluxes⁴. Therefore $\chi\chi \rightarrow l^+l^-$, With $l = e, \mu$ ($l = \tau$ is Excluded from BBN).

Is Possible an Explanation of the e^{\pm} -CR Anomalies Via χ Annihilation in the Galaxy?

- It is not Possible within SC due to the Very Low $\langle \sigma v \rangle$ Required from the CDM Considerations
- Is IT POSSIBLE IN THE CONTEXT OF AN ATTRACTIVE QUINTESSENTIAL SCENARIO?

⁴ PAMELA Collaboration (2009)

⁵ The Fermi-LAT Collaboration (2009))

⁶ ATIC Collaboration (2008); AMS-01 Collaboration (2007); HEAT Collaboration (1997).

C. PALLIS

TRACKING QUINTESSENCE, WIMP RELIC DENSITY, PAMELA AND FERMI LAT

INTRODUCTION	A Tracking Quintessential Model •	WIMP Relic Density O O	e^{\pm} -CRs From χ Annihilation O	Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane O	Conclusions
THE QUINTESSENT	TAL DYNAMICS				

RELEVANT EQUATIONS

We Assume the Existence of a Spatially Homogenous Scalar Field, q Which Obeys the Equation: $\ddot{q} + 3H\dot{q} + dV/dq = 0$, Where

 $V = \frac{M^{4+a}}{q^a} + \frac{b}{2}H^2q^2, \text{ with Free Parameters } a, b, \text{ and } M \text{ and Initial Conditions } \bar{q}_{\rm I} = \bar{q}(\tau_{\rm I}) = 0.01, \quad \bar{H}_{\rm I} = \bar{H}(\tau_{\rm I}) = \sqrt{\bar{\rho}_{q\rm I}}.$

• Normalized Quantities:
$$\bar{\rho}_i = \rho_i / \rho_{c0}$$
 With $i = q$, R, M and $\rho_{c0} = 3m_p^2 H_0^2$. Also $\bar{q} = q / \sqrt{3}m_P$ and $\bar{H} = H/H_0$

•
$$\bar{H}^2 = \bar{\rho}_q + \bar{\rho}_R + \bar{\rho}_M$$
 Where $\bar{\rho}_R \simeq \bar{\rho}_{R0} e^{-4\tau}$, $\bar{\rho}_M = \bar{\rho}_{M0} e^{-3\tau}$ and $\bar{\rho}_q = \bar{Q}^2/2 + V$ With $\bar{Q} = \bar{H} d\bar{q}/d\tau$ and $\tau = \ln (R/R_0)$.

• Extracted Quantities: • The Density Parameters, $\Omega_i = \rho_i / (\rho_q + \rho_R + \rho_M), i = q, R, M,$ • The Barotropic Index, $w_a = (\dot{q}^2/2 - V)/(\dot{q}^2/2 + V)$

THE COSMOLOGICAL EVOLUTION

The Field q Undergoes Four Phases During its Cosmological Evolution:

• THE KD PHASE WITH $\dot{q} \gg \rho_{\rm R} \gg V$. Therefore $\bar{H} \simeq \bar{H}\bar{q}' / \sqrt{2 - b\bar{q}^2}$, $\bar{q} \simeq \sqrt{\frac{2}{b}} \sin \sqrt{b} (\tau - \tau_{\rm I}) \Rightarrow \tau_{\rm ext} \simeq (2k+1) \sqrt{\frac{1}{b}} \frac{\pi}{2} + \tau_{\rm I}, \ k = 0, 1, 2, ...$

For $\tau=\tau_{ext},\,\dot{q}=Hdq/d\tau=0$ Instantaneously and so, $\rho_{\rm R}>\dot{q}/2.$ Consequently, the q Oscillations Become Anharmonic.

