# Identifying new quarks and leptons at LHC: the role of multi-lepton signals

J. A. Aguilar-Saavedra

Departamento de Física Teórica y del Cosmos Universidad de Granada

Corfu Summer Institute, September 3<sup>rd</sup> 2009



# Why multi-leptons?

- 1 Beyond new physics discovery: Model discrimination
  - Jet multiplicity  $\neq$  parton multiplicity
  - On the other hand, charged leptons  $(e, \mu)$  are clean objects
  - Most convenient signal classification: lepton multiplicity
  - Leptons leading role in model discrimination
  - Further classification: # of Z candidates, b jets
- 2 Multi-lepton signals may provide early discoveries
  - Smaller backgrounds
  - Need less detector calibration



# Why multi-leptons?

3 Multi-leptons originate from cascade decays in most NP models

| • MSSM | [ATLAS CSC book '09] |
|--------|----------------------|
|--------|----------------------|

• Minimal seesaw I-III [Aguila, JAAS NPB '09]

• Heavy leptons (seesaw or not) [JAAS '09]

• Heavy quarks [JAAS '09]

• ...

### What is in this talk

- 1 Pair production of heavy leptons with special attention to seesaw
  - Seesaw III, with heavy Majorana (M) or Dirac (D) neutrinos
  - Seesaw I (M / D) plus a new Z' boson
  - A lepton doublet (*N E*)
- 2 Pair production of heavy quarks coupling to 3<sup>rd</sup> family
  - Isosinglets T charge 2/3
  - Isosinglets B charge -1/3
  - Isodoublets (*T B*)
  - Isodoublets (X T)  $\bowtie$  X has charge 5/3
  - Isodoublets (B Y)  $\bowtie$  Y has charge -4/3



### What is <u>not</u> in this talk

- ① Minimal seesaw I → Paco's talk
- ② Seesaw II → Paco's talk
- ③  $W' + N \longrightarrow$  easy discrimination from other models with new leptons
- 4 4th generation  $\rightarrow$  easy discrimination from models with vector-like quarks

### Why seesaw?

### SM neutrinos are massive

Three types of seesaw mechanism  $\begin{bmatrix} \textcircled{1} & \text{heavy neutrino singlets } N \\ \textcircled{2} & \text{a scalar triplet } \Delta \\ \textcircled{3} & \text{fermion triplets } \Sigma \\ \end{bmatrix}$ 

can yield an effective Majorana mass term for light neutrinos

$$(O_5)_{ij} = \frac{1}{\Lambda} \overline{L_{iL}^c} \tilde{\phi}^* \tilde{\phi}^\dagger L_{jL}$$

upon integration of heavy fields N,  $\Delta$  or  $\Sigma$ 

Seesaw most popular, but alternative mechanisms also possible...



# Why LHC?

# Large colliders offer the best hope to probe the neutrino mass origin

- $\beta\beta0\nu$  cannot reveal mechanism for  $\nu$  mass generation
- If  $\Lambda \sim \nu$ , seesaw messengers N,  $\Delta$ ,  $\Sigma$  could be directly produced at colliders and indirect effects could be seen in dim 6 operators
- If  $\Lambda \gg v$ , indirect effects of seesaw not observed either
- ... and LHC startup is near



Old paradigm: like-sign dileptons for seesaw

Like-sign dileptons: smoking gun for heavy singlet N

### Old paradigm: like-sign dileptons for seesaw

Like-sign dileptons: smoking gun for heavy singlet N and also for heavy N with new W'

### Old paradigm: like-sign dileptons for seesaw

Like-sign dileptons: smoking gun for heavy singlet N and also for heavy N with new W' ... and for heavy N with new Z'

### Old paradigm: like-sign dileptons for seesaw

Like-sign dileptons: smoking gun for heavy singlet N and also for heavy N with new W' ... and for heavy N with new Z'

Like-sign dileptons: smoking gun for heavy triplet  $\Sigma$ 

### Old paradigm: like-sign dileptons for seesaw

Like-sign dileptons: smoking gun for heavy singlet N

and also for heavy N with new W'

... and for heavy N with new Z'

Like-sign dileptons: smoking gun for heavy triplet  $\Sigma$ 

Like-sign dileptons: smoking gun for new Q = 5/3 quarks

### Old paradigm: like-sign dileptons for seesaw

Like-sign dileptons: smoking gun for heavy singlet N

and also for heavy N with new W'

... and for heavy N with new Z'

Like-sign dileptons: smoking gun for heavy triplet  $\Sigma$ 

Like-sign dileptons: smoking gun for new Q = 5/3 quarks

Like-sign dileptons: smoking gun for SUSY, of course!

### Old paradigm: like-sign dileptons for seesaw

Like-sign dileptons: smoking gun for heavy singlet N

and also for heavy N with new W'

... and for heavy N with new Z'

Like-sign dileptons: smoking gun for heavy triplet  $\Sigma$ 

Like-sign dileptons: smoking gun for new Q = 5/3 quarks

Like-sign dileptons: smoking gun for SUSY, of course!

too much smoke, can't distinguish anything!



