Gravitational anomaly and fundamental forces

J. J. van der Bij Institut für Physik Albert-Ludwigs Universität Freiburg

Corfu, September 9, 2009

Is there a reason for the choice of gauge group and representations? Phys. Rev. D76, 121702 (R) (2007)

I. Rabi: Who ordered that? on the discovery of the muon

A. Einstein: Did God have a choice when he created the world?

Leukippos, Demokritos Emptiness \rightarrow space Fullness \rightarrow atoms

Plato, Empedokles, Aristoteles Elements

Dodekahedron \rightarrow fifth element (quintessence) prediction of the theory mathematical basis

Space \rightarrow Spacetime with structure: $R_{\mu\nu\alpha\beta}$ and dynamic: $R_{\mu\nu} = \kappa T_{\mu\nu}$ (Einstein)

Matter: gauge theories (symmetry)

Groups and representations Many possibilities Constraint: anomaly cancellation

Symmetry breaking (Higgs): not considered here

Ellis, Gaillard, Zumino (1980)

N = 8 Supergravity SO(8) symmetry too small Hidden SU(8)

assumption 1: SU(8) becomes dynamical assumption 2: also superpartners dynamical assumption 3: anomaly free subset of SU(5)assumption 4: non-chiral part mass to Planck mass Leaves $3(5 + \overline{5}) + 9(1)$ and supersymmetry, which has to be broken

Nowadays N = 8 supergravity is not anymore considered fundamental (non-renormalizable).

Gross, Harvey, Martinec, Rohm (1985)

Heterotic string Anomaly free superstring 10 dimensions Gauge group $E(8) \times E(8)$

```
assumption 1: compactification to 4-D
assumption 2: one E(8) disappears
assumption 3: Calabi-Yau manifold to break E(8)
assumption 4: topology to get 3 generations
assumption 5: some form of supersymmetry breaking
```

Nowadays string theory has many vacua and no unique gauge theory is expected.

What do we learn?

- Assuming one knows the fundamental laws of physics and only has to construct the standard model out of these is not very promising. Therefore use experiment.
- anomalies are important
- topology is important

Vector bosons

gauge group seen: $SU(3) \times SU(2) \times U(1)$ natural embedding in SU(5)

No sign for a higher rank gauge group

Fitting analysis: χ^2 plot (I)

• Significance plot for the parameter space a_Y, a_{BY} for $P_{10}(\chi^2)$. The contours acumulate 68%, 90% and 95% CL.

The three dots correspond to the models' *best point*:

- SM at origin
- a_Y at x-axis,
- *a*_Y, *a*_{BY} at contour center

Klausurtagung: Feldberg, 16-18 Oct 2006

A. Lorca: The Z' reconsidered

Fermions (lefthanded) under SU(5)

$$ar{5} = egin{pmatrix} ar{d} \ ar{d} \ ar{d} \ e^- \
u_e \end{pmatrix}$$
 $10 = egin{pmatrix} 0 & ar{u} & -ar{u} & u & d \ 0 & ar{u} & u & d \ 0 & ar{u} & u & d \ 0 & ar{u} & d \ 0 & e^+ \ 0 & 0 \end{pmatrix}$
 $1 = ar{
u}_e$

 $10 + \overline{5} + 1 = 16$ of SO(10)Therefore automatically (chiral) anomaly free we have to explain

- Vektorbosons $\rightarrow SU(5)$
- Fermions $\rightarrow SO(10)$
- ▶ 3 generations of fermions

$$Z o
u \overline{
u}$$

 $\delta
ho$
 δM_Z

The only known indication is an anomaly, possibly related to topology

Example of topology in the universe

Higher dimensional Kaluza-Klein universe Example: $M_4 \times U(1)^n$ with radius of U(1) going to zero Difficult in practice

Therefore we try the opposite and assume that the universe was three dimensional

- multiple images: difficult, evolution
- cosmic microwave background: circles in the sky (lack of power in quadrupole ??)

