The Spin Foam Lectures 1: Introduction and Spin Networks

John Barrett

School of Mathematical Sciences University of Nottingham

September 11, 2009

Spin foam models

- Quantum gravity without matter
- Not realistic physics
- Models quantum space-time (technology, concepts)
- Observables
- Planck scale structure

Planck scale

- ▶ Planck area = $G\hbar$ is only scale
- Discrete structure at Planck scale (superpositions)
- Discreteness compatible with symmetries (c.f. angular momentum)
- ▶ General relativity in $G\hbar \rightarrow 0$ limit
- Continuum quantum picture?

3d QG: History

- Ponzano, Regge 1968 (3d gravity state sum model)
- Penrose 1970 (Spin networks)
- Witten 1989 (3d gravity functional integral)
- Turaev, Viro 1991 (3d gravity Λ ssm)

References

- Kauffman and Lins book: Temperley-Lieb recoupling theory...
- Moussouris: PhD thesis
- Major: A spin network primer
- JWB and Naish-Guzman: The Ponzano-Regge model
- ▶ JWB and Westbury: Invariants of PL 3-manifolds
- Roberts: Skein theory and TV invariants

Spin networks

Representations of a group/Hopf algebra G

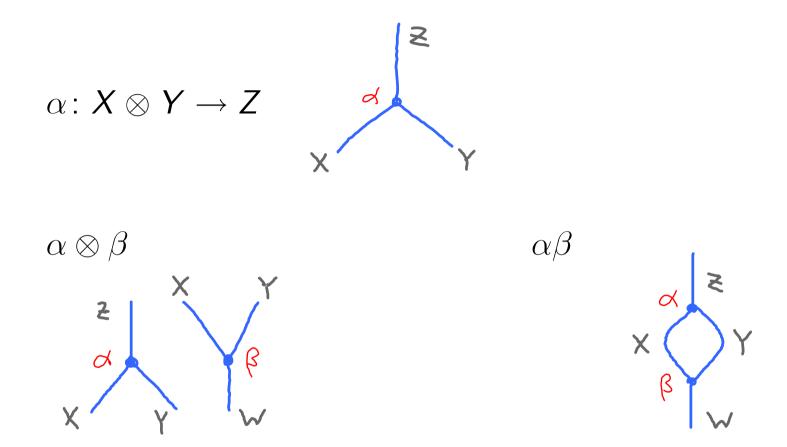
$$X, Y, \ldots, X \otimes Y, \ldots$$

Intertwiners

$$\alpha \colon X \to Y$$

$$\alpha(gx) = g\alpha(x), \qquad g \in G, x \in X.$$

Diagrams



Equivalence of diagrams... see later

Duals

For any X, a dual representation X^* , and maps

Always, $X^{**} = X^*$. For some representations, $X = X^*$.

Coherence conditions

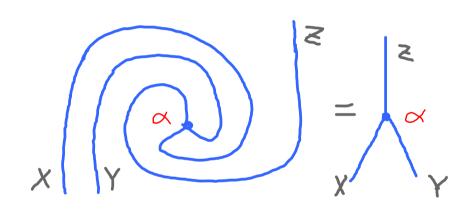
Symmetries: diffeomorphisms of S^2 . Examples:

$$id_{x} = X$$

$$X = X$$

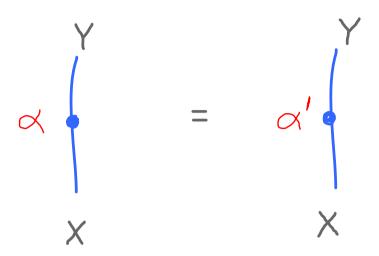
$$Tr Y = X$$

$$Spherical condition$$



Pivotal condition

Equivalence of diagrams



if
$$Tr(\beta\alpha) = Tr(\beta\alpha')$$
 for all $\beta: Y \to X$.

- Diagrams are equivalence classes of intertwiners
- A diagram is 0 if any closed diagram containing it is 0.
- Equivalence clear if only closed diagrams used

Semisimple condition

There is a list of irreducible representations $j_1, j_2, ...$ For any X,

$$X\cong\bigoplus_{i=1}^n j_i$$

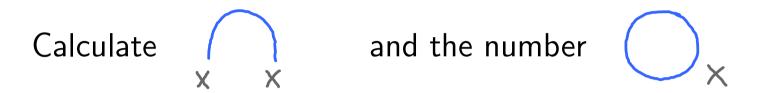
Example: for $X = a \otimes b$, and $a, b \in Irrep$,

$$=\sum_{i=1}^{n}\prod_{\alpha_{i}}\sum_{\beta_{i}}\prod_{\alpha_{i}}\prod_{\beta_{i$$

Quantum group: semsimple after equivalence

Exercises

1. If $X = X^* = \mathbb{C}^2$, with basis u and d. Suppose is $1 \to Au \otimes d - A^{-1}d \otimes u$, for a constant $A \in \mathbb{C}$.



2. Suppose $X = X^*$. Denote the space of intertwiners between $X \otimes X$ and X by $\operatorname{Hom}(X \otimes X, X)$. Define a linear map $\phi \colon \operatorname{Hom}(X \otimes X, X) \to \operatorname{Hom}(X \otimes X, X)$ by

Why is ϕ invertible? What are the possible eigenvalues of ϕ ?

Exercises

3. Suppose $X = \mathbb{C}^2$, and the set of all intertwiners $X \to X$ is

$$\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right\}$$

and the trace is the matrix trace. Which diagrams $X \rightarrow X$ are equivalent to zero?

4. Prove that

$$\operatorname{Tr}(\operatorname{id}_X) = \operatorname{Tr}(\operatorname{id}_{X^*}).$$

(This number is called the quantum dimension of X.)