### New paradigm: multi-leptons for seesaw

Not all seesaw models involve heavy Majorana states

in fact, heavy Dirac states at the TeV scale are often regarded as more natural [Kersten, Smirnov PRD '07]

like-sign dileptons are just a piece in the global puzzle

Signals with 2, 3 and 4 leptons discriminate among several models

trilepton signals are <u>always</u> produced and in most cases have the highest statistical significance

### Trileptons: the golden channel for seesaw at LHC



## Majorana triplet production and decay

### Each triplet $\Sigma \longrightarrow$ two heavy leptons E, N



Two production processes

[Aguila, JAAS NPB '09]

$$q\bar{q}' \to W^* \to E^{\pm}N$$
  
 $q\bar{q} \to Z^* / \gamma^* \to E^+E^-$ 

$$\mbox{Many final states} \left[ \begin{array}{cccc} E^- \to W^- \nu & 50\% \\ E^- \to Z \, l^- & 25\% \\ E^- \to H \, l^- & 25\% \end{array} \right. \left[ \begin{array}{cccc} N \to W^+ l^- & 25\% \\ N \to W^- l^+ & 25\% \\ N \to Z \, \nu & 25\% \\ N \to H \, \nu & 25\% \end{array} \right.$$

18 channels +  $CC \otimes W$ , Z, H decays



### Dirac triplet production and decay

Two triplets  $\Sigma_{1,2}$   $\rightarrow$  three heavy leptons  $E_1^-, E_2^+, N$ 



Four production processes

[Aguila, JAAS PLB '09]

$$q\bar{q}' \to W^* \to E_i^{\pm} N$$
  
 $q\bar{q} \to Z^* / \gamma^* \to E_i^{+} E_i^{-}$ 

13 channels + CC  $\otimes$  W, Z, H decays R



# Lepton doublet production and decay

### Heavy lepton isodoublet $L = (N E)^T$

N is a Dirac fermion, mass term  $\mathcal{L} = -m_D \bar{L} L$ 

Three production processes

[Aguila et al. NPB '90]

$$\begin{split} q\bar{q}' &\to W^* \to E^\pm N \\ q\bar{q} &\to Z^* \ / \ \gamma^* \to E^+ E^- \\ q\bar{q} &\to Z^* \to N\bar{N} \end{split}$$

Decays are different 
$$\begin{bmatrix} E^- \to W^- \nu & - \\ E^- \to Z \, l^- & 50\% \\ E^- \to H \, l^- & 50\% \end{bmatrix} \begin{bmatrix} N \to W^+ l^- & 100\% \\ N \to Z \, \nu & - \\ N \to H \, \nu & - \end{bmatrix}$$

6 channels + CC  $\otimes$  W, Z, H decays B



# N singlet pair production with Z'

### Heavy Majorana or Dirac singlets N (seesaw I) with a Z'

Leptophobic Z'

[Aguila, JAAS JHEP '07]

but several similar models

[Blanchet et al. '09]

$$q\bar{q} o Z' o NN$$

$$\mathbf{M} \quad \begin{bmatrix} N \to W^{+}l^{-} & 25\% \\ N \to W^{-}l^{+} & 25\% \\ N \to Z\nu & 25\% \\ N \to H\nu & 25\% \end{bmatrix} \quad \mathbf{D} \quad \begin{bmatrix} N \to W^{+}l^{-} & 50\% \\ N \to Z\nu & 25\% \\ N \to H\nu & 25\% \end{bmatrix}$$

10/6 channels + CC  $\otimes$  W, Z, H decays



# N singlet pair production with Z'

Note that branching ratio for  $NN \rightarrow \ell^{\pm}\ell^{\pm}\ell^{\mp} + 2j$ 

$$(1/2 \times 1/2) \times (2/9 \times 6/9 \times 2) \simeq 0.074$$

is larger than for  $NN \to \ell^{\pm}\ell^{\pm} + 4j$  for Majorana N

$$(1/4 \times 1/4 \times 2) \times (6/9 \times 6/9) \simeq 0.056$$

and backgrounds are much smaller!



### Model discrimination

#### Important comments

- Several decay channels contribute to each final state:
   Complete signal generation crucial Triada
- 2 Different final states tested model discrimination
- ③ For discovery potential and model discrimination  $e = \mu$  sum  $e, \mu$  in signals and backgrounds
- Analyses quite generic, small cut optimisationadequate for model-independent NP searches
- (5) After discovery, separate  $N \rightarrow eW, \mu W, \tau W$  and combine with neutrino oscillation data



#### Results

$$m_N = m_E = 300 \text{ GeV}$$
  $M_{Z'_\lambda} = 650 \text{ GeV}$ 

### Signals in many final states with 1 to 6 leptons

Only one triplet  $\Sigma$  / one doublet (N E) / one singlet N assumed for these numbers

|                       | $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ | $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ | $\ell^{\pm}\ell^{\pm}$ | $\ell^{\pm}\ell^{\pm}$ | $\ell^+\ell^+\ell^-\ell^-$ |
|-----------------------|----------------------------------|----------------------------------|------------------------|------------------------|----------------------------|
|                       | (no Z)                           | (Z)                              | $(no \not p_t)$        | $(p_t)$                |                            |
| $\Sigma_{\mathbf{M}}$ | 3.3                              | 25                               | 2.1                    | 3.5                    | 6.6                        |
| $\Sigma_{ m D}$       | 1.5                              | 17                               | _                      | 1.8                    | 1.8                        |
| $EN_{\rm d}$          | 1.1                              | _                                | _                      | _                      | 3.0                        |
| $Z'N_{ m M}$          | 2.1 P                            | _                                | 2.3 P                  | 13                     | _                          |
| $Z'N_{\rm D}$         | 1.1 P                            | _                                | _                      | 22                     | _                          |

