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Introduction

Previous talks:
Back-reaction of gas of strings at finite temperature on static flat
background
Leads to quasi-static evolution:

Radiation dominated Universes
Ratio of supersymmetry breaking scale to temperature stabilized
Other moduli were taken fixed near the string scale

This talk:
Relax fixed moduli condition and study the dynamics of the
spectator moduli.
In particular, we study the internal radii-moduli of the Heterotic
string.
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Pure thermal case

Initial background:
Flat four-dimensional Minkowski space-time

ds2
4 = −dt2 + a(t)2ds2

3
Without thermal effects a(t) = const

Six-dimensional internal space of the form:
Case (I): S1(R4)×M5
Case (II): (S1(R4)× T 3)/Z2 ×M2

Introduce temperature: S(R0)× T 3(space-time)×M6(R4)

Temperature: T ∼ eφ/2πR0

Back-reaction of temperature/gas of strings captured by the free
energy/string partition function

F = −Zconnected/V4
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Equations of motion

Thermodynamics
Pressure:

P = −F
Equation of state:

ρ = T ∂P
∂T − P

For P ∼ T 4 we find ρ = 3P, equation of state for radiation

Variational principle

S = Sclassical −
∫

d4x
√

gF
Thermal energy-momentum tensor: Tthermµν = −gµνF + 2 ∂F

∂gµν

a2P = Ttherm ii = −a2F
ρ = Ttherm00 = F − 2T 2 ∂F

∂T 2
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Equations of motion

Variables
ζ = log R4

H = ȧ/a

Einstein equations

3H2 = 1
2(φ̇2 + ζ̇2) + ρ Friedmann equation

3H2 + Ḣ = 1
2ρ−

1
2P

⇒ ∂t ln(ρ+P
T 4 ) + 3H + 3Ṫ/T = 0 Conservation of energy/entropy

Scalars
φ̈+ 3Hφ̇ = Pφ
ζ̈ + 3H ζ̇ = Pζ
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Partition function/free energy

Case I: circleM6 = S1(R4)×M5

F(I) = −Zconn/V4 = −T 4nT [π
4

48 + kT (T , |ζ|, φ)]− T 4ñT gT (T , ζ, φ)

Exact up to exponentially suppressed terms: O(e−R0)

kT is not suppressed for R4 > R0 or R−1
4 > R0

gT is not suppressed for |R4 − 1| < 1
2R0

R0 = eφ/
√

2/2πT

Definitions

kT (T , ζ, φ) =
∑

k ,m 6=0

(
m

2k+1R0e−ζ
)2

K2

(
|(2k + 1)m|R0e−ζ)

)
gT (T , ζ, φ) =

∑
k

(
e−ζ−eζ

2k+1 R0

)2

K2

(
2π|(2k + 1)(e−ζ − eζ)|R0

)
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Effective potential for ζ: V = −P

V

I IIIIVV II

0Rln lnRd2R0

1

Five regions
(I): Enhanced symmetry region
(II): Modulus region
(III): Higher dimensional region
(IV): T-dual modulus region
(V): T-dual higher dimensional region

John Estes (Ecole Polytechnique) Cosmological phases of string theory September 11, 2009 7 / 20



Region (I): enhanced symmetry point

V

I IIIIVV II

0Rln lnRd2R0

1

Region (I)

P ' T 4(nT + ñT )[π
4

48 ]− T 2ñT e
√

2φζ2[π
2

4 ] +O(ζ4)

ζ = 0 is solution with ρ ∼ 3P ⇒ radiation dominated solution
First order correction away from ζ = 0 pushes ζ back towards zero
Potential becomes steeper as T decreases
ζ̈ + 3H ζ̇ = Pζ
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Region (II): plateau

V

I IIIIVV II

0Rln lnRd2R0

1

Region (II)

P ' T 4nT [π
4

48 ]

ζ̇ = 0 is a solution with ρ ∼ 3P ⇒ radiation dominated solution
ζ is a modulus taking any value on the plateau
Marginally stabilized by ”gravitational friction"
ζ̈ + 3H ζ̇ = Pζ
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Careful analysis

Difficulty
Scalar equations depend on a(t) through H and T dependence

Re-parameterize the time "t” in terms of "ln a” so that φ̇ = H
◦
φ

ρ = T 4r(ζ, φ, a)

P = T 4p(ζ, φ, a)

Scalar equations

h
◦◦
φ + 1

2(1− p
r )
◦
φ = pφ/r

h
◦◦
ζ + 1

2(1− p
r )
◦
ζ = pζ/r

h = 1

3− 1
2 (
◦
φ2+

◦
ζ2)

Can show analytically that perturbations around RDS are stable
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Region (III): large ζ behavior

Region (III)

P ' T 4nT
∑

m,k
3
4

ey

[(2k+1)2+m2e2y ]5/2

Introduce: ey = R4/R0 = eζ2πTe−φ/
√

2

Pζ 6= 0 so ζ̇ = 0 is not a solution

Py = Pζ = −
√

2Pφ ⇒ φ⊥ ≡ ζ +
√

2φ is a modulus

Change variables to φ⊥ and y

h
(
◦◦
y + 1

3

◦◦
ln(r + p)

)
+ 1

2(1− p
r )

