Cosmological phases of the string thermal effective potential

John Estes¹ François Bourliot¹ Costas Kounnas² Hervé Partouche¹

¹Centre de Physique Théorique, Ecole Polytechnique, F–91128 Palaiseau cedex, France

²Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 rue Lhomond, F–75231 Paris cedex 05, France

September 11, 2009

Introduction

Previous talks:

- Back-reaction of gas of strings at finite temperature on static flat background
- Leads to quasi-static evolution:
 - Radiation dominated Universes
 - Ratio of supersymmetry breaking scale to temperature stabilized
 - Other moduli were taken fixed near the string scale

This talk:

- Relax fixed moduli condition and study the dynamics of the spectator moduli.
- In particular, we study the internal radii-moduli of the Heterotic string.

< ロ > < 同 > < 回 > < 回 >

Pure thermal case

Initial background:

Flat four-dimensional Minkowski space-time

- $ds_4^2 = -dt^2 + a(t)^2 ds_3^2$
- Without thermal effects a(t) = const
- Six-dimensional internal space of the form:
 - Case (I): *S*¹(*R*₄) × *M*₅
 - Case (II): $(S^1(R_4) \times T^3)/\mathbb{Z}_2 \times \mathcal{M}_2$

Introduce temperature: $S(R_0) \times T^3$ (space-time) $\times M_6(R_4)$

- Temperature: $T \sim e^{\phi}/2\pi R_0$
- Back-reaction of temperature/gas of strings captured by the free energy/string partition function

• $\mathcal{F} = -Z_{\text{connected}}/V_4$

Equations of motion

Thermodynamics

• Pressure:

$$P = -\mathcal{F}$$

 Equation of state: ρ = T ∂P/∂T - P

 For P ~ T⁴ we find ρ = 3P, equation of state for radiation

Variational principle

•
$$S=S_{
m classical}-\int d^4x\sqrt{g}{\cal F}$$

• Thermal energy-momentum tensor: $T_{\text{therm}\mu\nu} = -g_{\mu\nu}\mathcal{F} + 2\frac{\partial\mathcal{F}}{\partial a^{\mu\nu}}$

•
$$a^2 P = T_{\text{therm } ii} = -a^2 \mathcal{F}$$

• $\rho = T_{\text{therm } 00} = \mathcal{F} - 2T^2 \frac{\partial \mathcal{F}}{\partial T^2}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equations of motion

Variables

- $\zeta = \log R_4$
- *H* = *à*/*a*

Einstein equations

•
$$3H^2 = \frac{1}{2}(\dot{\phi}^2 + \dot{\zeta}^2) + \rho$$

Friedmann equation

$$3H^2 + \dot{H} = \frac{1}{2}\rho - \frac{1}{2}P$$

$$\Rightarrow \partial_t \ln(\frac{\rho + P}{T^4}) + 3H + 3\dot{T}/T = 0$$

Conservation of energy/entropy

Scalars

٥

•
$$\ddot{\phi} + 3H\dot{\phi} = P_{\phi}$$

• $\ddot{c} + 3H\dot{c} = P_{c}$

John Estes (Ecole Polytechnique)

э

・ロト ・四ト ・ヨト ・ヨト

Partition function/free energy

Case I: circle $\mathcal{M}_6 = S^1(R_4) \times \mathcal{M}_5$

$$\mathcal{F}_{(I)} = -Z_{\text{conn}}/V_4 = -T^4 n_T [\frac{\pi^4}{48} + k_T(T, |\zeta|, \phi)] - T^4 \tilde{n}_T g_T(T, \zeta, \phi)$$

- Exact up to exponentially suppressed terms: $\mathcal{O}(e^{-R_0})$
- k_T is not suppressed for $R_4 > R_0$ or $R_4^{-1} > R_0$
- g_T is not suppressed for $|R_4 1| < \frac{1}{2R_0}$

•
$$R_0 = e^{\phi/\sqrt{2}}/2\pi T$$

Definitions

$$k_{T}(T,\zeta,\phi) = \sum_{k,m\neq 0} \left(\frac{m}{2k+1}R_{0}e^{-\zeta}\right)^{2} K_{2}\left(|(2k+1)m|R_{0}e^{-\zeta})\right)$$
$$g_{T}(T,\zeta,\phi) = \sum_{k} \left(\frac{e^{-\zeta}-e^{\zeta}}{2k+1}R_{0}\right)^{2} K_{2}\left(2\pi|(2k+1)(e^{-\zeta}-e^{\zeta})|R_{0}\right)$$

э

ヘロン 人間と 人間と 人間と

Effective potential for ζ : V = -P

Five regions

- (I): Enhanced symmetry region
- (II): Modulus region
- (III): Higher dimensional region
- (IV): T-dual modulus region
- (V): T-dual higher dimensional region

Region (I): enhanced symmetry point

Region (I)

•
$$P \simeq T^4(n_T + \tilde{n}_T)[\frac{\pi^4}{48}] - T^2 \tilde{n}_T e^{\sqrt{2}\phi} \zeta^2[\frac{\pi^2}{4}] + \mathcal{O}(\zeta^4)$$

