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1. Introduction

Is superstring theory able to describe the basic features of our Universe?

It is necessary to develop a string theoretic framework for studying cosmology. Still
very little is known about the dynamics of strings with branes and fluxes in time-
dependent, cosmological settings.

Our aim is to provide, in superstring theory,

A new class of non-trivial, Quantum and
Thermal cosmological solutions.

The classical stringy solutions, are unreliable for exact cosmological solutions. Most
of the time the classical ground states correspond to stationary Anti-de Sitter or flat
backgrounds but not to cosmological ones. The same uncomfortable situation appears
to be true in the effective supergravity theories.

Naively, these results lead to the conclusion that it is unlikely to find cosmological
ground states in superstring theory.



The recent years became fashionable the study of the stringy effective “no - scale”
supergravities where the SUSY is spontaneously broken by branes and fluxes.

From our viewpoint the “no-scale” setup is the reliable starting point:

• Mainly because ALL classically defined consistent strings in flat space-time provide
at the classical level a well define “ no - scale ” supergravity with spontaneously broken
SUSY.

• All moduli participating in the SUSY breaking are flat directions while the most of
the others are stabilized having a mass proportional to the gravitino scale m3/2 .
(soft breaking terms).

The second step is to determine the Quantum and Thermal Stringy corrections,
if possible at the string level.



• I had to stress here that our approach differs from others. Namely, we will classify
the Thermal and Quantum corrections according to their magnitude respect to the
ordering of these corrections as dictated by exact calculations at the string level.

• We do not add for instance the exponentially suppressed terms like e−T , e−S, e−R

compared to the perturbative corrections.

•We keep however ALL corrections of the type e
−R1
R2 when R1 and R2 are comparable.

• As we will show, the exponentially suppressed terms play crucial role only when the
moduli RI participate at the supersymmetry breaking and are close to the string scale
(Hagedorn like TH, R

I
H transitions).

• Adding estimated exponentially suppressed terms destroy randomly the “String no-
scale structure” with an apparent moduli stabilization in AdS vacuum.



• Although this study looks to be hopeless and out of any systematic control in field
theory, it turns out that in certain “physically” interesting cases both the Quantum
and Thermal corrections are under control thanks to the “no-scale structure” of the
String Effective SUGRA’s in the spontaneously broken SUSY phase.

In this talk I will present two typical string examples. The one in the Heterotic and
the other in a very special Type IIB orientifold.

In both cases the Thermal Fluctuations and the Quantum corrections produce a non
zero Free Energy Density which is calculable at the string level.



The back reaction on the i) space-time metric, gµν and ii) moduli fields, ΦI

gives rise to a specific calculable cosmological evolution.

When T is bellow the Hagedorn temperature TH , the evolution of the universe is well
determined together with the evolution of the mass scales

1

a(t)
, T (t), m3/2(t)

following a critical trajectory:

a(t) T (t) = const., a(t) m3/2(t) = const.,
T (t)

m3/2(t)
= const.

a(t) is the scale factor of the universe.



2. Magnetic and Thermal SUSY Breaking

• In both examples we have assumed that the breaking of SUSY is via
magnetic geometrical fluxes of graviphotons.
The main reason of this particular choice is that the introduction of these fluxes can
be adapted easily in strings in the framework of Freely Acting Orbifolds
(generalization in strings of the Scherk-Schwarz compactification).

• The Thermal Corrections are implemented by introducing a thermal coupling of the
space-time fermion number QF to the string momentum and windings associated to
the Euclidean time cycle S1

T .

• The breaking of SUSY is generated by a similar coupling of an internal R-symmetry
charge QR to the momentum and windings associated to an internal coordinate, say
X5 cycle S1

M .



Two very special mass scales appear associated with the breaking of supersymmetry.

The temperature scale T = 1/(2πR0)

The SUSY breaking scale M = 1/(2πR5)

The initially degenerate mass levels of bosons and fermions are shifted by an amount
that is proportional to T and/or M according to the charges QF and QR.

This mass shifting is the signal of supersymmetry breaking and gives rise to a non-
trivial free energy density and effective potential at the quantum level.



3. Thermal and Quantum Corrections in the
Heterotic Superstring Backgrounds

The one-loop effective action ,(in string frame)

S =

∫
d4x
√
|g|
(
e−2φ(

1

2
R + 2∂µφ∂

µφ + . . .)− VString

)
φ is the 4d dilaton field and the ellipses stand for the kinetic terms of other moduli

fields.

VString is the one-loop effective potential, which is obtained from the one-loop Euclidean
string partition function

Z

V4
= −VString

V4 denotes the 4d Euclidean volume.



At finite temperature, the one-loop Euclidean partition function determines the free
energy density and pressure

Z

V4
= −FString = PString

ρstring = T
∂

∂T
Pstring − Pstring

In order to determine the back-reaction of the thermal and quantum corrections, it is
convenient to work in the Einstein frame where there is no mixing between the metric
and the dilaton kinetic terms.
We define as usual the complex field S

S = e−2φ + ia

After the Einstein rescaling of the metric, the one loop effective action becomes:

S =

∫
d4x
√
|g|
[

1

2
R− gµν KIJ̄ ∂µΦI∂νΦ̄J̄

]
−
[

1

s2
VString(ΦI, Φ̄Ī)

]



Kī is the metric of the scalar manifold {ΦI}, which is parameterized by the moduli
including the field S.

In the Einstein frame the effective potential, VString, is rescaled by a factor 1/s2

s = <S = e−2φ

Taking this rescaling into account, we have

VEin =
1

s2
VString

The above relation turns out to be crucial.

We will always work in gravitational mass units, with MG = 1√
8πGN

= 2.4× 1018 GeV.



In the limit R0, R5 � 1 only the temperature scale R0 and three of the main moduli
fields {S, T1, U1} appears in VEin. The contribution of all others moduli is exponentially
suppressed.

VEin '
f
(

sR2
0

sR2
5
, ...
)

(stu)2
+ O(e−c0R0−c5R5)

Freezing all other moduli, the classical Kälher potential is of a no-scale type as was
expected from the effective field theory approach:

K = − log (S + S̄)− log (T1 + T̄1)− log (U1 + Ū1)

≡ −3 log (Z + Z̄) + ...

The classical superpotential is constant so that the gravitino mass is:

m2
3/2 =

c

stu
=

c

z3

Freezing further the ImZ and defining the field Φ:

e2αΦ = m2
3/2 =

8c

(Z + Z̄)3
, gµν 3

∂µZ∂νZ̄

(Z + Z̄)2
= gµν

α2

3
∂µΦ∂νΦ .