### Synergy between channels for *E*, *N* discovery





 $\ell^+\ell^+\ell^-\ell^ \Longrightarrow$  Evidence of *E* production (resonance with charge  $\pm 1$ )

 $\ell^{\pm}\ell^{\pm}\ell^{\mp}$   $\rightarrow$  Evidence of N production (resonance with charge 0)

 $\ell^{\pm}\ell^{\pm}$   $\longrightarrow$  N is Majorana (signal) or Dirac (no signal)

### Results

# Z' mass reconstruction $(\ell^{\pm}\ell^{\pm}\ell^{\mp})$



### Conclusions I

- Strategy designed for discovery of seesaw messengers and model discrimination
- 2 Trilepton signals are the golden mode for seesaw searches but model identification relies on other multi-lepton signals
- 3 Approximate mass reach in trilepton channel for 100 fb $^{-1}$   $\bigcirc$ 
  - Mole

- $\Delta$ : 700 GeV (900 GeV) for NH (IH)
- Lepton triplets: 675 (800) GeV for  $\Sigma_{\rm M}$  ( $\Sigma_{\rm D}$ )
- Lepton doublets: 850 GeV
- Z' + N: 850 GeV (1 TeV) for  $Z'N_{\rm M}$  ( $Z'N_{\rm D}$ )



## Heavy vector-like quark pair production

New quarks coupling to  $3^{rd}$  family can appear in many SM extensions and many  $SU(2)_L \times U(1)_Y$  representations:

• vector-like singlets and doublets

$$T_{L,R}$$
  $B_{L,R}$   $(T B)_{L,R}$   $(X T)_{L,R}$   $(B Y)_{L,R}$ 

- chiral (4<sup>th</sup> family)
- higher representations (triplets)

The discrimination among these possibilities is very easy at the Lagrangian level but Lagrangians are <u>not</u> directly observed at LHC



# Heavy quark identification

#### Important comments

- 1 All quarks produced by QCD, distinguished by decays single production  $\propto V_{\rm mix}^2$  ignored here
- ② Each decay must be identified in a suitable final state and distinguished from similar signals from other quarks
- Quark charges determined in suitable decays (e.g. with Z bosons)
- 4 12 different final states tested for model discrimination four examples shown here

# Heavy vector-like quark pair decays

$$T_{L,R}$$
 ,  $(T B)_{L,R}$ 

$$T \rightarrow W^+ b$$

$$T \rightarrow Zt \rightarrow ZW^+b$$

$$T \rightarrow Ht \rightarrow HW^+b$$

#### $(B Y)_{L,R}$

$$Y \rightarrow W^- b$$

$$(X T)_{L,R}$$

$$T \to Zt \to ZW^+b$$

$$T \rightarrow Ht \rightarrow HW^+b$$

$$(B Y)_{L,R}$$

$$B \rightarrow Zb$$

$$B \rightarrow Hb$$

$$(X T)_{L,R}$$

$$X \to W^+ t \to W^+ W^+ b$$

$$B_{L,R}$$
 ,  $(T B)_{L,R}$ 

$$B \to W^- t \to W^- W^+ b$$

$$B \rightarrow Zb$$

$$B \rightarrow Hb$$

 $T\bar{T}$ ,  $B\bar{B}$ ,  $X\bar{X}$ ,  $Y\bar{Y}$  production signatures often similar

## Quark identification

Each decay must be identified in a suitable final state and distinguished from similar signals from other quarks

Example: T, B singlets and (T B) doublet in  $\ell^{\pm}\ell^{\pm}\ell^{\mp}$  (Z) final state

$$\begin{split} T\bar{T} &\to Zt \, W^-\bar{b} \to ZW^+bW^-\bar{b} & Z \to \ell^+\ell^-, WW \to \ell\nu q\bar{q}' \\ T\bar{T} &\to Zt \, V\bar{t} \to ZW^+b \, VW^-\bar{b} & Z \to \ell^+\ell^-, WW \to \ell\nu q\bar{q}', V \to q\bar{q}/\nu\bar{\nu} \\ B\bar{B} &\to Zb \, W^+\bar{t} \to Zb \, W^+W^-\bar{b} & Z \to \ell^+\ell^-, WW \to \ell\nu q\bar{q}' \end{split}$$

(almost) same final state but different invariant mass peaks

must use a probabilistic method based on kinematics to classify signals as  $T\bar{T}$  or  $B\bar{B}$  efficiently

(the same for  $\ell^+\ell^-$  (Z) final state, with  $WW \to q\bar{q}'q\bar{q}'$ )







| Classification |              |         |         |         |  |  |
|----------------|--------------|---------|---------|---------|--|--|
|                | Class        | $P_a >$ | $P_b >$ | $P_c >$ |  |  |
| Ī              | (a)          | 0.61    | 0.24    | 0.15    |  |  |
|                | ( <i>b</i> ) | 0.19    | 0.69    | 0.12    |  |  |
|                | (c)          | 0.15    | 0.20    | 0.65    |  |  |
|                |              |         |         |         |  |  |

