ATLAS-CMS Physics Program

Standard Model Measurements

Isabelle Wingerter-Seez - LAPP - Annecy isabelle.wingerter@lapp.in2p3.fr

> Corfu Summer Institute September 2009

Presentation

I. Introduction

II. Proton-Proton collisionsIII.Differential Inclusive Jet Cross-SectionIV. Electroweak Sector

V. The Higgs Search (this afternoon) VI.Beyond the Standard Model in Albert De Roeck's lecture

Credits

- Most of the figures/plots presented here are mainly taken from the two physics books of ATLAS & CMS
 Expected Performance of the ATLAS Experiment Detector, Trigger, Physics CMS Physics TDR
- I was inspired by the lectures/presentations prepared by
 - Beate Heinemann (CERN summer students)
 - Mohamed Aharrouche (Gomel summer school 2009)
 - Fabiola Gianotti
 - Lucia di Ciaccio, Nathalie Besson, Marco Delmastro, Louis Fayard
 - and many more

Introduction: Fundamental Particles & Forces

- Matter
 - made out of fermions
- Forces
 - mediated by bosons
- Higgs boson
 - breaks the electroweak symmetry and gives mass to fermions and weak gauge bosons
- All colliders experiments data are very well described by the Standard Model (SM) but the Higgs boson has not been observed

Introduction: The Standard Model Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i \bar{\psi} D \psi$$

$$+ \psi_i \lambda_{ij} \psi_j h + \text{h.c.}$$

$$+ |D_{\mu}h|^2 - V(h)$$

$$+ \frac{1}{M} L_i \lambda^{\nu}_{ij} L_j h^2 \text{ or } L_i \lambda^{\nu}_{ij} N_j$$

$$\nu \text{ mass sector}$$

supersymmetry (many variants) extra spacetime dimensions compositeness strong electroweak symmetry breaking

```
something new?!
```

Introduction: What is not described by SM ?

- Where is the Higgs boson?
- SM only account for 20% of the matter in the universe
- Only matter in the universe; where has anti-matter gone ?
 - SM can only account for a small fraction of the observed CP violation (See M. Pepe's presentation) Hierarchy of Standard Model particle masses
- Hierarchy problem
- And more
 - number of fermions generations
 - particles mass spectrum
 - EW & strong interactions do not unify inside the SM
 - SM has no gravity
 - What is dark energy?

Hierarchy problem

Introduction

- LHC was invented in the 80's to find the Higgs boson and probe the physics beyond the Standard Model
- CMS & ATLAS were conceived, designed & built to detect everything:
 - e, μ, γ, jets
 - E_Tmiss

and reconstruct particles such as

- W&Z, SM Higgs
- SUSY particles (neutralino, Higgsino)
- Compositness
- But, a final state (such as a $\gamma\gamma$ pair) does not come with a label such as
 - Higgs
 - double bremsshtralung
 - or qq→γγ
- The work consists in identifying the particles, rejecting & measuring the background

Introduction

- The experimental method follows the successive steps like:
 - Understanding of the detector (see Peter Jenni's presentation for ATLAS)
 - Measuring simple variables and comparing them to expectations
 - Reconstructing known physics objects such as:
 - e, µ, jets, E^{miss}
 - pairs of leptons: Z, J/ ψ , Y
 - leptons + E_T^{miss}
 - top events: leptons+jets+ ET^{miss}
 - Looking outside the fence for new signatures

- Transverse momentum p_{T} is a Lorentz invariant
 - Particles flowing along the beam pipe ($\theta < 3^{\circ}$) have $p_{T} \sim 0$
 - Visible transverse momentum is conserved $\sum_i p_T^i \sim 0$
 - Very useful variable
- Longitudinal momentum and energy p_{Z} and ${\sf E}$
 - Particles that escape detection have large pz
 - Visible pz is not conserved
 - This is not a very useful variable
- Polar angle, rapidity & pseudo-rapidity: θ , y, η
 - θ is not Lorentz invariant
 - y is an invariant
 - η = y(M=0)