α2 = 3/2 normalize canonically the kinetic terms of the no-scale modulus Φ.

VEin ' m4
3/2 f

(
sR2

0

sR2
5

, ...

)
' m4

3/2 f

(
m2

3/2

T 2
,
m2
Y

T 2

)

The possible dependance on a new SUSY mass scale m2
Y appears when non trivial

small Wilson lines are turned on.



4. String Determination of the Heterotic Free Energy

We first consider the case of an exact SUSY background of Heterotic superstring with
maximal space-time supersymmetry (N = 4).

The Euclidean time and all nine spatial directions are compactified on T 10.

At zero temperature and in the absence of SUSY breaking the Euclidean string partition
function is zero due to space-time SUSY

At finite temperature and non-vanishing SUSY breaking the result is a well defined
finite quantity and is given in terms of the thermal partition function :



Z =

∮
dτdτ̄

4Imτ

1

2

∑
a,b

(−)a+b+ab θ [ab ]
4

η(τ )12 η̄(τ̄ )24
Γ(5,21)(RI)

× Γ(3,3)(Rx = Ry = Rz)

×
∑
h0,g0

Γ
[
h0
g0

]
(R0) (−)g0a+h0b+goho

×
∑
h5,g5

Γ
[
h5
g5

]
(R5) (−)g5a+h5b+g5h5

The non-vanishing of the partition function is due to the non-trivial coupling of the
Γ(R0) and Γ(R5) lattices to the spin structures (a, b).

a = 0 for space-time bosons and a = 1 for space-time fermions.

Γ
[
h
g

]
(R) =

∑
m,n

R(Imτ )−
1
2 e−πR

2 |2m+g+(2n+h)τ |2
Imτ



In the limit of large 3 + 1 dimensions and small SUSY breaking

Rx = Ry = Rz ≡ R� 1 and R� R0, R5 � 1.

The 3d spatial volume factorizes

Γ(3,3)
∼= R3 Imτ−

3
2 =

V3

(2π)3
Imτ−

3
2

• The sector (h0, g0) = h5, g5) = (0, 0) gives zero contribution. This is due to the fact
that we started with a SUSY background.

• In the odd winding sectors,
h0 = 1 and/or h5 = 1,
the partition function diverges when
R0 and/or R5

1

RH
< RA < RH

Hagedorn RH = (
√

2 + 1)/2 and its dual 1/RH



The divergence is due to the winding states that become tachyonic.

• In the regime R0, R5 � RH , there is no tachyon
i) the winding sectors and
ii) the oscillator states
are both exponentially suppressed.

•When R0, R5 � 1, the contributions of the internal Γ(5,21)(RI) lattice states are
also exponentially suppressed, provided that the moduli RI are of order unity.

For large R0, R5, only the sectors

(h0, g0) = (0, gT ) and (h5, g5) = (0, gT ) with g0 + g5 = 1

contributes significantly.



Using the identity:
Γ(R) = Γ

[
0
0

]
+ Γ

[
0
1

]
+ Γ

[
1
0

]
+ Γ

[
1
1

]
and neglecting the h = 1 sectors, we may replace

Γ
[

0
1

]
→ Γ(R)− Γ

[
0
0

]
= Γ(R)− 1

2
Γ(2R)

in the integral expression for Z.

We decompose the contribution in modular orbits:
(mi, ni) = (0, 0) and (mi, ni) 6= (0, 0).

For (mi, ni) 6= (0, 0), the integration over the fundamental domain is equivalent with
the integration over the strip but with ni = 0.

The (0, 0) orbit gives zero contribution due to the initial SUSY.



So we are left with the integration over the whole strip:

Z =
V4

(2π)4

∫
||

dτdτ̄

4Imτ
7
2

∑
g0,g5

θ
[

1
1+g0+g5

]4
Γ(5,21)

η(τ )12 η̄(τ̄ )24

×
∑
m0,m5

e−πR
2
0

(2m0+g0)2

Imτ × R5 e
−πR2

5
(2m5+g5)2

Imτ

The integral over τ1 imposes the left-right level matching condition.
The left-moving part contains the ratio

θ
[

1
0

]4
η12

= 24 +O(e−πτ2),

which implies that the lowest contribution is at the massless level.



Finally, after the integration over τ1 (τ2 ≡ t),

Z =
V4

(
24 D0

)
(2π)4

∫ ∞
0

dt

2t
7
2

∑
mi

∑
g0+g5=1

R5

e−πR
2
0

(2m0+g0)2

t −πR2
5

(2m5+g5)2

t ,

24 D0 is the multiplicity of the massless level.

Changing the integration variable by setting

t = π
(
R2

0(2m0 + g0)2 + R2
5(2m5 + g5)2

)
x

and integrating over x, we can write Z in terms of Eisenstein functions of order
k = 5/2:

Ek(U) =
∑

(m,n)6=(0,0)

(
Im U

|m + nU |2

)k



Define the function

f (u) ≡
∑
m1,m2

u4

|(2m1 + 1)iu + 2m2|5

f (u) = u
3
2

(
1

2
5
2

E5/2

(
iu

2

)
− 1

25
E5/2(iu)

)
with

u =
R0

R5
=
M

T
, M = m3/2

Then the pressure in the Einstein frame

P ≡ Z

V4
= CT T

4 f (u) + CV M
4 f (1/u)

u

with

CT = CV = n∗
Γ
(

5
2

)
π

5
2

.

n∗ = 8D0 is the number of the initially massless boson/fermion pairs



In this particular example the coefficients CT and CV are equal due to the underlying
gravitino mass/temperature duality.

For fixed u the first term stands for the thermal contribution to the pressure, Pthermal

the second term stands for minus the effective potential, −Veff

P = Pthermal − Veff

• The coefficient CT is fixed and positive as it is determined by the number of all
massless boson/fermion pairs in the initially SUSY theory.

• The coefficient CV will depend on the way the SUSY-breaking operator QR couples
to the left- and right- movers.

• In general QF 6= QR and the temperature/ gravitino duality will be broken. CV
can be either positive or negative.

• For models with N = 2 initial SUSY a with QR 6= QF ,the contribution of the
twisted sector is negative (−)(QR−QF ) = (−)H = −1.