- Frozen-Field Dominated Phase, Where $\bar{H}^2 \simeq \bar{\rho}_R$ and $\bar{q} = cst$.
- Attractor Dominated Phase, Where $\rho_q\simeq V$ and $\bar{H}^2\simeq\bar{\rho}_{\rm M}.$ $\bar{\rho}_q$ Admits a Tracking Solution

$$\bar{\rho}_{\rm A}\simeq\bar{\rho}_{\rm Af}\exp\left(-3(1+w_q^{\rm fp})\tau\right) \ \, {\rm with} \ \, w_q^{\rm fp}=-2/(a+2)$$

• Vacuum Dominated Phase Where $\bar{H} \cong \bar{\rho}_q = V$. $\checkmark \equiv \lor ~ = ~ \circ \circ \circ \circ$

INTRODUCTION	A Tracking Quintessential Model O	WIMP Relic Density O O	e^{\pm} -CRs From χ Annihilation O	Constraints in the $m\chi$ – $\langle \sigma v \rangle$ Plane O	CONCLUSIONS		
The Allower Diseasers Since							

IMPOSED REQUIREMENTS

- The Constraint of the Initial Domination of Kination: $0.5 < \Omega_q(\tau_I) \le 1$.
- The Inflationary Constraint: $P_t/P_s \leq 1 \Rightarrow \bar{H}_I \leq 10^{56}$, Where $P_t [P_s]$: the Power Spectrum of the Tensor [Scalar] Perturbations.
- The BBN Constraint: $\Omega_a^{BBN} \le 0.21$.
- The DE and Coincidence "Constraint: $\Omega_q(0) = \Omega_{\rm DE} = 0.74 \Rightarrow M \sim 1 \text{ eV}$ and $d^2 V(\tau = 0)/dq^2 \simeq H_0^2$.
- The Cosmic Acceleration Constraint⁹: $-1 \le w_a(0) \le -0.86 \Rightarrow a \le 0.6.$

THE BAND STRUCTURE OF THE ALLOWED PARAMETER SPACE

Imposing the Observational Constraints we Obtain the Following Allowed Region In the $b - \log \bar{H}_{\rm I}$ Plane

b>0 Ensures The Coexistence 7 Of The Early KD Phase With The Tracking Solution 8

- ⁷ A. Masiero et al. (1999); F. Rosati (2003).
- 8 P. Binetruy (1999).
- 9 C. Baccigalupi et al. (2002).

The Band Structure of the Allowed Area Can be Explained From The Following Plot in the $\tau-\bar{q}$ Plane

INTRODUCTION	A Tracking Quintessential Model. O O	WIMP RELIC DENSITY	e^{\pm} -CRs From χ Annihilation O	Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane O	Conclusions			
THE BOLTZMANN	THE BOLIZMANN EQUATION							

Calculating $\Omega_{\chi} h^2$

The Number Density, n_{χ} , of χ 's Satisfies the Following Boltzmann Equation (BE):

$$\begin{split} & \dot{n}_{\chi} + 3Hn_{\chi} + \langle \sigma v \rangle \left(n_{\chi}^2 - n_{\chi}^{\text{eq}2} \right) = 0 \\ & \text{We Define } Y_{\chi} = n_{\chi}/s \text{ and } Y_{\chi}^{\text{eq}} = n_{\chi}^{\text{eq}}/s \end{split} \Rightarrow Y_{\chi}' = -y \sqrt{\frac{g_b}{g_q}} \overline{\langle \sigma v \rangle} \left(Y_{\chi}^2 - Y_{\chi}^{\text{eq}2} \right) \text{ Where } ' = \frac{d}{d\tau}, \ y(\tau) = \frac{\bar{s}}{\sqrt{\bar{\rho}_{\text{R}}}} \\ & \bar{s} = \frac{s}{\rho_{c0}^{3/4}}, \ \overline{\langle \sigma v \rangle} = \sqrt{3m_{\text{P}}} \rho_{c0}^{1/4} \langle \sigma v \rangle, \ \bar{H} \simeq \sqrt{\frac{g_q}{g_b}} \bar{\rho}_{\text{R}}, \ \text{With } g_b = 1 - \frac{b}{2} \bar{q}^2 \text{ And } g_q \simeq \begin{cases} 1 + \bar{Q}^2/2\bar{\rho}_{\text{R}} & \text{for } \tau \ll \tau_{\text{KR}}, \\ 1 & \text{for } \tau \gg \tau_{\text{KR}}. \end{cases} \\ & \text{Also } Y_{\chi}^{\text{eq}}(x) = \frac{45g}{4\pi^4} \sqrt{\frac{\pi}{2}} \frac{g}{g_{s^*}} x^{-3/2} e^{-1/x} P_2\left(\frac{1}{x}\right), \ \text{Where } x = \frac{T}{m_{\chi}}, \ g = 2 \ \text{And } P_n(z) = 1 + \frac{(4n^2 - 1)}{8z}. \end{split}$$