- Transverse momentum p_T is a Lorentz invariant
 - Particles flowing along the beam pipe ($\theta < 3^{\circ}$) have $p_{T} \sim 0$
 - Visible transverse momentum is conserved $\sum_i p_T^i \sim 0$
 - Very useful variable
- Longitudinal momentum and energy p_{Z} and ${\sf E}$
 - Particles that escape detection have large pz
 - Visible pz is not conserved
 - This is not a very useful variable
- Polar angle, rapidity & pseudo-rapidity: θ , y, η
 - θ is not Lorentz invariant
 - y is an invariant
 - η = y(M=0)

$$y = \frac{1}{2}\log\frac{E + p_z}{E - p_z}$$

 $\eta = -\log \tan \eta$

p_z

• Cone ΔR

- Solid angle often used to define a region around a particle (or a jet of particle) direction
 - Jet reconstruction
 - Isolation around leptons, photons,.....
- ET^{miss}
 - Important variable: measures the transverse momentum carried by neutrinos (or any non interacting particle)
 - Very sensitive to noise in the detector

$$E_{x,y}^{\text{Calo}} = -\sum_{\text{TopoCells}} E_{x,y}.$$

• Cone ΔR

- Solid angle often used to define a region around a particle (or a jet of particle) direction
 - Jet reconstruction
 - Isolation around leptons, photons,.....

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2}$$

- ET^{miss}
 - Important variable: measures the transverse momentum carried by neutrinos (or any non interacting particle)
 - Very sensitive to noise in the detector

$$E_{x,y}^{\text{Calo}} = -\sum_{\text{TopoCells}} E_{x,y}.$$

• Cone ΔR

- Solid angle often used to define a region around a particle (or a jet of particle) direction
 - Jet reconstruction
 - Isolation around leptons, photons,.....

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2}$$

- ET^{miss}
 - Important variable: measures the transverse momentum carried by neutrinos (or any non interacting particle)
 - Very sensitive to noise in the detector

$$E_{x,y}^{\text{Calo}} = -\sum_{\text{TopoCells}} E_{x,y}.$$

Collider luminosity $\mathcal L$

• Luminosity is given by the beam optics:

$$L = \frac{N_b^2 n_b f_{rev} \gamma_r}{4\pi\epsilon_n \beta^*} F$$

- N_{events} = $\mathcal{L} \times \sigma$
 - Experiments count the number of events
 - $\ensuremath{\mathcal{L}}$ has to be known to be able to measure cross sections
 - At first, use \mathcal{L} provided by LHC (±10%)
 - Dedicated detectors, measuring events from known cross-section will be used, will ultimately provide a measurement of the luminosity to ±2-3%

The road

Cosmic muons in ATLAS & CMS

Detector performance

- Detector commissioning is prior to any analysis; ATLAS & CMS have been running since installed (2006-2008) and have mainly collected cosmic muons
 - Check detector readout & reconstruction software

Colliders

Lepton Collider (collision of two point-like particles)

Hadron collider (collision of ~50 point-like particles)

[Karl Jakobs] 14

From cosmic muons to collisions: LHC

	LHC design	LHC 2009-2010	Tevatron
√s	14 TeV	~ 7-10 TeV	1.96 TeV
Number of bunches	2808	40-400	36
Bunch spacing	25 ns	50 ns	396 ns
Energy stored in beam	360 MJ		1 MJ
Peak Luminosity	10^{33} - 10^{34} cm ⁻² s ⁻¹	10 ²⁸ -10 ³² cm ⁻² s ⁻¹	$3 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$
∫£·dt- one year	10-100 evts.fb ⁻¹	0.1 evts · fb ⁻¹	~2 evts·fb ⁻¹

• With nominal parameters: LHC is a factor ~1000 more powerful than Tevatron

- Energy: $E_{LHC} = 7 \cdot E_{Tevatron}$
- Luminosity: L_{LHC} = 3-30 · L_{Tevatron}
- Physics cross sections factor 10-1000 larger
- First collision expected by end of the year
 - $\sqrt{s} = 900 \text{ GeV } \& 7 \text{ TeV}$

P/P

The hard sub-process

Resonnance decays

Initial state radiation

Final state radiation

Multiple parton-parton interactions

Calculating a cross-section

- Calculations are done in pertubative QCD
 - Possible due to the factorization of hard ME & pdf's
 - Can be treated independently
 - Strong coupling (α_s) is large
 - Higher order needed
 - Calculations complicated