The change of sign indicates that in the twisted sector the states that become
massive are the bosons rather than the fermions.

Adding small SUSY mass scales from Wilson line deformations, a new supersymmetric
scale appears MY .

Incorporating the effects of the Wilson lines up to quadratic order.

P = CT T
4 f5

2
(u) − DT T

2 M 2
Y f3

2
(u)

+ CV M
4
f5

2
(1/u)

u
− DV M

2 M 2
Y

f3
2
(1/u)

u

MY introduces a new supersymmetric scale in the theory, which is qualitatively different
from the SUSY-breaking scales T and M .



Scaling Properties of the Thermal Effective Potential

The final expression for P contains three mass scales: M,T and MY . The first identity
follows from the definition of P(

T
∂

∂T
+ M

∂

∂M
+ MY

∂

∂MY

)
P = 4P

P ≡ T 4 I4(u) + T 2 M 2
Y I2(u) = P4 + P2, u =

M

T

ρ ≡ T
∂

∂T
P − P = ρ4 + ρ2

ρ4 =

(
3P4 − u

∂

∂u
P4

)
ρ2 =

(
P2 − u

∂

∂u
P2

)



5. Gravitational Equations and the Critical Solution

We are now in the position to investigate the back-reaction to the initially flat metric
and moduli fields allowing the SUSY-breaking scales T and M to vary with time while
fixing the SUSY mass scale MY and u.

The gravitino scale M is given in terms of the no-scale modulus Φ

M = eαΦ, α =

√
3

2
,

Since−P play the role of the one loop effective potential we obtain the Φ-field equation

Φ̈ + 3HΦ̇ =
∂

∂Φ
P = αu

∂

∂u
P = −α (ρ4 − 3P4 + ρ2 − P2)

Assuming that the space time metric is homogeneous and isotropic

ds2 = −dt2 + a(t)2 dΩ2
k, H =

(
ȧ

a

)



we can derive the gravitational equations in terms of the no-scale modulus Φ and in
terms of ρ and P . Ωk denotes the three dimensional space with curvature k

3H2 =
1

2
Φ̇2 + ρ− 3k

a2

2Ḣ + 3H2 = − k
a2
− P − 1

2
Φ̇2

We find useful to use the linear sum of the above two equations instead of the second.

Ḣ + 3H2 = −2k

a2
+

1

2
(ρ− P )



The Critical Solution

The fundamental ingredients in our analysis are the scaling properties of the thermal
effective potential −P = −P4 − P2 at finite T .

Their structure suggests to search for a solution where the mass scales of the system,
M(Φ), T and (1/a) remain proportional during their evolution in time

eαΦ ≡M(Φ) =
1

γa
−→ H = −αΦ̇, M(Φ) = uT

Our aim is thus to determine the constants γ and u = 1/ξ.

On the critical trajectory,

r4 = ρ4/T
4, p4 = P4/T

4, r2 = ρ2/T
2, p2 = P2/T

2

remains constants.



The compatibility of the Φ-equation and the gravity equation along the critical trajec-
tory implies an identification of the coefficients of the monomials in M .
The quartic terms determines ξ = 1/u.
The quadratic terms determine k

r4 =
6α2 − 1

2α2 − 1
p4

−2kγ2 =
2α2 − 1

2
(r2 − p2) ξ2M 2

Y

The Friedman-Hubble equation in the background Φ̇2 = (H2/α2)(
6α2 − 1

6α2

)
3H2 = −3k

a2
+ ρ = −3k

a2
+ ρ4 + ρ2

The factor in front of 3H2 can be absorbed in the definition of k̂ and r4

3H2 = −3k̂

a2
+
CR
a4



3k̂ = −ξ
2M 2

Y

γ2

6α2

6α2 − 1

(
3(2α2 − 1)

4
(r2 − p2) + r2

)
.

CR =
ξ4

γ4

6α2

6α2 − 1
r4 =

ξ4

γ4

6α2

2α2 − 1
p4

Remarks
The plausible existence of cosmological

super-string solutions
Inflationary (with initial SUSY N < 2) or not

which are generated dynamically
at the quantum sting level

from a flat classical space-time and
spontaneously broken supersymmetry

(no-scale radiative-induced cosmology).



6. Resolution of the Hagedorn transition in Type II

In type II superstings , both left- and right- movers contribute to the space-time fermion
number: F = FL + FR. (In the heterotic, FR is always even)

In the heterotic string, the thermal partition function is obtained by the temperature
phase insertion

(−) mFL+nF̃L+mn.

This definition is indeed unique, as it is dictated by the spin-statistics connection and
modular invariance.

In the type II closed string the thermal phase insertion

(−)m(FL+FR)+n(F̃L+F̃R).

breaks the initial N ≤ 8 supersymetry giving rise to a non trivial free energy density
similar to the heterotic.



In the type II case the free energy is well defined as soon as

T << TH, R0 >> RH =

√
2

2

The breaking of SUSY via “graviphoton magnetic-flux” is achieved associated to an
R-symmetry charge Q by inserting the SUSY breaking phase :

(−)m1(QL+QR)+n1(Q̃L+Q̃R)

introducing non trivial coupling of Q to the wrapping numbers (m1, n1) of S1
R1

cycle

If we choose a symmetric coupling QL = FL, QR = −FR, Then the situation is similar
to the heterotic giving rise to a finite thermal free energy density below the Hagedorn
transition.

R0, R1 <<

√
2

2
Is it possible to go beyond Hagedorn transition?

If yes, what is the initial state of our universe?
As I will show, by an explicit example in type IIB orientifolds, the answer is YES.



The construction is based to an asymmetric “thermal” breaking of SUSY

(−)m0FL + n0F̃L + m0n0

(−)m1FR + n1F̃R + m1n1

The proposed thermal partition function is

Z =

∫
F

d2τ

4Imτ

Γ(8,8)

(ηη̄)12

1

2

∑
a,b

(−)a+b+abθ [ab ]
4 Γ0 [ab ]

1

2

∑
ā,b̄

(−)ā+b̄+āb̄θ̄
[
ā
b̄

]4
Γ1

[
ā
b̄

]
where the shifted lattices Γ0 [ab ] and Γ1

[
ā
b̄

]
are:

Γ0 [ab ] =
∑
m0,n0

R0√
Imτ

e−πR
2
0
|m0+n0τ |2

Imτ (−)m0a+n0b+m0n0.