(
◦
y + 1

3

◦
ln(r + p)

)
=

py−p
r

h
◦◦
φ⊥ + 1

2(1− p
r )
◦
φ⊥ = 0

Equation of state: ρ = T ∂P
∂T + ∂P

∂y − P
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Region (III): large ζ behavior

Out[16]=

0.5 1.0 1.5 2.0 2.5 3.0
y

0.06

0.07

0.08

0.09

V

V=Ÿ
p - py

r
„y

Vy =
p−py

r > 0⇒ force pushing y towards negative values
For large y : Vy ' e−4y

For e4y negligible, Vy ' 0 with ρ = 4P ⇒ five-dimensional RDS
For e4y not negligible, y decreases and we enter region (II)
Recall, we have already dropped terms of order e−R0 in the
partition function

John Estes (Ecole Polytechnique) Cosmological phases of string theory September 11, 2009 12 / 20



Phase diagram

Five radiation dominated phases
(I): Enhanced symmetry phase
(II): Modulus phase
(III): Higher dimensional phase (stable when (R0/R4)

d is negligible)

(IV): T-dual modulus phase
(V): T-dual higher dimensional phase (stable when (R0R4)

d is
negligible)
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Orbifold

Case II: orbifoldM6 = (S1(R4)× T 3)/Z2 ×M2

F(II) =
1
2
Fun-twisted +

1
2
Ftwisted

= −T 4 nT

2
[
π4

48
+ kT (T , |ζ|, φ)]− T 4 ñT

2
gT (T , ζ, φ)− T 4 nt

T
2
π4

48

Modifications of the effective potential for ζ = ln(R4)

Region (I): nT + ñT → 1
2(nT + ñT + nt

T )

Region (II): nT → 1
2(nT + nt

T )

Region (III): Repulsion from higher dimensional phase is stronger.
For large y , Vy ∼ e−y so flat potential phase when e−y can be
neglected
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Susy breaking

Introduce temperature and SUSY breaking:
S(R0)× T 3(space-time)×M6(R4,R5)

Temperature: T ∼ eφ/2πR0

SUSY breaking scale M ∼ eφ/2πR5

M6(R4,R5) = S1(R4)× S1
S(R5)×M4

z = M/T

Scalar equations of motion

φ̈⊥ + 3Hφ̇⊥ = Pφ⊥
ζ̈ + 3H ζ̇ = Pζ(

z̈ + 1
3

¨ln(ρ+P
T 4 )

)
+ 3H

(
ż + 1

3
˙ln(ρ+P
T 4 )

)
= Pz + P
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Partition function/free energy

M6(R4,R5) = S1(R4)× S1
S(R5)×M4

P = T 4nT [fT (z) + kT (z, η − |ζ|)] + T 4nV [fV (z) + kv (z, η − |ζ|)]
+T 4ñT gT (z, η, |ζ|) + T 4ñV gV (z, η, |ζ|)

z = R0/R5 ζ = ln R4 η = ln R5

nT , ñT , ñV > 0 while nV may take negative values
Exact up to exponentially suppressed terms: O(e−R0)

gT (V ) is suppressed for |R4 − 1| > 1
2R0(5)

kT (V ) is suppressed for R4 < R0(5)
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Effective potential for ζ: V = −P

V

I IIIIVV II

0Rln lnRd2R0

1

Regions (I) and (II)
Story for ζ same as in the pure thermal case
ñT , ñV > 0⇒ always a minimum at enhanced symmetry point
Region (I): RDS solution at ζ = 0 with z = zc for − 1

15 <
nV +ñV
nT +ñT

< 0

Region (II): RDS solution with z = zc for − 1
15 <

nV
nT
< 0

zc defined by ρ(zc) = 4P(zc)
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Large ζ behavior

Change variables to y = R4/R0

h
(
◦◦
y + 1

3

◦◦
ln(r + p)

)
+ 1

2(1− p
r )

(
◦
y + 1

3

◦
ln(r + p)

)
=

py−p
r

Region (III)

For large y , Vy =
p−py

r ' e−4y (nT + nV ) > 0⇒ force always
pushes y towards negative values
For e4y negligible, Vy ' 0, five-dimensional RDS with zc defined
by ρ(zc) = 5P(zc) for − 1

31 <
nV +ñV
nT +ñT

< 0

For e4y not negligible, y decreases and we enter region (II)
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Type II theories

Perturbative
No enhancement of massless states at self-dual point
ñT = ñV = 0⇒ region (I) becomes flat with regions (II) and (IV)
By Heterotic-Type II duality we expect the SU(2) phase to exist

Proposal for non-perturbative
Enhancement of massless states obtained by considering
D-branes with separation of branes playing the role of R4

For the branes close to each other, there is an attraction as in
region (I)
For the branes far enough apart their separation becomes stable
as in region (II)
Further increasing their distance the branes start to seperate as in
region (III)
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Summary of results

Five phases
(I): Enhanced symmetry phase
(II): Modulus phase
(III): Higher dimensional phase (stable when (R0/Rd )d is negligible)
(IV): T-dual modulus phase
(V): T-dual higher dimensional phase (stable when (R0Rd )d is
negligible)

Stabilization at enhanced symmetry points
Compact directions never de-compactify
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