- $\zeta = 0$ is solution with $\rho \sim \mathbf{3P} \Rightarrow$ radiation dominated solution
- First order correction away from $\zeta = 0$ pushes ζ back towards zero
- Potential becomes steeper as T decreases
- $\ddot{\zeta} + 3H\dot{\zeta} = P_{\zeta}$

< ロ > < 同 > < 回 > < 回 >

Region (II): plateau

Region (II)

- $P \simeq T^4 n_T [\frac{\pi^4}{48}]$
- $\dot{\zeta} =$ 0 is a solution with $ho \sim$ 3 $P \Rightarrow$ radiation dominated solution
- ζ is a modulus taking any value on the plateau
- Marginally stabilized by "gravitational friction"
- $\ddot{\zeta} + 3H\dot{\zeta} = P_{\zeta}$

ヘロマ 人間 アメヨアメヨ

Careful analysis

Difficulty

Scalar equations depend on a(t) through H and T dependence

- Re-parameterize the time "t" in terms of "ln a" so that φ = Hφ
 ρ = T⁴r(ζ, φ, a)
- $P = T^4 p(\zeta, \phi, a)$

Scalar equations

•
$$h\overset{\circ\circ}{\phi} + \frac{1}{2}(1-\frac{p}{r})\overset{\circ}{\phi} = p_{\phi}/r$$

• $h\overset{\circ\circ}{\zeta} + \frac{1}{2}(1-\frac{p}{r})\overset{\circ}{\zeta} = p_{\zeta}/r$

•
$$h = \frac{1}{3 - \frac{1}{2}(\overset{\circ}{\phi}^2 + \overset{\circ}{\zeta}^2)}$$

Can show analytically that perturbations around RDS are stable

э

イロン イ理 とく ヨン イヨン

Region (III): large ζ behavior

Region (III)

$$P \simeq T^4 n_T \sum_{m,k} \frac{3}{4} \frac{e^y}{[(2k+1)^2 + m^2 e^{2y}]^{5/2}}$$

• Introduce: $e^{y} = R_{4}/R_{0} = e^{\zeta} 2\pi T e^{-\phi/\sqrt{2}}$

•
$$P_{\zeta} \neq 0$$
 so $\dot{\zeta} = 0$ is not a solution

•
$$P_y = P_{\zeta} = -\sqrt{2}P_{\phi} \Rightarrow \phi_{\perp} \equiv \zeta + \sqrt{2}\phi$$
 is a modulus

Change variables to ϕ_{\perp} and y

•
$$h\left(\overset{\circ\circ}{y}+\frac{1}{3}\ln(\overset{\circ\circ}{r}+\rho)\right)+\frac{1}{2}(1-\frac{\rho}{r})\left(\overset{\circ}{y}+\frac{1}{3}\ln(\overset{\circ}{r}+\rho)\right)=\frac{\rho_{y}-\rho}{r}$$

•
$$h^{\circ\circ}_{\phi_{\perp}} + \frac{1}{2}(1-\frac{p}{r})^{\circ}_{\phi_{\perp}} = 0$$

• Equation of state:
$$\rho = T \frac{\partial P}{\partial T} + \frac{\partial P}{\partial y} - P$$

ъ

イロト イ理ト イヨト イヨト

Region (III): large ζ behavior

• $V_y = \frac{p - p_y}{r} > 0 \Rightarrow$ force pushing *y* towards negative values

- For large y: $V_y \simeq e^{-4y}$
- For e^{4y} negligible, $V_y \simeq 0$ with $\rho = 4P \Rightarrow$ five-dimensional RDS
- For e^{4y} not negligible, y decreases and we enter region (II)
- Recall, we have already dropped terms of order e^{-R₀} in the partition function

Phase diagram

Five radiation dominated phases

- (I): Enhanced symmetry phase
- (II): Modulus phase
- (III): Higher dimensional phase (stable when $(R_0/R_4)^d$ is negligible)
- (IV): T-dual modulus phase
- (V): T-dual higher dimensional phase (stable when $(R_0R_4)^d$ is negligible)

Orbifold

Case II: orbifold $\mathcal{M}_6 = (S^1(R_4) \times T^3)/\mathbb{Z}_2 \times \mathcal{M}_2$

$$\begin{aligned} \mathcal{F}_{(II)} &= \frac{1}{2} \mathcal{F}_{\text{un-twisted}} + \frac{1}{2} \mathcal{F}_{\text{twisted}} \\ &= -T^4 \frac{n_T}{2} [\frac{\pi^4}{48} + k_T(T, |\zeta|, \phi)] - T^4 \frac{\tilde{n}_T}{2} g_T(T, \zeta, \phi) - T^4 \frac{n_T^t}{2} \frac{\pi^4}{48} \end{aligned}$$

Modifications of the effective potential for $\zeta = \ln(R_4)$

• Region (I):
$$n_T + \tilde{n}_T \rightarrow \frac{1}{2}(n_T + \tilde{n}_T + n_T^t)$$