Γ1

[
ā
b̄

]
=
∑
m1,n1

R1√
Imτ

e−πR
2
1
|m1+n1τ |2

Imτ (−)m1ā+n1b̄+m1n1.

The Γ(8,8) lattice depend on all moduli of the eight dimensional space.



The Γ(1,1)(R0) lattice is “thermally” coupled to the left-movers
The Γ(1,1)(R1) lattice is “thermally” coupled to the right-movers

Setting n0 → 2n0 + h0 and n1 → 2n1 + h1, where h0, h1 are 0,1 modulo 2, and
performing Poisson re-summations over the wrapping numbers m0, m1, The left- and
right-moving shifted momenta are: (a + ā=1 or 0 correspond to Fermions or Bosons)

√
2p0

L =
2m0 + (a− h0)√

2R0

+ (2n0 + h0)
√

2R0

√
2p0

R =
2m0 + (a− h0)√

2R0

− (2n0 + h0)
√

2R0

√
2p1

L =
2m1 + (ā− h1)√

2R1

+ (2n1 + h1)
√

2R1,

√
2p1

R =
2m1 + (ā− h1)√

2R1

− (2n1 + h1)
√

2R1.

In addition, the left GSO projection is reversed in the h0-odd winding sector
the right GSO projection is reversed in the h1-odd winding sector



The partition function is given by

Z =

∫
F

d2τ

4Imτ

Γ(8,8)

(ηη̄)8∑
m0,n0

Γ2m0,2n0χV + Γ2m0−1,2n0+1χO − Γ2m0+1,2n0χS − Γ2m0,2n0+1χC


×

∑
m1,n1

Γ2m1,2n1χ̄V + Γ2m1−1,2n1+1χ̄O − Γ2m1+1,2n1χ̄S − Γ2m1,2n1+1χ̄C

 ,
χV , χO, χS, χC are the usual SO(8) characters

χO =
1

2η4
(θ4

3 + θ4
4), χV =

1

2η4
(θ4

3 − θ4
4)

χS =
1

2η4
(θ4

2 + θ4
1), χC =

1

2η4
(θ4

2 − θ4
1).

The asymmetric thermal IIB model have several novel features.



• There is no tachyonic state in the spectrum. A tachyon could only arise from the
term |χO|2, with h0 = h1 = 1. For generic values ofi R0 and R1, the lightest states

1

2
m2

lightest =
1

4

(
1

2R2
0

+ 2R2
0 +

1

2R2
1

+ 2R2
1

)
− 1

=
1

2

(
1√
2R0

−
√

2R0

)2

+
1

2

(
1√
2R1

−
√

2R1

)2

.

These states never become tachyonic. They become massless when R0 = R1 = 1/
√

2;
that is when both radii are at the fermionic point.

• All fermions are massive

m2
S =

1

2R2
0

, m2
S̄ =

1

2R2
1

, m2
C = 2R2

0, m2
C̄ = 2R2

1



• The RR fields are also massive

m2
SS̄ =

1

2R2
0

+
1

2R2
1

, m2
CC̄ = 2R2

0 + 2R2
1,

The reason is that these fields are charged under both the Z2 symmetries (−1)FL

and (−1)FR. The asymmetric breaking of supersymmetry also leads to a spontaneous
breaking of the U(1) gauge symmetries associated to the RR antisymmetric tensors.

• The full spectrum of the theory is T -duality invariant under
√

2R0 →
1√
2R0

,
√

2R1 →
1√
2R1

• The appearance of extra massless states at the fermionic point
√

2R0 =
√

2R1 = 1
is a signal of enhanced gauged symmetry namely

[SU(2)2 × SU(2)2]left × [SU(2)2 × SU(2)2]right
• When R0 = R1 there is an extra Z2 symmetry which will be used to give to define

the open sector via an orientifold projection.



The thermal interpretation of the model becomes clear along the R0 = R1 = R line
of moduli space. In this case, the asymmetric breaking of supersymmetry amounts to
decompose the Γ(2,2) torus lattice in terms of the diagonal and anti-diagonal Γd(1,1) and
Γa(1,1) lattice quantum numbers

m0 + m1 = 2md + g, m0 −m1 = 2ma − g
n0 + n1 = 2nd + h, n0 − n1 = 2na − h

The result is given in terms of two coupled thermal Γ(1,1) lattices at radii Rd =
√

2R

and Ra =
√

2R respectively.

In the large R radius limit, the contributions of the odd winding sectors h = 1 are
exponentially suppressed. Neglecting these, and thanks to the initial left- and right-
supersymmetry g must be zero as well. Thus in this limit the two thermal lattices
decouple.



We identify Γd(1,1) with the lattice corresponding to the Euclidean time cycle. In the
large radius limit, the lattice quantum numbers are precisely coupled to the space-time
fermion number F = FL + FR as required by the spin-statistics connection.

The Γa(1,1) lattice quantum numbers couple to the (anti-)fermion number F = FL−FR.
It can be associated with a spatial cycle along which particular boundary conditions
are used to break space-time supersymmetry via graviphoton magnetic flux.

Thus, in the large radius limit, the model describes a thermal system, where supersym-
metry is first spontaneously broken via the Scherk-Schwarz mechanism along a spatial
cycle, and then the resulting system is heated up. The effective temperature is given by
2πT = 1/

√
2Rd which is equal to the supersymmetry breaking scale 2πM = 1/

√
2Ra



7. The Open String Sector

When R0 = R1 the thermal IIB partition function becomes a perfect square.
This remark indicates how to define the orientifold projection Z2

Z2 : Ω · P12

Ω : interchanges the left- and right- movers

P12 : interchanges the coordinates x1 ↔ x2

The torus partition function T counts with the invariant linear sum of a state under
Z2 and as long as they are distinct. To complete the closed string states counting, one
introduces the Klein bottle K in which only Z2 invariant states appear.

Each product of complex conjugate characters in T descend to a character in K, with
argument 2t = 2iτ2.



They are dressed by the contributions of the momenta of the Γ8,8 such that

pIL = pIR, I = 3, ...9, p0
L = p1

R, p1
L = p0

R −→
nI = 0 I = 3, ..., 9 , m0 = m1 = m, n0 = −n1 = n

At the end the Klein bottle amplitude in the transverse channel is:

K =
24

2

∫ +∞

0

dτ

4Imτ 2

Γ8(2τ )

η(2τ )8

[
Γde Γae χV + Γdo Γao χO − Γdo Γae χS − Γde Γao χC

]
(2τ )

Γde,o = Γde,o

(√
2R
)
, Γae,o = Γae,o

(
1√
2R

)
,

It turns out that the annulus amplitude A in the transverse has the same form :

A =
2−4N 2

2

∫ +∞

0

dτ

4Imτ 2

Γ8(2τ )

η(2τ )8

[
Γde Γae χV + Γdo Γao χO − Γdo Γae χS − Γde Γao χC

]
(2τ )



The factor N 2 is introduced to account for Chan-Paton degeneracies.