Proton composition

- It is complicated:
 - Valence quarks, gluons, sea quarks
- Exact mixture depends on:
 - Q²: ~(M²+p_T²)
 - Björken-x:
 - fraction of the proton momentum carried by the parton

• Energy of parton collision:

$$\hat{s} = x_1 \cdot x_2 \cdot s$$

 $M_X = \sqrt{\hat{s}}$

LHC vs previous hadron colliders

28

LHC start

- LHC should start mid-November 2009 with single beams.
- Collisions at $\sqrt{s}=2\times450$ GeV expected by mid-December
- Increase to $\sqrt{s}=2\times3.5 2\times5$ TeV
- Run for 2010, accumulating ~100 evts/pb

Channels (examples)	Expected events in ATLAS after cuts √s= 10 TeV, 100 pb ⁻¹		
$J/\Psi \rightarrow \mu \mu$ $Y \rightarrow \mu \mu$ $W \rightarrow \mu \nu$ $Z \rightarrow \mu \mu$ $tt \rightarrow W b W b \rightarrow \mu \nu + X$ $QCD jets p_{T} > 1 TeV$ $\tilde{g}, \tilde{q} m \sim 1 TeV$	~ 10 ⁶ ~ 5 10 ⁴ ~ 3 10 ⁵ ~ 3 10 ⁴ ~ 350 ~ 500 ~ 5	Numbers to be scaled down to $\sqrt{s}=7$ TeV	

Typical hadron collider detector

Triggering on events

Trigger: you get what you ask for

- At LHC (Tevatron), the trigger determines the quality of the physics you can do (not true at e⁺e⁻ colliders)
- The trigger is made of multiple steps (2 in CMS, 3 in ATLAS)
- The possibility to re-configure the trigger, to adjust it, to implement new algorithm is probably the key to success
- The trigger efficiency needs to be measured
 - Need for un-biased samples
- Triggers were designed for high energy objects; both ATLAS and CMS have to adjust their strategy to cope with low p_T events (Minimum Bias)

Cosmic Muons Events triggered by the Muon system Reconstruct e/ γ cluster & check that μ track is close Measure the efficiency

Minimum Bias events

- Inelastic events with no or as little as possible trigger bias
- Bias depends on the trigger acceptance of the experiment

Understanding the low p_T events

MC charged primaries & track $p_T > 150 MeV$

unnactive metastic events (101 $p_1 > \pm 30000000$)

▶ This can be directly compared to previous measurements from UA5 and CDF for example.

Summary of systematic uncertainties

Total:	8%
Diffractive cross-sections	4%
Particle composition	2%
Beam-gas & pile-up	1%
Mis-alignment	6%
vertex reconstruction	0.1%
Mis-estimate of	1 5%
Track selection cuts	2%

Underlying Event & Pileup Events

 In proton-(anti)proton interaction, remaining partons from the protons produce activity in the event

H →ZZ→μ⁺μ⁻μ⁺μ⁻)

Inclusive Jet Cross Section

- At LHC, the dominant process is $pp \rightarrow gluon gluon$
- ATLAS-CMS will trigger on single jets with typically $E_T > 15$ GeV (pre-scale)
- Large cross section ~ mb
- Why?
 - Jets are contributing to most backgrounds
 - Direct confrontation of QCD predictions
 - Ingredients for data
 - Understand basic detector performance
 - Coherent noise
 - Noisy cells
 - Jet algorithm reconstruction
 - Jet energy scale
 - Jet energy resolution
 - Luminosity

trigger	$p_{\rm T}$ threshold (GeV)	pre-scale
HLT_L1Jet15	15	10000
HLT_Jet30	30	2500
HLT_Jet50	50	50
HLT_Jet80	80	10
HLT_Jet110	110	1

- Ingredients for Monte Carlo
 - Higher order corrections
 - Non perturbative corrections
 - Structure functions
 - Renormalisation scale

Total Cross-section Measurement

- Differential cross section: $d\sigma/d\Omega$
 - Probability of a scattered particle in a given quantum state per solid angle $d\Omega$
 - e.g. Rutherford scattering experiment
- Other differential cross sections
 - $d\sigma/dE_T^{jet}$ probabilty of a jet with given E_T^{jet}
- Integrated cross-section
 - $\sigma = \int d\sigma/d\Omega \ d\Omega$
 - Measurement:

Differential Inclusive Jet Cross Section

Experimental & theoretical uncertainty

"Measured" QCD jet spectrum

- From first 10pb⁻¹ of data, the differential inclusive crosssection can be measured
 - 100 GeV < p_T^{jet} < 1.4 TeV
 - central rapidity
- Systematic errors will go down as more events are collected
- Any large deviation from QCD prediction
 - will be studied carefully
 - may be sign for new physics

Conclusion on Jet Analysis

- Jets cross-section is high
- Inclusive jets cross-sections will be one of the first measurements made at LHC
 - Requires a good detector understanding
 - Prior to any search analysis
- Allows to confront theoretical predictions to data
 - Gives a handle on MC
 - Essential for further background prediction
- More detailed & refined analysis than presented here will be pursued
 - 1/2/3/multi-jets comparisons
 - Angular distributions
 -

Identifying leptons

Electroweak Physics

- Current Electroweak theory thoroughly tested (and never "broken") until now (LEP, Hera, TeVatron, μ & neutron magnetic moments,...)
- Aim at LHC:
 - Finally break it!
 - Deeper understanding to:
 - tighten indirect constraints
 - find deviations
 - Detector calibration
- Presented today:
 - Z&W cross-sections
 - Top mass
 - W Mass
 - F/B asymmetry
 - Associated production of gauge bosons

Z & W productions

- Z production
 - $15 \cdot 10^6$ evts in one year at $d\mathcal{L}/dt = 10^{33}$ evts/cm²/s
 - qq annihilation
 - $x_q \cdot x_{\overline{q}} \sim 4 \cdot 10^{-5}$
 - $p_L = 0.5 \cdot \sqrt{s \cdot (x_{q-}x_{q-})}$
- Z decay
 - To 2 energetic fermions of opposite charge
 - 70% are quark pairs
 - jet-jet distributions are dominated by QCD background
 - Study lepton pairs: cleaner
 - electrons
 - muons
 - taus

- W production
 - $\sigma_{z} \sim 10 \cdot \sigma_{w}$
 - σ_W⁺ > σ_W⁻ (quark content of the proton)
 - W⁺ peaked at high rapidity; W⁻ in central rapidity
- W decay
 - 32% to one energetic fermion & one neutrino
 - 68% to two quarks

Selection of Z events

Electron/ μ trigger $p_T > 10$ GeV Two isolated lepton $p_T^{lep} > 15$ GeV $|\eta| < 2.4$ $|M_{II} - M_Z| < 20$ GeV

Backgrounds

Electron channel:

signal and background fraction are simultaneously estimated via a fit that leads to (8.5±1.5)% of background rate, with the uncertainty coming from modeling the shape

Muon channel:

the dominant background is t-tbar and the total uncertainty on this background is 20%

Tag & Probe (or FYFMC*) Method

(*) Free Yourself From MonteCarlo

Selection of W events

One Electron/ μ trigger p_T >20 GeV Isolated lepton p_T^{lep} > 25 GeV - $|\eta|$ < 2.4 E_T^{Miss} > 25 GeV M_T > 40 GeV

Backgrounds

Electron channel:

jet fraction estimated with a data driven method to be $(0\pm4)\%$, and the W-> $\tau\nu$ with an uncertainty of 3%

Muon channel:

a theoretical uncertainty of 15% is assumed on t-tbar background, plus a 10% one on the rejection of the isolation cut that is a total 20% on this background rate

48

The detector: measuring ET^{miss}

- Noisy cells?
- Dead region
- Coherent noise

Z & W Cross-sections

Expectations for 50 pb⁻¹

Expectations for 1 fb⁻¹

Top production

Top Decays

 In the Standard Model, the decay of top quarks takes place almost exclusively through the t→Wb. W-boson decays in about 1/3 of the cases into a charged lepton and a neutrino and in 2/3 of the cases, decays into a quark-antiquark pair

Top Studies

- LHC is sometimes presented as a top factory
 - 1 evt/s produced at $d\mathcal{L}/dt = 10^{33} \text{ cm}^{-2}\text{s}^{1}$
- Top production mechanism
 - Production cross section
 - V_{tb}
 - Spin correlations
- Top properties
 - Mass
 - Charge
 - Decay properties
 - EW vertex (V-A), W helicity
 - Rare top decays
- Search for new physics with 1 evt/fb with heavy flavours ?