• Region (II):
$$n_T \rightarrow \frac{1}{2}(n_T + n_T^t)$$

• Region (III): Repulsion from higher dimensional phase is stronger. For large *y*, $V_y \sim e^{-y}$ so flat potential phase when e^{-y} can be neglected

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Susy breaking

Introduce temperature and SUSY breaking: $S(R_0) \times T^3$ (space-time) $\times M_6(R_4, R_5)$

- Temperature: $T \sim e^{\phi}/2\pi R_0$
- SUSY breaking scale $M \sim e^{\phi}/2\pi R_5$
- $\mathcal{M}_6(\mathcal{R}_4, \mathcal{R}_5) = S^1(\mathcal{R}_4) \times S^1_S(\mathcal{R}_5) \times \mathcal{M}_4$

Scalar equations of motion

•
$$\ddot{\phi}_{\perp} + 3H\dot{\phi}_{\perp} = P_{\phi_{\perp}}$$

• $\ddot{\zeta} + 3H\dot{\zeta} = P_{\zeta}$
• $\left(\ddot{z} + \frac{1}{3}\ln(\frac{\ddot{\rho}+P}{T^4})\right) + 3H\left(\dot{z} + \frac{1}{3}\ln(\frac{\dot{\rho}+P}{T^4})\right) = P_z + P_z$

$\mathcal{M}_6(\mathcal{R}_4,\mathcal{R}_5)=\mathcal{S}^1(\mathcal{R}_4) imes\mathcal{S}^1_\mathcal{S}(\mathcal{R}_5) imes\mathcal{M}_4$

- $P = T^4 n_T [f_T(z) + k_T(z, \eta |\zeta|)] + T^4 n_V [f_V(z) + k_V(z, \eta |\zeta|)] + T^4 \tilde{n}_T g_T(z, \eta, |\zeta|) + T^4 \tilde{n}_V g_V(z, \eta, |\zeta|)$
 - $z = R_0/R_5$ $\zeta = \ln R_4$ $\eta = \ln R_5$
 - n_T , \tilde{n}_T , $\tilde{n}_V > 0$ while n_V may take negative values
 - Exact up to exponentially suppressed terms: $\mathcal{O}(e^{-R_0})$
 - $g_{T(V)}$ is suppressed for $|R_4 1| > \frac{1}{2R_{0(5)}}$
 - $k_{T(V)}$ is suppressed for $R_4 < R_{0(5)}$

Effective potential for ζ : V = -P

Regions (I) and (II)

- Story for ζ same as in the pure thermal case
- $\tilde{n}_T, \tilde{n}_V > 0 \Rightarrow$ always a minimum at enhanced symmetry point
- Region (I): RDS solution at $\zeta = 0$ with $z = z_c$ for $-\frac{1}{15} < \frac{n_V + \tilde{n}_V}{n_T + \tilde{n}_T} < 0$
- Region (II): RDS solution with $z = z_c$ for $-\frac{1}{15} < \frac{n_V}{n_T} < 0$
- z_c defined by $\rho(z_c) = 4P(z_c)$

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Change variables to $y = R_4/R_0$

•
$$h\left(\overset{\circ\circ}{y}+\frac{1}{3}\ln(\overset{\circ\circ}{r}+\rho)\right)+\frac{1}{2}(1-\frac{p}{r})\left(\overset{\circ}{y}+\frac{1}{3}\ln(\overset{\circ}{r}+\rho)\right)=\frac{p_{y}-\rho}{r}$$

Region (III)

- For large y, $V_y = \frac{p-p_y}{r} \simeq e^{-4y}(n_T + n_V) > 0 \Rightarrow$ force always pushes y towards negative values
- For e^{4y} negligible, $V_y \simeq 0$, five-dimensional RDS with z_c defined by $\rho(z_c) = 5P(z_c)$ for $-\frac{1}{31} < \frac{n_V + \tilde{n}_V}{n_T + \tilde{n}_T} < 0$

• For e^{4y} not negligible, y decreases and we enter region (II)

Type II theories

Perturbative

- No enhancement of massless states at self-dual point
- $\tilde{n}_T = \tilde{n}_V = 0 \Rightarrow$ region (I) becomes flat with regions (II) and (IV)
- By Heterotic-Type II duality we expect the SU(2) phase to exist

Proposal for non-perturbative

- Enhancement of massless states obtained by considering D-branes with separation of branes playing the role of R₄
- For the branes close to each other, there is an attraction as in region (I)
- For the branes far enough apart their separation becomes stable as in region (II)
- Further increasing their distance the branes start to seperate as in region (III)

Five phases

- (I): Enhanced symmetry phase
- (II): Modulus phase
- (III): Higher dimensional phase (stable when $(R_0/R_d)^d$ is negligible)
- (IV): T-dual modulus phase
- (V): T-dual higher dimensional phase (stable when $(R_0 R_d)^d$ is negligible)
- Stabilization at enhanced symmetry points
- Compact directions never de-compactify

・ロト ・ 同ト ・ ヨト ・ ヨ