Finally the Mobius amplitude in the transverse channel becomes:

M = −2N

2

∫ +∞

0

dτ

4Imτ 2

Γ8(2τ )

η(2τ )8

[
Γde Γae χV + Γdo Γao χO − Γdo Γae χS − Γde Γao χC

]
(2τ + 1)

The choice of N = 16 eliminates all tadpoles for any R :
√

2R 6= 1

24 + 2−4N 2 − 2N = 0 =⇒ N = 16

The gauge group in the open sector is SO(16)



8. The Initial Phase of the Universe

At low Temperature T the Thermal Free Energy is identical to the one of the effective
field theory spontaneously broken by M . At this regime only the V and S characters
survives.

Thanks to T -duality, the very “High temperature” regime with V and S is dual to
the “Low Temperature” regime with the dual representations V and C.

At the would be “Hagedorn singularity” at the Fermionic point, nothing singular is
happening. Around this point the relevant representations are now V and O while
both S and C are massive with identical mass spectrum.

At the self dual point (initial state of the universe) the gauge symmetry is extended
U(1)× U(1)→ SU(2)d × SU(2)a = SO(4) .

This precise space is the initial non-singular phase of the Universe.



9. String structure of the Initial Phase of the Universe

In stringy gravity and cosmology new interesting phenomena occur.
Conventional notions from general relativity like :

Geometry and Topology
are well defined only as low energy and/or small curvature approximations of the
stringy setup.

• At very small distances and at strong curvature scales, purely stringy phenomena
imply that the physics can be quite different from what one might expect from the
“naive” field theory approximation.

• New possibilities in the context of quantum cosmology and especially in the context
of the “Stringy Big-Bang” picture

versus
“the initial singularity of the Big-Bang picture in General Relativity” .



Assuming for instance a compact space and sufficiently close to the singularity, the
typical scale of the universe reaches at these early times the gravitational scale Mstring.

At this early epoch classical gravity is no longer valid and has to be replaced by a more
fundamental singularity-free theory such as (super-)string theory.

• The main obstruction in the stringy cosmological framework is
the Hagedorn temperature limitation T < TH .

It is well known that for high temperatures, T > TH ,
the string partition function diverges

A thermal winding state becomes tachyonic.
However, this is not a pathology in string theory.
It is a signal of a phase transition towards to a new vacuum.

Many proposals were made about the “High Temperature Phase of the Universe”.



The Hagedorn-like singularities have to be resolved :
• by a stringy phase transition
OR
• by choosing Hagedorn-free string vacua in the early stage of the universe.

It is of fundamental importance to show that :
• the space of Hagedorn-free vacua is not empty
and that
• their existence is at least equally natural as the Hagedorn - singular ones.

• As we explained previously, a noticeable progress has been made in constructing
Hagedorn-free string vacua which are characterized by the presence of non-trivial mag-
netic fluxes.

• Also, stringy vacua with a “Massive boson-fermion Spectrum-Degeneracy Symmetry,
MSDS” are proposed recently to describe the early “Stringy non-geometric era”.



10. The Maximally Symmetric MSDS -vacua

The proposed MSDS-vacua have at least 8 extremely small compact dimensions,
close to the string scale. −→ d ≤ 2 target space

Their connection to the “higher-dimensional universes ” in late cosmological times is
achieved via large marginal deformations of current-current type : MIJ J

I
L × JJR

The large MIJ-deformation limit “induces an effective higher-dimensional space”

In this limit one recovers a geometric field theory description in terms of an effective
“higher-dimensional” conventional superstring theory

• The space-time supersymmetry appears to be spontaneously broken via

“Geometrical” and “Thermal” fluxes.



In the most symmetric MSDS-vacua all compact space coordinates are expressed in
terms of free 2d-world-sheet fermions rather than the conventional compact bosonic
coordinates.

The advantage of this fermionization lies in the consistent separation of left- and
right-moving world-sheet degrees of freedom in terms of left- and right-moving 2d-
fermions that permit easier manipulations of the left-right asymmetric (and even non-
geometrical) constructions of vacua in string theory.

Type II degrees of freedom

In the “critical” Type II theories the left- and right- moving degrees of freedom are:

• The light-cone degrees: (∂X0, Ψ0), (∂XL, ΨL)
• The super-reparametrization ghosts: (b, c), (β, γ)
• The transverse super-coordinates: (∂XI ≡ iyIwI, ΨI), I = 1, ...8



The transverse super-coordinates (∂XI, ΨI) are replaced by (yI, wI,ΨI) so that for
every I = 1, ..., 8, {yI, wI,ΨI} define the adjoint representation of a SU(2)k=2.

In a more general fermionization the transverse super-coordinates are replaced by
a set of free fermions in the adjoint representation of a semi-simple gauge group H :

{χa}, a = 1, ...n, n = dim[H ] = 24

The simplest choice of H is: H = SU(2)8

Other non-trivial choices of fermionization are also possible:

H = SU(5), H = SO(7)× SU(2), H = G2 × Sp(4),

H = SU(4)× SU(2)3, H = SU(3)3.

For simplicity I will restrict to the choice H = SU(2)8 for both left- and right- moving
transverse degrees of freedom.



Heterotic degrees of freedom

• The left-moving sector is identical to that of Type II theories.

The right-moving degrees of freedom are:

• The light-cone degrees: (∂X0, ∂XL)
• The reparametrization ghosts: (b, c)
• The transverse coordinates: (∂XI, I = 1, ...8)
• The extra 32 right-moving fermions (ψA, A = 1, 2, ...32)

In total there are 48 free fermions in the right moving sector {χ̄a, a = 1, 2, ...48}

i) 16 (yI, wI, I = 1, 2, ..., 8) from coordinate fermionization i∂XI = yIwI

ii) extra 32 right-moving fermions (ψA, A = 1, 2, ...32), for the anomaly cancelation.