Classification

#### events classified as $T\bar{T}$



 $T \rightarrow Zt$  established T has charge 2/3

#### events classified as $B\bar{B}$



 $B \rightarrow Zb$  established B has charge -1/3

### events classified as $T\bar{T}(a)$



 $T \rightarrow Wb$  established but better in  $\ell^{\pm}$  (2b)

#### events classified as $B\bar{B}$



 $B \rightarrow Wt$  established not (B Y)



### events classified as $T\bar{T}(b)$



 $T \rightarrow Vt$  ambiguous: need other channels

#### events classified as $B\bar{B}$



 $B \rightarrow Wt$  established not (B Y)



### T, B or (T B)? $\ell$ distribution in t rest frame

#### Theoretical



 $P = \pm 0.91$ , helicity axis

#### events classified as $T\bar{T}$



 $2.4\sigma$  difference in  $A_{\rm FB}$  for 30 fb<sup>-1</sup>



 $Q \rightarrow Wb$ , W hadronic



Note: small signal for B and (X T) and much larger for (B Y)

 $Q \rightarrow Wb$ , W leptonic



 $Q \rightarrow Wb$  established Q charge 2/3, -4/3

# Discovery of $T \rightarrow Ht, B \rightarrow Hb$

### $T\bar{T}$ or $B\bar{B}$ ? signal classification by kinematics

events classified as  $T\bar{T}(a)$ 



peak in m(tH) $T \rightarrow Ht$  established events classified as  $B\bar{B}$ 



peak in m(bH) $B \rightarrow Hb$  established



# X quark identification

 $X \rightarrow Wt \rightarrow WWb$ WW hadronic



X charge -1/3, 5/3

 $X \rightarrow Wt \rightarrow WWb$ WW leptonic



 $\bar{X}$  charge -5/3, -7/3



## Summary: final states analysed

| Discovery luminosities in fb <sup>-1</sup> |               |                  |             |          | $m_Q = 500 \text{ GeV}$ |              |  |  |
|--------------------------------------------|---------------|------------------|-------------|----------|-------------------------|--------------|--|--|
|                                            |               | $T_{\mathrm{s}}$ | $B_{\rm s}$ | $TB_{d}$ | $XT_{d}$                | $BY_{\rm d}$ |  |  |
| $\ell^+\ell^+\ell^-\ell^-$                 | (ZZ)          | _                | 24          | 18       | 23                      | 10           |  |  |
| $\ell^+\ell^+\ell^-\ell^-$                 | (Z)           | 11               | 14          | 5.7      | 3.3                     | 50           |  |  |
| $\ell^+\ell^+\ell^-\ell^-$                 | (no Z)        | 35               | 25          | 11       | 3.5                     | _            |  |  |
| $\ell^{\pm}\ell^{\pm}\ell^{\mp}$           | (Z)           | 3.4              | 3.4         | 1.1      | 0.72                    | 26           |  |  |
| $\ell^{\pm}\ell^{\pm}\ell^{\mp}$           | (no Z)        | 11               | 3.5         | 1.1      | 0.25                    | _            |  |  |
| $\ell^{\pm}\ell^{\pm}$                     |               | 17               | 4.1         | 1.5      | 0.23                    | _            |  |  |
| $\ell^+\ell^-$                             | (Z)           | 22               | 4.5         | 2.4      | 4.4                     | 1.8          |  |  |
| $\ell^+\ell^-$                             | (Z, 4b)       | _                | _           | 30       | _                       | 9.2          |  |  |
| $\ell^+\ell^-$                             | (no Z)        | 2.7              | 9.3         | 0.83     | 1.1                     | 0.87         |  |  |
| $\ell^\pm$                                 | (2b)          | 1.1              | _           | 0.60     | _                       | 0.18         |  |  |
| $\ell^\pm$                                 | (4b)          | 0.70             | 1.9         | 0.25     | 0.16                    | 6.2          |  |  |
| $\ell^\pm$                                 | (6 <i>b</i> ) | 11               | -           | 9.4      | 2.7                     | -            |  |  |

# Summary: roadmap to quark identification

- ★ T singlet and  $T \in (T B)$ 
  - discovered in  $\ell^{\pm}$  (4b)
  - identified in  $\ell^{\pm}$  (2b) and  $\ell^{\pm}\ell^{\pm}\ell^{\mp}$  (Z)
- $\star$   $T \in (X T)$ 
  - discovered in  $\ell^{\pm}$  (4b), enhanced signal
  - no signal in  $\ell^{\pm}$  (2b)
  - enhanced signal in  $\ell^{\pm}\ell^{\pm}\ell^{\mp}$  (Z)
- $\star X \in (X T)$ 
  - discovered in  $\ell^{\pm}\ell^{\pm}$  and  $\ell^{\pm}\ell^{\pm}\ell^{\mp}$  (no Z)
  - also visible in  $\ell^+\ell^+\ell^-\ell^-$  (no Z)