THE FREEZE-OUT PROCEDURE¹⁰

• For $\tau \ll \tau_F$, $Y_{\chi} \simeq Y_{\chi}^{eq}$ and so, BE can be Written as Follows: $\Delta' = -Y_{\chi}^{eq'} - y \overline{\langle \sigma v \rangle} \Delta \left(\Delta + 2Y_{\chi}^{eq}\right) \sqrt{g_b/g_q}$ With $\Delta = Y_{\chi} - Y_{\chi}^{eq}$. The Freeze-Out Logarithmic Time τ_F can be Defined by $\Delta(\tau_F) = \delta_F Y_{\chi}^{eq}(\tau_F)$, where $\delta_F \sim 1$ and Found by Solving Iteratively the Following Equation:

$$\left(\ln Y_{\chi}^{\rm eq}\right)'(\tau_{\rm F}) = -y_{\rm F} \overline{\langle \sigma v \rangle} \delta_{\rm F}(\delta_{\rm F}+2) Y_{\chi}^{\rm eq}(\tau_{\rm F}) \sqrt{g_b} / \sqrt{g_q} (\delta_{\rm F}+1) \text{ with } y_{\rm F} = y(\tau_{\rm F}).$$

• For $\tau \gg \tau_F$, $Y_{\chi} \gg Y_{\chi}^{eq}$ and Therefore, BE can be Solved as Follows:

$$Y_{\chi 0} = \left(Y_{\chi \mathrm{F}}^{-1} + J_{\mathrm{F}}\right)^{-1}, \ \text{Where} \ J_{\mathrm{F}} = \int_{\tau_{\mathrm{F}}}^{0} d\tau \ \sqrt{\frac{g_{b}}{g_{q}}} \ y \ \overline{\langle \sigma v \rangle} \ \text{ and } \ Y_{\chi \mathrm{F}} = (\delta_{\mathrm{F}} + 1) \ Y_{\chi}^{\mathrm{eq}}(\tau_{\mathrm{F}}).$$

Our Final Result can be Derived As Follows: $\Omega_{\chi} = \rho_{\chi 0}/\rho_{c0} = m_{\chi}s_0Y_{\chi 0}/\rho_{c0} \Rightarrow \Omega_{\chi}h^2 = 2.748 \cdot 10^8 Y_{\chi 0} m_{\chi}/\text{GeV}.$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

¹⁰G. Jungman, M. Kamionkowski and K. Griest (1995); C.P (2005).

INTRODUCTION	A TRACKING QUINTESSENTIAL MODEL O O	WIMP RELIC DENSITY O •	e^{\pm} -CRs From χ Annihilation O	Constraints in the $m\chi - \langle \sigma v \rangle$ Plane 0	Conclusions
The $\Omega_{\chi} h^2$ Enh/	NCEMENT				

Calculating $\Delta \Omega_{\chi}$

The Enhancement of $\Omega_{\chi}h^2$ w.r.t its Value in the SC, $\Omega_{\chi}h^2|_{SC}$, can be Estimated, by Defining $\Delta\Omega_{\chi} = \frac{\Omega_{\chi}h^2 - \Omega_{\chi}h^2|_{SC}}{\Omega_{\chi}h^2|_{SC}}$.

The Behavior of $\Delta\Omega_{\chi}$ as a Function of the Free Parameters of the QKS can be inferred from the Figure (a = 0.5, $H_{I} = 6.3 \cdot 10^{53}$, $T_{I} = 10^{9}$ GeV):

$\langle \sigma v \rangle$	10 ⁻⁷	10 ⁻⁶			
(GeV^{-2})					
$-\tau_F$	31.7 - 35.2	31.6 - 35.1			
	$b = 0.15, \tau_{ext} \simeq -33.1$				
τ_F^{min}	-33.3	-33.3			
	$b = 0.32, \tau_{ext} \simeq -33.8$				
τ_F^{min}	-34.1	-34.0			