The basic left- and right-moving chiral operators and partition functions

In both Type II and Heterotic theories the left-moving TB and TF have the same form:

TB = −1

2
(∂X0)2 − 1

2
Ψ0∂Ψ0 +

1

2
(∂XL)2 +

1

2
ΨL∂ΨL +

24∑
a=1

1

2
χa∂χa

TF = i∂X0Ψ0 + i∂X1Ψ1 +
∑
a,b,c

fabc χ
aχbχc ,

fabc are the structure constants of the group HL = SU(2)8 and {χa} (a = 1, 2, ..., 24)

The heterotic right-moving T̄B(z̄) :

T̄B = −1

2
(∂̄X0)2 +

1

2
(∂̄XL)2 +

48∑
a=1

1

2
χ̄a∂̄χ̄a .



Following the rules of the fermionic construction

i) HL ×HR = SU(2)8 × SU(2)8 in type II

ii) HL ×HR = SU(2)8 × SO(48) in the heterotic

iff the choice of boundary conditions respects the global existence of the HL × HR

symmetry, then the latter is promoted to a local gauge symmetry on the target space-
time, both in Type II and the Heterotic

• We can construct very special tachyon free vacua, with left–right holomorphic
factorization of the partition function.

In terms of the SO(2n) characters (n = 12 or n = 24) :

V2n =
θn3 − θn4

2ηn
, O2n =

θn3 + θn4
2ηn

, S2n =
θn2 − θn1

2ηn
, C2n =

θn2 + θn1
2ηn

,



Type II and Heterotic partition functions :

ZII =

∫
F

d2τ

(Imτ )2

(
V24 − S24

)(
V 24 − S24

)

ZHet =

∫
F

d2τ

(Imτ )2

(
V24 − S24

)(
O48 + C48

)
.

• The expression for ZII remains the same for any choice of left- and right-moving
H-group HL, HR, since the dimension of each is always equal to 24. In this respect,
ZII is a unique tachyon-free partition function (modulo the chirality of the left- and
right-spinors) that respects the HL ×HR gauge symmetry.

• The expression of the left-moving part in ZHet remains the same as well. The right-
moving part, depends on the choice of HR:

HR → SO(48), E8 × SO(32), E3
8



• Both ZII and ZHet show a Massive Spectrum Degeneracy Symmetry.
This spectacular property reflects the relations between the characters of the SO(24):

V24 − S24 = constant = 24 .

This follows from the well-known Jacobi identities between theta functions:

θ4
3 − θ4

4 − θ4
2 = 0, θ4

1 = 0, θ2θ3θ4 = 2η3,

−→ θ12
3 − θ12

4

2η12
− θ12

2 − θ12
1

2η12
= 24

• The spectrum of massive bosons and fermions is identical to all string mass levels!
This is similar to the analogous property of supersymmetric theories.

• In the massless level, however, although there are 24 left-moving bosonic degrees of
freedom there are no massless fermionic states.



• In Type II there are 24 right-moving bosonic states as well, so in total there are
24×24 scalar bosons at the massless level transforming under the adjoint of HL×HR.

• The integrated type II partition function :

ZII =
π2

3
d(HL)× d(HR), I =

∫
F

d2τ

(Imτ )2
=
π2

3

• In the Heterotic the left-moving sector gives constant contribution as in the Type II
(d(HL) = 24). The right-moving massive states are expressed in terms of the unique
holomorphic modular invariant function j(τ ):

ZHet =

∫
F

d2τ

(Imτ )2
d(HL)× {d(HR) + [j(τ̄ )− 744]} =

π2

3
d(HL)× d(HR)

• The contribution of the anti-holomorphic function [j(τ̄ )− 744] vanishes
when integrated over the fundamental domain.



• The final integrated expression for both ZHet and ZII are proportional to the number
of massless states of the models.

Z =
π2

3
d(HL)× d(HR).

Depending on the choice of HR in the Heterotic, the number of the massless states is :

d(HL)× d[SO(48)] = 24× 1128

d(HL)× d[E8 × SO(32)] = 24× 744

d(HL)× d[E3
8 ] = 24× 744

• The massive boson-fermion degeneracy symmetry of the MSDS-vacua
is not an accidental property of the above constructions.
It follows from the existence of a new superconformal symmetry.



11. Chiral superconformal algebra and spectral flow in
MSDS

The symmetry operators of the MSDS vacuum are the usual holomorphic (anti-
holomorphic) operators TB, TF (T̄B, T̄F ) giving rise to the standard N = (1, 1)
world-sheet superconformal symmetry in type II and the N = (1, 0) in the heterotic

The extra symmetry operators are the currents of conformal weight hJ = 1, associated
with the HL- and HR-affine algebras:

Ja ≡ fabc χ
bχc and J̄a ≡ f̄abc χ̄

bχ̄c

Furthermore, there are two SO(24) spin-field operators with conformal weight 3
2 and

opposite chirality :

C = Sp{χa}+ and S = Sp{χa}−



The existence of the chiral operator C, of conformal weight hC = 3
2, together with

TB, TF , J
a, χa, form a new chiral superconformal algebra implying the massive boson-

fermion degeneracy of the spectrum.

One needs to utilize the OPE relations between C and S:

C(z) C(w) ∼ 1

(z − w)

{
1

(z − w)2
+

χ̂χ̂

(z − w)
+ . . .

}
,

S(z) S(w) ∼ 1

(z − w)

{
1

(z − w)2
+

χ̂χ̂

(z − w)
+ . . .

}
,

C(z) S(w) ∼ 1

(z − w)
1
2

{
χ̂

(z − w)2
+

∂χ̂ + χ̂χ̂χ̂

(z − w)
+ . . .

}
,

χ̂ ≡ γaχa , γa → γ-matrices of SO(24)

C(z)S(w) OPE implies a boson-fermion Spectral Flow which guaranties the massive
boson-fermion degeneracy of the Vacuum.



Spectral flow and the MSDS operator-relations

The vertex operators are dressed by the super-reparametrization ghost Φ:

eqΦ −→ with hq = − 1

2
q (q + 2)

• Space-time boson vertices are expressed either in the 0 or the (−1) ghost picture.

V(0) = e−Φ χ̂, V(1) ≡ e−Φ ( ∂χ̂ + χ̂ χ̂ χ̂ )

V(0),V(1) have conformal weight h0 = 1, h1 = 2.

The string spectrum of bosons starts from a massless sector which is described by V(0).

V(1) define a massive bosonic vertex at mass level 1.