# Summary: roadmap to quark identification

- ★ B singlet and  $B \in (T B)$ 
  - discovered in  $\ell^{\pm}$  (4b)
  - identified in  $\ell^{\pm}\ell^{\pm}\ell^{\mp}$  (*Z*)
  - further evidence from  $\ell^{\pm}\ell^{\pm}\ell^{\mp}$  (no *Z*)
- $\star$   $B \in (B Y)$ 
  - discovered in  $\ell^+\ell^-$  (Z), enhanced signal
  - does not give  $\ell^{\pm}\ell^{\pm}\ell^{\mp}$  (Z, no Z)
  - enhanced  $\ell^+\ell^+\ell^-\ell^-$  (ZZ)
- $\star Y \in (B Y)$ 
  - discovered in  $\ell^{\pm}$  (2b), enhanced signal
  - further evidence from enhanced  $\ell^+\ell^-$  (no Z)
  - signals with Z absent



#### Conclusions II

- ① Strategy designed for identification of top partners: vector-like quarks coupling to the third generation
- ② Single lepton signals are best for discovery but quark identification requires multi-lepton signals
- 3 Approximate mass reach for  $100 \text{ fb}^{-1}$



- 800 GeV for T
- 720 GeV for *B*
- 850 GeV for (*T B*)
- 900 GeV for (*X T*)
- 820 GeV for (B Y)



#### Final remarks

- ① Discovering event excesses at LHC is not enough: we want to identify the new physics giving the signals
- ② Identifying a model is much harder than discovering a signal in one's favourite channel
- 3 With LHC start approaching, a strategy is necessary to extract the best of data as soon as possible
  - a guide to identify particles
  - a list of their possible signatures
  - a guide of final states to examine if some signal is seen
- 4 The usefulness of this analysis is to provide such guide for new quarks and leptons



#### Minimal seesaw III

#### The Lagrangian

Triplets  $\Sigma_i$  contain a charged lepton  $E_i^-$  and a Majorana  $N_i$ 

They have Yukawa interactions with SM leptons

$$-Y_{ij}\,\bar{L}'_{iL}(\vec{\Sigma}_j\cdot\vec{\tau})\,\tilde{\phi} \quad \stackrel{\langle\phi^0\rangle=\nu/\sqrt{2}}{\longrightarrow} \quad -\frac{\nu}{\sqrt{2}}Y_{ij}\,\bar{\nu}'_{iL}\,N'_{jR}$$

and a Majorana mass term

$$-\frac{1}{2}\,M_{ij}\,\overline{\vec{\Sigma}^c_i}\cdot\vec{\Sigma}_j \longrightarrow -\frac{1}{2}\,M_{ij}\overline{N^{\prime c}_{iR}}\,N^{\prime}_{jR}$$

E, N have small mixing  $\sim 10^{-6}$  with the SM leptons l,  $\nu$  but unsuppressed gauge interactions with W, Z,  $\gamma$ 





#### Dirac variant of seesaw III

#### The Lagrangian

Alternative: degenerate triplets  $\Sigma_1$ ,  $\Sigma_2$  form (quasi-)Dirac triplet and lepton number is (approximately) conserved

two (quasi-)degenerate neutrinos  $N_1$ ,  $N_2$  with  $Y_{lN_2} = iY_{lN_1}$  opposite CP parities

$$\left\{ \begin{array}{c} N_{1R}, N_{2R} \end{array} \right\} \longrightarrow N_L \equiv \frac{1}{\sqrt{2}} (N_{1R}^c + iN_{2R}^c) \quad N_R \equiv \frac{1}{\sqrt{2}} (N_{1R} + iN_{2R})$$

$$\left\{ \begin{array}{c} E_{1L}, E_{1R} \\ E_{2L}, E_{2R} \end{array} \right\} \longrightarrow E_{1L}^- \equiv \frac{1}{\sqrt{2}} (E_{1L} + iE_{2L}) \quad E_{1R}^- \equiv \frac{1}{\sqrt{2}} (E_{1R} + iE_{2R})$$

$$E_{2L}^+ \equiv \frac{1}{\sqrt{2}} (E_{1R}^c + iE_{2R}^c) \quad E_{2R}^+ \equiv \frac{1}{\sqrt{2}} (E_{1L}^c + iE_{2L}^c)$$

N neutral;  $E_1^-$  and  $E_2^+$  charged Dirac fermions





## T singlet

### The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \, \bar{u}'_{Li} \gamma^\mu d'_{Li} \, W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[ \bar{u}'_{Li} \gamma^\mu u'_{Li} - 2 s_W^2 J_{\text{EM}}^\mu \right] Z_\mu \\ \mathcal{L}_Y &= -Y^u_{i\beta} \, \bar{q}'_{Li} u'_{R\beta} \, \tilde{\phi} + \text{H.c.} \\ \mathcal{L}_{\text{hare}} &= -M \bar{u}'_{Li} u'_{PA} + \text{H.c.} \end{split}$$

### T singlet

### The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \, \bar{u}_{L\alpha} \gamma^\mu V_{\alpha j} d_{Lj} \, W_\mu^+ + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[ \bar{u}_{L\alpha} \gamma^\mu X_{\alpha\beta} u_{L\beta} - 2 s_W^2 J_{\text{EM}}^\mu \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[ \bar{u}_{L\alpha} X_{\alpha\beta} \, m_\beta^u u_{R\beta} + \bar{u}_{R\alpha} m_\alpha^u X_{\alpha\beta} u_{L\beta} \right] H \end{split}$$