COMMENTS

- For b = 0 we Obtain a pure KD era and $\Delta \Omega_{\chi}$ Increases When m_{χ} Increases or $\langle \sigma v \rangle$ Decreases.
- For $b \neq 0$, $\Delta \Omega_{\gamma}$ Depends Crucially on the Hierarchy Between τ_F and τ_{ext} .
- As m_{χ} Increases Above 0.1 TeV, $-\tau_{\rm F}$ Increases and Moves Closer to $\tau_{\rm ext}$ and $\Delta\Omega_{\chi}$ Decreases With Its Minimum $\Delta\Omega_{\chi}|_{\rm min}$ Occurring at $m_{\chi} = m_{\chi}|_{\rm min}$ Which Corresponds to $\tau_{\rm F}^{\rm min} \simeq \tau_{\rm ext}$.

INTRODUCTION	A Tracking Quintessential Model O	WIMP Relic Density O O	e^{\pm} -CRs From χ Annihilation \circ	Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane O	Conclusions
THE BASIC FORM	ALISM				

Calculating $\Phi_{e^+}^{\chi\chi}$

The e^+ Flux Per Energy – in Units $\text{GeV}^{-1}\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$ – at Earth from the χ Annihilation Can be Found From¹¹:

$$\Phi_{e^+}^{\chi\chi}(E) = \frac{1}{2} \frac{v_{e^+}}{4\pi b(E)} \left(\frac{\rho_{\odot}}{m_{\chi}}\right)^2 \langle \sigma v \rangle \int_E^{m_{\chi}} dE' I\left(\lambda_D(E,E')\right) \frac{dN_{e^+}}{dE'_{e^+}} , \text{ Where }$$

- $\frac{dN_{e^+}}{dE_{e^+}} = \begin{cases} \delta(E_{e^+} m_\chi) & \text{for } \chi\chi \rightarrow e^+e^-, \\ (\frac{Gem}{\pi})A \exp[-(A_1y + A_1y^2)] + B_1 + B_2y & \text{for } \chi\chi \rightarrow \mu^+\mu^-, \end{cases}$ Where $^{12}J = F(m_\chi), J = A, A_1, A_2, B_1, B_2.$
- v_{e^+} is the Velocity of e^+ , $y = E_{e^+}/m_{\chi}$, $\rho_{\odot} = 0.3~{\rm GeV/cm^3}$ and $b(E) = E^2/({\rm GeV}\,t_E)$ with $t_E = 10^{16}~{\rm s.}$

•
$$\lambda_D^2 = 4K_0t_E \left[\frac{(E'/\text{GeV})^{\delta-1} - (E/\text{GeV})^{\delta-1}}{\delta-1} \right] \text{ With } I(\lambda_D) = a_0 + a_1 \tanh\left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ And } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \cdot \left(\frac{b_1 - l}{c_1}\right) \left[a_2 \exp\left(-\frac{(l-b_2)^2}{c_2}\right) + a_3 \right] \text{ and } l = \log\left(\frac{\lambda_D}{\text{kpc}}\right) \right]$$

BASIC ASSUMPTIONS

As for the Prediction of any CDM Signal, There are Three Sources of Uncertainty:

- THE CDM DISTRIBUTION. WE ADOPT THE ISOTHERMAL HALO PROFILE, TO AVOID TROUBLES WITH OBSERVATIONS ON γ-CRs¹³.
- The Propagation of χ Annihilation Products. We Adopt the MED Propagation Model, Which Provides the Best Fits to the Combinations of the Various Data-sets¹⁴. It Fixes *a*'s, *b*'s and *c*'s, *K*₀ and δ .
- The Astrophysical Backgrounds. We Adopt Commonly Assumed Background e^+ and e^- Fluxes Normalized With the Fermi-LAT Data.

¹¹ E.A. Baltz and J. Edsjo (1999); J. Hisano et al. (2006); T. Delahaye et al. (2008); M. Cirelli, R. Franceschini and A. Strumia (2008). ¹² I.Z. Rothstein, T. Schwetz and J. Zupan (2009).

¹³G. Bertone, M. Cirelli, A. Strumia and M. Taoso (2009).

¹⁴K. Cheung, P.Y. Tseng and T.C. Yuan (2009).