• Space-time fermions are in the (−1
2) or (−3

2) pictures.

S = e−
1
2Φ−1

2iH0 S or S = e−
3
2Φ+1

2iH0 S

H0 is the usual helicity field defined via bosonization i∂H0 = Ψ0ΨL.

S has weight hS = 2 in both the (−1
2) and (−3

2) pictures
−→ all space-time fermions are massive, starting from mass level 1.

The flow of V(0),(1) states to S-states is expressed by the action of a
“Spectral-flow operator” C :

C ≡ e
1
2(Φ−iH0) C .

C is written in the (+1
2) ghost picture. It has conformal dimension hC = 1

and (−1/2) helicity charge.

C acting on “physical” bosonic states produces “physical” fermionic states
at the same string level and vice-versa.



Although the C-action looks like a space-time supersymmetry transformation,
the actual situation turns out to be drastically different.

The C-action leaves the massless bosonic states of the theory invariant
−→ the boson-to-fermion mapping does not exist for the massless states.

C(z) V0(w) ∼ S , finite as z → w.

The absence of singular terms in (z − w) shows clearly that the massless states are
invariant under the C-transformation.

C acts non-trivially on the massive states:

C(z) V1(w) ∼ S(w)

(z − w)
+ finite terms.

C(z) S(w) ∼
V(1)(w)

(z − w)
+ finite terms

massive bosonic states are mapped into the massive fermionic states and vise-versa.



12. Marginal deformation of the MSDS vacua

The massless states of MSDS-vacua are dL × dR scalars parametrizing a manifold
similar to that gauged supergravities with G = HL ×HR :

K =
SO(dL, dR)

SO(dL)× SO(dR)
.

The non-abelian structure of HL × HR implies that the only marginal deformations
are those that correspond to the Cartan sub-algebra.

The moduli space of these deformations: MIJ J
I
L × JJR is reduced to:

M =
SO(rL, rR)

SO(rL)× SO(rR)
.

The maximal number of the moduli MIJ is when:

HL = HR = SU(2)8
k=2, with rL = rR = 8 .



The deformed partition function factors out a shifted lattice Γ8,8(M)
[
a,ā

b,b̄

]
The shifted lattice couples non-trivially to the “parafermion numbers”
defined by the gauged WZW-cosets :∏

IL=1,...8

(
SU(2)k=2

U(1)

)
IL

×
∏

IR=1,...8

(
SU(2)k=2

U(1)

)
IR

For k = 2, the above coset structure is equivalent to 8 left-moving world sheet fermions,
ΨIL and 8 right-moving ones, ΨIR in type II.

At the end, the shifted lattice couples nontrivially to the R-symmetry charges of the
conventional type II superstings: {aI, bI ; āI, b̄I} of {ΨIL,R} !

ZII =
1

2

∑
a,b

(−)a+b θ[ab ]
4

η12
× Γ8,8(M)

[
a,ā

b,b̄

]
× 1

2

∑
ā,b̄

(−)ā+b̄
θ̄[ā
b̄
]4

η̄12



• In the large moduli limit (modulo S, T, U -dualities), the Γ8,8 lattice decompactifies
and the correlations with the R-symmetry charges become irrelevant.
One recovers the conventional ten dimensional type II supersymmetric vacua !

• For large but not infinitely large deformations, the obtained vacua are those of
“spontaneously broken supersymmetric vacua in the presence of geometrical fluxes”.

• Euclidian versions of the models, correspond to “thermal stringy vacua” with
non-trivial left-right asymmetric “gravito-magnetic fluxes”.
(see talk of N. Toumbas in this conference)

• The would be “initial” classical singularity of general relativity as well as the stringy
Hagedorn-like singularities are both resolved by these fluxes !

The above generic properties of the deformed MSDS vacua, strongly suggest the
following Cosmological Conjecture.



Cosmological Conjecture

The MSDS vacua, or even less symmetric orbifold versions
are potential candidates able to describe

the early non-singular phase of a stringy cosmological universe

• During the cosmological evolution MIJ →MIJ(t) evolves with the time.
Once MIJ(t) are sufficiently large (modulo S, T, U -dualities)
an effective field theory description emerges with an induced

“space-time geometry” of an “effective higher dimensional space-time” .

• The relevant degrees of freedom and interactions are well described by some
“no-scale” gauged supergravity theories of the conventional superstrings.

The effects of the initial MSDS structure induces at the large moduli limit non-trivial
“geometrical” fluxes which in the language of the effective supergravity give rise to a

spontaneous breaking of supersymmetry and to finite temperature effects.



13. Orbifold reduction of the MSDS structure

The originally proposed MSDS-vacua and in particular the ones with HL ≡ SU(2)8,
are too symmetric to be phenomenologically viable.

• In the extreme large-M deformation limit (decompactification limit), the induced
effective theory is that of non-chiral extended gauge supergravities, implemented with
a well-defined set of geometrical fluxes.

• From our cosmological viewpoint, the strongly deformed MSDS-vacua should
consistently represent our late time universe −→ It should contain:

• A non-trivial net number of chiral families

• A reduced gauge group unifying in the most
realistic manner the standard model interactions



In collaboration with I. Florakis, we able to classify all possible
ZN

2 -(asymmetric) orbifolds with reduced MSDS symmetry.

In all proposed models the massive boson and fermion degrees of freedom exhibit sector
by sector (untwisted and twisted) Massive Spectrum Degeneracy Symmetry.

Sector by sector, the number of massless bosons nI(b) and massless fermions nI(f ) are
different; nI(b) 6= nI(f ).

These remarkable properties follow from shifted versions of θ12-identity.

For instance in Z2-orbifold:

Untwisted sectors : V16O8 − S16C8 = 16 , O16V8 − C16S8 = 8

Twisted sectors : V16C8 − S16O8 = 0 , O16S8 − C16V8 = 8



The spectral-flow operator C24, is truncated by Z2 :

Z2 : C24 = C16C8 + S16S8 −→ CZ2 = C16C8

The global existence of CZ2, along with the truncated chiral algebra, are sufficient to
guarantee massive supersymmetry of the spectrum.

In heterotic orbifold MSDS-vacua the anti-holomorphic contributions to the partition
function are also constant numbers modulo a part proportional to j̄(τ̄ ).

Zhet,A = nA + mA [ j̄(τ̄ )− 744 ] , nA = nA(b)− nA(f )

• There is a plethora of reduced MSDS orbifold vacua in the heterotic framework.