## B singlet

### The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \, \bar{u}'_{Li} \gamma^\mu d'_{Li} \, W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[ -\bar{d}'_{Li} \gamma^\mu d'_{Li} - 2 s_W^2 J_{\text{EM}}^\mu \right] Z_\mu \\ \mathcal{L}_Y &= -Y^d_{i\beta} \, \bar{q}'_{Li} d'_{R\beta} \, \phi + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \bar{d}'_{LA} d'_{PA} + \text{H.c.} \end{split}$$

## B singlet

### The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \, \bar{u}_{Li} \gamma^\mu \mathrm{V}_{i\beta} d_{L\beta} \, W_\mu^+ + \mathrm{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[ -\bar{d}_{L\alpha} \gamma^\mu \mathrm{X}_{\alpha\beta} d_{L\beta} - 2 s_W^2 J_{\mathrm{EM}}^\mu \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[ \bar{d}_{L\alpha} \mathrm{X}_{\alpha\beta} \, m_\beta^d d_{R\beta} + \bar{d}_{R\alpha} m_\alpha^d \mathrm{X}_{\alpha\beta} d_{L\beta} \right] H \end{split}$$

## (T B) doublet

#### The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[ \bar{u}'_{L\alpha} \gamma^\mu d'_{L\alpha} + \bar{u}'_{R4} \gamma^\mu d'_{R4} \right] W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[ \bar{u}'_{L\alpha} \gamma^\mu u'_{L\alpha} + \bar{u}'_{R4} \gamma^\mu u'_{R4} - \bar{d}'_{L\alpha} \gamma^\mu d'_{L\alpha} - \bar{d}'_{R4} \gamma^\mu d'_{R4} \right. \\ & \left. -2s_W^2 J^\mu_{\text{EM}} \right] Z_\mu \\ \mathcal{L}_Y &= -Y^u_{\alpha j} \; \bar{q}'_{L\alpha} u'_{Rj} \; \tilde{\phi} - Y^d_{\alpha j} \; \bar{q}'_{L\alpha} d'_{Rj} \; \phi + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \bar{q}'_{L4} q'_{R4} + \text{H.c.} \end{split}$$

### (T B) doublet

## The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[ \bar{u}_{Li} \gamma^\mu V^L_{ij} d_{Lj} + \bar{T}_L \gamma^\mu B_L + \bar{u}_{R\alpha} \gamma^\mu V^R_{\alpha\beta} d_{R\beta} \right] W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[ \bar{u}_{L\alpha} \gamma^\mu u_{L\alpha} + \bar{u}_{R\alpha} \gamma^\mu X^u_{\alpha\beta} u_{R\beta} \right. \\ & \left. - \bar{d}_{L\alpha} \gamma^\mu d_{L\alpha} - \bar{d}_{R\alpha} \gamma^\mu X^d_{\alpha\beta} d_{R\beta} - 2 s_W^2 J^\mu_{\text{EM}} \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[ \bar{u}_{L\alpha} m^u_\alpha (\delta_{\alpha\beta} - X^u_{\alpha\beta}) u_{R\beta} + \bar{u}_{R\alpha} (\delta_{\alpha\beta} - X^u_{\alpha\beta}) m^u_\beta u_{L\beta} \right. \\ & \left. + \bar{d}_{L\alpha} m^d_\alpha (\delta_{\alpha\beta} - X^d_{\alpha\beta}) d_{R\beta} + \bar{d}_{R\alpha} (\delta_{\alpha\beta} - X^d_{\alpha\beta}) m^d_\beta d_{L\beta} \right] H \end{split}$$

### (X T) doublet

#### The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_{W} &= -\frac{g}{\sqrt{2}} \left[ \bar{u}'_{Li} \gamma^{\mu} d'_{Li} + \bar{X}_{L} \gamma^{\mu} u'_{L4} + \bar{X}_{R} \gamma^{\mu} u'_{R4} \right] W_{\mu}^{+} + \text{H.c.} \\ \mathcal{L}_{Z} &= -\frac{g}{2c_{W}} \left[ \bar{u}'_{Li} \gamma^{\mu} u'_{Li} - \bar{u}'_{L4} \gamma^{\mu} u'_{L4} - \bar{u}'_{R4} \gamma^{\mu} u'_{R4} + \bar{X} \gamma^{\mu} X - 2s_{W}^{2} J_{\text{EM}}^{\mu} \right] Z_{\mu} \\ \mathcal{L}_{Y} &= -Y_{ij}^{u} \; \bar{q}'_{Li} u'_{Rj} \; \tilde{\phi} - Y_{4j}^{u} \; (\bar{X}_{L} \; \bar{u}'_{L4}) \; u'_{Rj} \; \phi + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \; (\bar{X}_{L} \; \bar{u}'_{L4}) \; \binom{X_{R}}{u'_{D4}} + \text{H.c.} \end{split}$$