INTRODUCTION	A TRACKING QUINTESSENTIAL MODEL	WIMP RELIC DENSITY	e^{\pm} -CRs From χ Annihilation	Constraints in the $m\chi - \langle \sigma v \rangle$ Plane	Conclusions
	0	0	0	0	
	0	0	•	0	

FITTING THE PAMELA AND FERMI LAT DATA

The χ^2 Analysis

We Define the
$$\chi^2$$
 Variables as Follows: $\chi^2_A = \sum_{i=1}^{N_A} \frac{\left(F^{\text{obs}}_{Ai} - F^{\text{th}}_{Ai}\right)^2}{\left(\Delta F^{\text{obs}}_{Ai}\right)^2}$, with $F_A = \begin{cases} \Phi_{e^+} / (\Phi_{e^+} + \Phi_{e^-}) & \text{and } N_A = 7 \\ E^3_{e^+} (\Phi_{e^+} + \Phi_{e^-}) & \text{and } N_A = 26 \end{cases}$ for Fermi LAT,

WHERE *i* RUNS OVER THE DATA POINTS OF EACH EXPERIMENT A, "obs" ["th"] STANDS FOR MEASURED [THEORETICALLY PREDICTED] VALUES.

THE BEST FIT POINTS

Performing a χ^2 Analysis We Find an Exceptionally Good Fit to PAMELA and Fermi-LAT Data for $\chi\chi \rightarrow \mu^+\mu^-$.

Annihilation Mode	$\begin{array}{c} \chi^2 \Big _{\min} / \\ \text{d.o.f} \end{array}$	$m_{\chi}/$ TeV	$\langle \sigma v \rangle /$ 10^{-7} GeV^{-2}	$\frac{\langle \sigma v \rangle_{\rm max} /}{10^{-7} {\rm ~GeV^{-2}}}$	$\left. \begin{array}{c} \Omega_{\chi} h^2 \right _{\mathrm{SC}} / \\ 10^{-4} \end{array} \right.$
$\chi \chi \rightarrow e^+ e^-$	95/31	0.58	4.6	2.5	5.8
$\chi \chi \rightarrow \mu^+ \mu^-$	24/31	1.28	19.5	16.5	1.4

C. PALLIS

TRACKING QUINTESSENCE, WIMP RELIC DENSITY, PAMELA AND FERMI LAT

INTRODUCTION	A Tracking Quintessential Model O O	WIMP Relic Density O O	e^{\pm} -CRs From χ Annihilation O	Constraints in the $m\chi - \langle \sigma v \rangle$ Plane \odot	Conclusions
IMPOSED REQUIRE	MENTS				

THE PREFERRED REGIONS FROM e^{\pm} -CR Anomalies

The Regions Which Are Favored at 95% [99%] c.l. by the Various Experimental Data on the e^{\pm} -CRs can Be Found Demanding

$$\chi^2 \lesssim \chi^2 \big|_{min} + 6 \left[\chi^2 \lesssim \chi^2 \big|_{min} + 9.2 \right] \text{ with } \chi^2 = \begin{cases} \chi^2_1 & \text{for PAMELA,} \\ \chi^2_1 + \chi^2_2 & \text{for PAMELA and Fermi LAT.} \end{cases}$$

Where $\chi^2|_{\min}$ Can Be Extracted Numerically By Minimization of χ^2 w.r.t the Independent Parameters, m_{χ} and $\langle \sigma v \rangle$.

OBSERVATIONAL CONSTRAINTS

Large $\langle \sigma v \rangle$'s may Jeopardize the Predictions of BBN and Have an Impact on CMB Angular Spectra. Less Restrictive Constraints can be Also Imposed. Consistency with Observations Entails:

• THE BBN CONSTRAINT¹⁵:
$$\langle \sigma v \rangle \le 6 \cdot 10^{-7} \text{ GeV}^{-2} \frac{2m_{\chi}}{E_{\text{vis}}} \frac{m_{\chi}}{1 \text{ TeV}}$$
 where $\frac{E_{\text{vis}}}{m_{\chi}} = \begin{cases} 2 & \text{for } \chi\chi \to e^+e^-, \\ 0.7 & \text{for } \chi\chi \to \mu^+\mu^-. \end{cases}$