The classification rules are given in the work done in collaboration with I. Florakis.



• Among the heterotic MSDS orbifolds are those which are connected via large
moduli deformations to semi-realistic four-dimensional heterotic chiral models.
For instance, those with: ( see A. Faraggi, C. Kounnas and I. Rizos)
HR = SO(10)× U(1)3 × SO(16) gauge group and with non-zero chiral families.

A representative example of this class of MSDS-orbifolds is the one with:

i) Holomorphic partition function:

Z[h1 h2
g1 g2

] =
1

2

∑
a,b

(−)a+b
θ[ab ]

6 θ[a+h1
b+g1

]2 θ[a+h2
b+g2

]2 θ[a−h1−h2
b−g1−g2

]2

η12
,

ii) Anti-holomorphic partition function:

Z̄[h1 h2
g1 g2

] =
1

23 η̄24

∑
γ,δ

θ̄[γδ ]
5 θ̄[γ+h1

δ+g1
] θ̄[γ+h2

δ+g2
] θ̄[γ−h1−h2

δ−g1−g2
]
∑
ε,ζ

θ̄[εζ ]
5 θ̄[ε+h1

ζ+g1
] θ̄[ε+h2

ζ+g2
] θ̄[ε−h1−h2

ζ−g1−g2
]
∑
ā,b̄

θ̄[āb̄ ]
8



The full partition function can be written in a conventional
shifted and twisted “Γ8,8-lattice form” :

Z =
1

26 η12η̄24

∑
a,b,γ,δ,hi,gi

(−)a+b θ[ab ] θ[a+h1
b+g1

] θ[a+h2
b+g2

] θ[a−h1−h2
b−g1−g2

] ×

×Γ8,8

[
a , γ
b , δ

∣∣∣ higi] ×∑
γ,δ

θ̄[γδ ]
5 θ̄[γ+h1

δ+g1
] θ̄[γ+h2

δ+g2
] θ̄[γ−h1−h2

δ−g1−g2
]
∑
ā,b̄

θ̄[āb̄ ]
8 ,

Γ8,8

[
a , γ
b , δ

∣∣∣ higi] indicates the contribution of the eight fermionized coordinates

{yI, ωI | ȳI, ω̄I}

The MSDS-structure follows from the holomorphic side.
The full partition function for this representative example is :

Z = 12j̄(τ̄ ) = 12 × 744 + 12 [ j̄(τ̄ )− 744 ]



Inserting in the representative model all possible discrete torsion coefficients permitted
by the fermionic construction, a plethora of MSDS Heterotic models can be obtained.

The resulting models will in general exhibit different bosonic and fermionic massless
spectra in different representations of the chiral (right-moving) gauge group

HR = SO(10)× U(1)3 × SO(16)

The moduli space contains a subspace of would-be geometrical MIJ-deformations
associated with the conventional supersymmetric Z2 × Z2 freely acting orbifolds.

The Z2 × Z2 action reduces the deformation space:

Z2×Z2 :
SO(8, 8)

SO(8)× SO(8)
−→ SO(4, 4)

SO(4)× SO(4)
× SO(2, 2)

SO(2)× SO(2)
× SO(2, 2)

SO(2)× SO(2)



Assuming very large deformations in the (2, 2) sub-space of SO(4, 4), a 4d flat space-
time is generated, together with an internal 6-dimensional compact space described
by

T 6

Z2 × Z2
.
This class of models is connected with the 4d semi-realistic N = 1 chiral vacua based
on SO(10). The N = 1 supersymmetry appears broken spontaneously by very specific
geometrical fluxes!

In the Euclidian version the deformed MSDS correspond to “thermal stringy vacua”
in the presence of non-trivial left-right asymmetric “gravito-magnetic fluxes”.

The deformed integrated partition function becomes a non trivial function of the
•Temperature scale T
• SUSY breaking scale M
• All other moduli µI



14. Cosmological evolution in late times

i) Exit from MSDS era:

Once the free energy is positive (negative pressure) the MSDS vacuum is unstable
−→ the moduli evolves towards larger values such that:

M,T << Mstring −→ Deformed MSDS-vacua at t = texit.

• This transition will occur when n(f ) > n(b) so that the MSDS partition function
is negative.

ii) Intermediate cosmological era texit ≤ t ≤ tw :

After the “MSDS transition exit” t ≥ texit
and before the electroweak symmetry breaking phase transition t ≤ tw



This cosmological phase was extensively studied in collaboration with:
F. Bourliot, J. Estes and H. Partouche
T. Catelin-J, H. Partouche and N. Toumbas

We show that cosmological evolution is attracted to “radiation-like” evolution in an
effective d-dimensional space-time :

RDSd : M(t) ∼ T (t) ∼ 1/a(t) ∼ t−2/d, for t ≥ texit,

• This evolution is unique and stable at late times in certain physically relevant SUSY
breaking schemes (structure of the fluxes).

Furthermore, for T,M << Mstring only the SUSY breaking moduli M(t) and T (t)
can give a relevant contribution to the free energy F(T,M).



All other moduli, µI
• are attracted and stabilized to the extended gauge symmetry points, µI ∼Mstring

OR
• are effectively frozen to an arbitrary value such that µI � T,M

In both cases, their contribution to F is exponentially suppressed.

F(T,M, µI) = F(T,M) +O
[
exp(−µI

T
), exp(−µI

M
)
]

Finally the limitation t ≤ tw follows from the appearance of a new scale in low energies:
“The infrared renormalisation group invariant transmutation scale Q”
of the effective field theory.

At this scale the (mass)2 of the SUSY standard model Higgs becomes negative:

−→ no-scale radiative breaking of SU(2)× U(1)→ U(1)em.



• Q is irrelevant when M(t), T (t)� Q

• Q becomes relevant and stops the evolution of M(t) when M ∼ Q at t ∼ tw and
the electroweak breaking phase transition takes place.

The physics for t� tw is of main importance in particle physics and cosmology.

• Unfortunately the infrared phase at t� tw, depends strongly on the specific initial
MSDS-vacuum data as well as on the specific evolution of the deformation moduli.

−→ A lot of work is necessary to select the initial MSDS-vacuum that leads to
the late-time precise structure of our universe.

On the other hand, I would like to stress that the qualitative infrared behavior of the
effective “no-scale” field theory, strongly suggests that we are definitely in an interesting
“non-singular string evolutionary scenario connecting particle physics and cosmology”