### (X T) doublet

#### The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[ \bar{u}_{Li} \gamma^\mu V^L_{ij} d_{Lj} + \bar{X}_L \gamma^\mu T_L + \bar{X}_R \gamma^\mu V^R_{4\beta} u_{R\beta} \right] W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[ \bar{u}_{Li} \gamma^\mu u_{Li} - \bar{T}_L \gamma^\mu T_L - \bar{u}_{R\alpha} \gamma^\mu X_{\alpha\beta} u_{R\beta} + \bar{X} \gamma^\mu X \right. \\ &\left. -2s_W^2 J^\mu_{\text{EM}} \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[ \bar{u}_{L\alpha} m^u_\alpha (\delta_{\alpha\beta} - X_{\alpha\beta}) u_{R\beta} + \bar{u}_{R\alpha} (\delta_{\alpha\beta} - X_{\alpha\beta}) m^u_\beta u_{L\beta} \right] H \end{split}$$

## (B Y) doublet

### The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_{W} &= -\frac{g}{\sqrt{2}} \left[ \bar{u}'_{Li} \gamma^{\mu} d'_{Li} + \bar{d}'_{L4} \gamma^{\mu} Y_{L} + \bar{d}'_{R4} \gamma^{\mu} Y_{R} \right] W_{\mu}^{+} + \text{H.c.} \\ \mathcal{L}_{Z} &= -\frac{g}{2c_{W}} \left[ -\bar{d}'_{Li} \gamma^{\mu} d'_{Li} + \bar{d}'_{L4} \gamma^{\mu} d'_{L4} + \bar{d}'_{R4} \gamma^{\mu} d'_{R4} - \bar{Y} \gamma^{\mu} Y \right. \\ & \left. -2s_{W}^{2} J_{\text{EM}}^{\mu} \right] Z_{\mu} \\ \mathcal{L}_{Y} &= -Y_{ij}^{d} \; \bar{q}'_{Li} d'_{Rj} \; \phi - Y_{4j}^{d} \; \bar{(}\bar{d}'_{L4} \; \bar{Y}_{L}) \; d'_{Rj} \; \tilde{\phi} + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \; \left( \bar{d}'_{L4} \; \bar{Y}_{L} \right) \left( \begin{array}{c} d'_{R4} \\ X_{R} \end{array} \right) + \text{H.c.} \end{split}$$

## (B Y) doublet

#### The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[ \bar{u}_{Li} \gamma^\mu V^L_{ij} d_{Lj} + \bar{B}_L \gamma^\mu Y_L + \bar{d}_{R\alpha} \gamma^\mu V^R_{\alpha 4} Y_R \right] W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[ -\bar{d}_{Li} \gamma^\mu d_{Li} + \bar{B}_L \gamma^\mu B_L + \bar{d}_{R\alpha} \gamma^\mu X_{\alpha\beta} d_{R\beta} - \bar{Y} \gamma^\mu Y \right. \\ &\left. -2s_W^2 J^\mu_{\text{EM}} \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[ \bar{d}_{L\alpha} m^d_\alpha (\delta_{\alpha\beta} - X_{\alpha\beta}) d_{R\beta} + \bar{d}_{R\alpha} (\delta_{\alpha\beta} - X_{\alpha\beta}) m^d_\beta d_{L\beta} \right] H \end{split}$$

#### Cross sections





## $\Sigma_{\rm M}$ , $\Sigma_{\rm D}$ , $EN_{\rm d}$



◆ Back



|                                              | Pre.  | Sel.  | Peak  |                             | Pre.  | Sel.  | Peak  |
|----------------------------------------------|-------|-------|-------|-----------------------------|-------|-------|-------|
| $E^+E^ (\Sigma_{\rm M})$                     | 58.1  | 26.3  | 5.7   | $E^+E^-$ (EN <sub>d</sub> ) | 38.3  | 23.7  | 5.4   |
| $E^{\pm}N\left(\Sigma_{\mathrm{M}}\right)$   | 269.2 | 192.2 | 86.3  | $E^{\pm}N$ ( $EN_{\rm d}$ ) | 393.2 | 355.1 | 183.8 |
| $E_1^+ E_1^- (\Sigma_{\rm D})$               | 127.2 | 80.9  | 20.0  | $NN (EN_{\rm d})$           | 164.4 | 155.7 | 87.8  |
| $E_2^+ E_2^- (\Sigma_{\rm D})$               | 0.0   | 0.0   | 0.0   | $E^+E^ (E_{\rm s})$         | 8.2   | 3.1   | 0.7   |
| $E_1^{\pm}N\left(\Sigma_{\mathrm{D}}\right)$ | 502.1 | 370.2 | 181.9 | $NN(Z'N_{\rm M})$           | 311.0 | 252.6 | 143.2 |
| $E_2^{\pm}N\left(\Sigma_{\mathrm{D}}\right)$ | 36.1  | 28.1  | 3.3   | $NN(Z'N_{\rm D})$           | 576.2 | 481.9 | 285.5 |
| tīnj                                         | 236   | 156   | 0     | WZnj                        | 1540  | 38    | 2     |
| Wtīnj                                        | 54    | 47    | 6     | ZZnj                        | 86    | 5     | 0     |
| Ztīnj                                        | 151   | 20    | 3     | WWWnj                       | 17    | 12    | 3     |