• The CMB Constraint¹⁶:
$$\langle \sigma v \rangle \leq \frac{3.1 \cdot 10^{-8} \text{ GeV}^{-2}}{f} \frac{m_{\chi}}{1 \text{ TeV}}$$
 where $f \simeq \begin{cases} 0.7 & \text{for } \chi\chi \to e^+e^-, \\ 0.24 & \text{for } \chi\chi \to \mu^+\mu^-. \end{cases}$

• Constraint from the γ -CRs¹⁷: $\langle \sigma v \rangle \lesssim \begin{cases} 3 \cdot 10^{-6} \text{ GeV}^{-2} \text{ for } \chi\chi \rightarrow e^+e^-, \\ 4 \cdot 10^{-6} \text{ GeV}^{-2} \text{ for } \chi\chi \rightarrow \mu^+\mu^-. \end{cases}$ And the Isothermal Halo Profile.

• The Unitarity Constraint¹⁸: $\langle \sigma v \rangle \leq 8\pi \text{ GeV}^{-2} \left(\frac{m_{\chi}}{1 \text{ GeV}} \right)^{-2}$.

(日)(四)(日)(日)(日)(日)

¹⁵J. Hisano M. Kawasaki, K. Kohri, T. Moroi and K. Nakayama (2009).

¹⁶S. Galli, F. locco, G. Bertone and A. Melchiorri (2009); T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner (2009).

¹⁷ G. Bertone, M. Cirelli, A. Strumia and M. Taoso (2009).

¹⁸K. Griest and M. Kamionkowski (1990); L. Hui (2001).

INTRODUCTION	A Tracking Quintessential Model O O	WIMP Relic Density O O	e^{\pm} -CRs From χ Annihilation O	Constraints in the $m\chi - \langle \sigma v \rangle$ Plane \odot	Conclusions
RESULTS					

PUTTING ANYTHING TOGETHER

Imposing All the Available Constraints we Can Delineate our Findings in the $m_{\chi} - \langle \sigma v \rangle$ Plane as Follows:

GLOSSARY

Black Line	Upper Bound From	Region	Favored by
Solid	BBN	Sparse Black Hatched	PAMELA (95% c.l.)
Dashed	CMB	Dense Black Hatched	PAMELA AND FERMI LAT (95% C.L.)
Dotted	Unitarity	Sparse Red Hatched	PAMELA and Fermi LAT (99% c.l.)
Dot-Dashed	γ-CRs	LIGHT GRAY SHADED	CDM CONSIDERATIONS

A Simultaneous Interpretation of the e^{\pm} -CR Anomalies Consistently with the Various Constraints can be Achieved in the Regions Where The Gray Shaded Areas Overlap The Lined Ones Below the Dashed Lines (We Take a = 0.5, $T_I = 10^9$ GeV).

INTRODUCTION	A TRACKING QUINTESSENTIAL MODEL	WIMP RELIC DENSITY	e^{\pm} -CRs From χ Annihilation	Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane	CONCLUSIONS
	0	0	0	0	
	0	0	0	0	

FINAL SCORE

We Considered the Explanation of the e^{\pm} -CR Anomalies Consistently with a Number of Observational Constraints. The Best-Fit $(m_{\nu}, \langle \sigma v \rangle)$'s Which Saturate the Most Stringent (CMB) Bound are Arranged in the Table:

	Fits to PAMELA And Fermi-LAT Data						
		$\chi \chi \rightarrow e^+ e^-$		$\chi \chi ightarrow \mu^+ \mu^-$			
m_{χ} (TeV)	0.258			1.12			
$\langle \sigma v \rangle \left(\text{GeV}^{-2} \right)$	$1.14 \cdot 10^{-7}$			$1.44 \cdot 10^{-6}$			
$\chi^2 - \chi^2 _{min}$		177			9		
$\Omega_{\chi} h^2 _{\rm SC}$		0.0022			0.00019		
COMBINATIONS	of Parameters	QKS FOR $a = 0$	$0.5 \text{ and } T_{\rm I} = 10^{10}$	⁹ GeV			
b	0 0.2		0.32	0	0.08	0.18	
$\bar{H}_{\rm I}/10^{53}$	0.76	1.2	0.96	3.1	3.4	4.7	
$T_{\rm KR}~({\rm GeV})$	0.07	0.03	0.04	0.019	0.005	0.009	