Theory: In flat space, topology can always be at too large a scale to be seen directly

Bianchi-I universes

Flat, homogeneous, non-isotropic Pancake picture

$$ds^{2} = -dt^{2} + a^{2}(t)(dx^{2} + dy^{2}) + b^{2}(t)dz^{2}$$

dx, dy topology R^2 ; dz topology S_1

Late in time $\frac{\dot{a}}{a} \sim \frac{\dot{b}}{b}$, therefore isotropy

This is generically true when there is a positive cosmological constant (Wald's theorem 1983) So present day isotropy says little about the (very) early universe. At small t approximate Kasner solution (1925)

$$ds^2 \cong -dt^2 + dx^2 + dy^2 + t^2 dz^2$$

therefore the third dimension gets compactified to zero at early times

For instance exact dust universe ($\lambda = 0$)

$$egin{aligned} g_{zz} &= M^{1/3}t/(t+\Sigma)^{1/3} \ g_{xx} &= g_{yy} &= M^{2/3}(t+\Sigma)^{2/3} \end{aligned}$$

M and Σ are integration constants

Suggested topology of the universe $M_3 \times S_1$

 S_1 The radius may be too large to see the topology at the present time However a preferred direction may be visible

There appears to be an allignment of low multipoles along a preferred axis in the data

This could be explained in an inflationary Bianchi-I model

3 dimensional Yang-Mills theory

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} - i \, m \, \epsilon^{\mu\nu\rho} \operatorname{Tr} (A_{\mu} \partial_{\nu} A_{\rho} + A_{\mu} A_{\nu} A_{\rho})$$
$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + g[A_{\mu}, A_{\nu}]$$

There is a gauge invariance under $A_{\mu} \rightarrow U^{-1}(\partial_{\mu}/g + A_{\mu})U$ Under large gauge transformations the action shifts by $8\pi^2 im/g^2$

So full invariance leads to a quantization condition

$$g_{YM}=rac{4\pi m}{g^2}$$
 must be integer

Renormalization

$$q_{YM}^{ren} = q_{YM}^0 + C(G) + sign(m_f)N_fC(R)$$

SU(N): C(G) = Nfundamental fermion: C(R) = 1/2So one needs an even number of fermions. This stays true even when $m_f = 0$.

In four dimensions there is a similar effect when one starts with Weyl-fermions in a $M_3 \times S_1$ spacetime. There a Chern-Simons like term is generated

$$\mathcal{L}_{CSlike} = m_{
hoh} n^{lpha} \epsilon_{lpha\mu
u
ho} \mathcal{A}^{\mu} F^{
u
ho}$$

Three dimensional gravity $\mathcal{L} = -(1/\kappa^2)\sqrt{g}R - \frac{i}{4\kappa^2\mu}\epsilon^{\mu\nu\lambda}(R_{\mu\nu ab}\omega_{\lambda}^{ab} + \frac{2}{3}\omega_{\mu a}^{b}\omega_{\nu b}^{c}\omega_{\lambda c}^{a}).$ $q_{gr} = \frac{6\pi}{\mu\kappa^2} \text{ must be integer}$

Renormalization

$$q_{gr}^{ren} = q_{gr}^0 + rac{1}{8}N_g \,\, sign(m_g) - rac{1}{16}\, N_f \, sign(m_f)$$

 N_g is the number of vector bosons N_f is the number of fermions

assume $q_{gr} = 0$ (Einstein equations) consistency: $N_f \mp 2N_g = 0 \mod(16)$

Stronger conditions

isotropization: $q_{gr}^{ren} = 0$

vectors and fermions separately consistent:

 $N_g = 0 \mod(8)$ $N_f = 0 \mod(16)$ In combination vectors SU(5): 24 fermions SO(10): 16

$$2\times 24 - 3\times 16 = 0$$

Basically unique if also:

- 1) fermions automatically anomaly free, i.e. no SU(n):
- 2) fermions in fundamental representation

Speculations

Symmetry breaking: SU(5) decomposition: $16 = 10 + \overline{5} + 1$.

$$SU(3) \rightarrow +, SU(2) \rightarrow -, U(1) \rightarrow +$$

 $10 \rightarrow +, \overline{5} \rightarrow -, 1 \rightarrow -$
 $2 \times (8 - 3 + 1) - 3 \times (10 - 5 - 1) = 0$
possible: $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$
impossible: $SU(5) \rightarrow SU(4) \times U(1)$

more conditions

2

- other compactifications
- underlying structure
- quantum gravity

Rabi's question: who ordered that? Answer: the early universe.

Einstein's question: did God have a choice?

Answer: no, because He has to use perfect symmetry.

However the devil may have had something to do with the Higgs sector.