$$p_T > 30 \text{ GeV } (\ell^{\pm}\ell^{\pm})$$
  $p_T > 10 \text{ GeV } (\ell^{\mp})$  2 jets  $p_T > 20 \text{ GeV}$   $|m_{\ell^{+}\ell^{-}} - M_Z| > 10 \text{ GeV}$ 



|                                              | Pre.  | Sel.  | Peak  |                             | Pre.  | Sel.  | Peak  |
|----------------------------------------------|-------|-------|-------|-----------------------------|-------|-------|-------|
| $E^+E^ (\Sigma_{\rm M})$                     | 21.7  | 1.6   | 0.3   | $E^+E^-$ (EN <sub>d</sub> ) | 10.5  | 1.2   | 0.3   |
| $E^{\pm}N\left(\Sigma_{\mathrm{M}}\right)$   | 658.0 | 240.0 | 144.8 | $E^{\pm}N$ ( $EN_{\rm d}$ ) | 111.8 | 6.2   | 1.9   |
| $E_1^+ E_1^- (\Sigma_{\rm D})$               | 25.6  | 4.2   | 0.7   | $NN (EN_{\rm d})$           | 47.7  | 1.9   | 0.8   |
| $E_{2}^{+}E_{2}^{-}(\Sigma_{\rm D})$         | 0.0   | 0.0   | 0.0   | $E^+E^ (E_{\rm s})$         | 2.5   | 0.0   | 0.0   |
| $E_1^{\pm}N\left(\Sigma_{\mathrm{D}}\right)$ | 174.4 | 9.4   | 2.7   | $NN(Z'N_{\rm M})$           | 433.5 | 202.1 | 132.0 |
| $E_2^{\pm}N\left(\Sigma_{\mathrm{D}}\right)$ | 472.0 | 2.9   | 0.9   | $NN (Z'N_{\rm D})$          | 206.0 | 8.1   | 3.1   |
| tīnj                                         | 1412  | 194   | 7     | WWnj                        | 245   | 15    | 3     |
| tW                                           | 96    | 6     | 0     | WZnj                        | 1056  | 24    | 1     |
| $Wt\overline{t}nj$                           | 184   | 12    | 1     | ZZnj                        | 110   | 7     | 1     |

 $p_T > 30 \text{ GeV } (\ell^{\pm}\ell^{\pm}) \quad \not p_t < 30 \text{ GeV} \quad 4 \text{ jets } p_T > 20 \text{ GeV}$ 



#### Distributions









#### Distributions





■ Back











#### Cross sections



◆ Back



### Comparison with MSSM

#### MSSM → multi-leptons

Multi-lepton signals with large missing energy can be produced in mSUGRA when gauginos are light ( $m_{1/2}$  small)

(other SUSY scenarios: photons, long-lived particles ...)

Inclusive analysis based on lepton multiplicities [ATLAS CSC book] reveals which are the most characteristic signatures in sample points

model discrimination

in mSUGRA signals with 0/1 lepton are the most significant ones in contrast with seesaw I–III where they are irrelevant



#### Comparison with MSSM

| Significance with 1 fb $^{-1}$ |           |     |            |                |                        |                                  |  |  |
|--------------------------------|-----------|-----|------------|----------------|------------------------|----------------------------------|--|--|
|                                | $M_1+M_2$ | 0ℓ  | $\ell^\pm$ | $\ell^+\ell^-$ | $\ell^{\pm}\ell^{\pm}$ | $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ |  |  |
| $\Delta$ (NH)                  | 300 + 300 | _   | _          | 1.9            | 2.2                    | 4.2                              |  |  |
| $\Delta$ (IH)                  | 300 + 300 | -   | -          | 1.1            | 3.1                    | 8.3                              |  |  |
| $\Sigma$ (M)                   | 300 + 300 | _   | _          | 1.4            | (5.0)                  | 3.9                              |  |  |
| $\Sigma$ (D)                   | 300 + 300 | _   | _          | 4.7            | _                      | 6.2                              |  |  |
| mSUGRA (SU1)                   | 264 + 262 | 6.3 | 18.0       | 6.9            | 7.2                    | 1.3                              |  |  |
| mSUGRA (SU2)                   | 160 + 149 | 0.9 | 6.0        | 1.07           | 1.9                    | 2.7                              |  |  |
| mSUGRA (SU3)                   | 219 + 218 | 13  | 17.7       | 11.5           | 7.7                    | 11.5                             |  |  |
| mSUGRA (SU4)                   | 113 + 113 | 25  | 33.7       | 24.7           | 19.9                   | 24.4                             |  |  |

with same M, multi-lepton signals larger in seesaw II, III

Note: seesaw signals not optimised (scaled from 30 fb<sup>-1</sup> analysis)



# Comparison with 4<sup>th</sup> generation

Indirect data prefer  $m_{t'} - m_{b'} = 60 \text{ GeV}$ 

$$t'$$
 decay 
$$\begin{bmatrix} \text{ either } & t' \to W^+b & \bowtie & t' \to Zt \text{ absent, no } B \\ \text{ or } & t' \to W^+b' & \bowtie & \text{not present for singlets} \end{bmatrix}$$

$$b'$$
 decay  $b' \to W^- t$   $\bowtie$   $b' \to Zb$  absent