FINAL REMARKS

- The Regions Favored by PAMELA and Fermi LAT for $\chi\chi \to e^+e^-$ Can Be Excluded.
- Part of the Region Favored at 99% c.l. by PAMELA and Fermi LAT for $\chi\chi \rightarrow \mu^+\mu^-$ is Allowed. For the Best-Fit $(m_{\chi}, \langle \sigma v \rangle)$ we Obtain $\chi^2/d.o.f = 33/31$.
- The CDM Requirement can Be Satisfied by Adjusting the Parameters of the QKS. We Obtain $T_{\rm KR} < 0.07~{
 m GeV}.$
- IT REMAINS THE CONSTRUCTION OF A PARTICLE MODEL¹⁹ WITH THE APPROPRIATE COUPLINGS SO THAT χ Annihilates into $\mu^+\mu^-$ With the Desired $\langle \sigma v \rangle$ Derived Self-Consistently With The (s)Particle Spectrum.

¹⁹ D. Feldman, Z. Liu and P. Nath (2009); R. Allahverdi et al. (2009); C. Balazs, N. Sahu and A. Mazūmdar (2009)... 🚊 🕨 🚊 🛷 🔍

INTRODUCTION	A TRACKING QUINTESSENTIAL MODEL	WIMP RELIC DENSITY	e^{\pm} -CRs From χ Annihilation	Constraints in the $m\chi - \langle \sigma v \rangle$ Plane	Conclusions
	0	0	0	0	
	0	0	0	0	

COMPARING WITH THE FITTING TO PAMELA AND ATIC DATA

Performing a Similar χ^2 Analysis We Find that the Fit to PAMELA and ATIC Data is poorer for $\chi\chi \to \mu^+\mu^-$ than for $\chi\chi \to e^+e^-$ but the Required $\langle \sigma v \rangle$ is Closer to $\langle \sigma v \rangle_{max}$. Also, $\chi^2 |_{min} / d.o.f$ of the Fit to PAMELA and Fermi-LAT Data is Lower than the one of the Fit to PAMELA and ATIC Data.

Annihilation Mode	$\begin{array}{c c} \chi^2 \\ d.o.f \end{array}$	$m_{\chi}/$ TeV	$\langle \sigma v \rangle /$ 10^{-7} GeV^{-2}	$\frac{\langle \sigma v \rangle_{\rm max} /}{10^{-7} {\rm ~GeV^{-2}}}$	$\left. \begin{array}{c} \Omega_{\chi} h^2 \right _{\mathrm{SC}} / \\ 10^{-4} \end{array} \right.$
$ \begin{array}{c} \chi \chi \rightarrow e^+ e^- \\ \chi \chi \rightarrow \mu^+ \mu^- \end{array} $	67/26	0.74	7.14	3.3	3.8
	76/26	2	28.6	26	0.97

INTRODUCTION	A TRACKING QUINTESSENTIAL MODEL	WIMP RELIC DENSITY	e^{\pm} -CRs From χ Annihilation	Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane	CONCLUSIONS
	0	0	0	0	
	0	0	0	0	

Constraints in the $m_{\chi} - \langle \sigma v \rangle$ Plane

	Fits to PAMELA AND ATIC DATA					
		$\chi \chi \rightarrow e^+ e^-$		$\chi \chi \to \mu^+ \mu^-$		
m_{χ} (TeV)		0.47	2			
$\langle \sigma v \rangle \left(\text{GeV}^{-2} \right)$		$2.1 \cdot 10^{-7}$		$2.6 \cdot 10^{-6}$		
$\chi^2 - \chi^2 _{min}$	15.8			1		
$\Omega_{\chi} h^2 _{SC}$	0.0012			0	.0001	
COMBINATIONS OF	Parameters Y	0.11 In The QP	(S for $a = 0.5$)	and $T_{\rm I} = 10^9 \; {\rm GeV}$		
b	0	0.2	0.32	0	0.08	
$\bar{H}_{\rm I}/10^{53}$	0.88	1.35	1	3.5	3.7	
$T_{\rm KR}~({\rm GeV})$	0.06	0.03	0.097	0.017	.0.005	

C. PALLIS

TRACKING QUINTESSENCE, WIMP RELIC DENSITY, PAMELA AND FERMI LAT

14/14

2