Top Pair selection for semi-leptonic channels

```
Electron Trigger E<sub>T</sub>>10 GeV
Two isolated lepton p_T^{lep} > 20 \text{ GeV} |\eta| < 2.4
Four jets p_T^{jet} > 20 \text{ GeV} \& \text{ three jets } p_T^{jet} > 40 \text{ GeV}
E_T^{Miss} > 20 \text{ GeV}
Top: 3 jets with highest p_T sum
No b-tag
W constraint ±10 GeV for one of the jet-jet comb.
```

```
Backgrounds
Dominant W+jets
Single top
Z \rightarrow II + jets
QCD with fake leptons and E_T^{Miss}
Dibosons: WW,WZ,ZZ
```


Top Pair Cross-Section Measurement

	Likelihood fit		Counting method (elec)	
Source	Electron	Muon	Default	W const.
	(%)	(%)	(%)	(%)
Statistical	10.5	8.0	2.7	3.5
Lepton ID efficiency	1.0	1.0	1.0	1.0
Lepton trigger efficiency	1.0	1.0	1.0	1.0
50% more W+jets	1.0	0.6	14.7	9.5
20% more W+jets	0.3	0.3	5.9	3.8
Jet Energy Scale (5%)	2.3	0.9	13.3	9.7
PDFs	2.5	2.2	2.3	2.5
ISR/FSR	8.9	8.9	10.6	8.9
Shape of fit function	14.0	10.4	-	-

Top Quark Mass Measurement

- Same cuts as before but p_T^{jet} > 40 GeV (calibration)
- 2 b-tag
- Use X² method to reconstruct W mass by minimizing, over all light jets pairs:

$$\chi^{2} = \frac{(M_{jj}(\alpha_{E_{j_{1}}}, \alpha_{E_{j_{2}}}) - M_{W}^{PDG})^{2}}{(\Gamma_{W}^{PDG})^{2}} + \frac{(E_{j_{1}}(1 - \alpha_{E_{j_{1}}}))^{2}}{\sigma_{1}^{2}} + \frac{(E_{j_{2}}(1 - \alpha_{E_{j_{2}}}))^{2}}{\sigma_{2}^{2}}$$

Systematic uncertainty	χ^2 minimization method	geometric method
Light jet energy scale	0.2 GeV/%	0.2 GeV/%
b jet energy scale	0.7 GeV/%	0.7 GeV/%
ISR/FSR	$\simeq 0.3 \text{ GeV}$	$\simeq 0.4 \text{ GeV}$
b quark fragmentation	$\leq 0.1 \text{ GeV}$	$\leq 0.1 \text{ GeV}$
Background	negligible	negligible
Method	0.1 to 0.2 GeV	0.1 to 0.2 GeV

Tevatron M_{top} = 172.4 ± 0.7 _{stat} ± 1.0 _{sys} GeV			
$M_{top} = 175.0 \pm 0.2 GeV(stat)$			
Systematic error (1fb ⁻¹)~ 1 GeV			

Measuring Mw

- Aim at $2 \cdot 10^{-4}$ precision on the energy scale (going from M_Z to M_W) i.e. 10 MeV at 50 GeV:
 - Electronics noise in strips compartment of LAr calorimeter
 - ~2 ADC counts in the middle compartment
 - A change of 0.01 degree of LAr or CMS crystal temperature
 - Effect of empty Bunch Crossings ?
 - The protons packets are not uniformly distributed inside the LHC
 - Effect of pile-up is different depending on the packet
 - Careful treatment of this effect is necessary
 - Good tradition in Geneva for "clock-work" skills
- Many (careful) steps have to be taken to reach the goal
 - Z^0 to fix the energy scale at ~ M_Z/M_W
 - Detector acceptance
 - Description of variables by MC (templates)

•

Template method

- Use knowledge of Z⁰
 - mass
 - kinematics (ratio M_W/M_Z)
- Response parameters
 - determined in-situ using Z events
 - then used to produce templates of p_T^e, tested against the data
- $\bullet\,$ Study shows that M_W is measured with no bias, using this method
 - $M_W^{true} = 80.405 \text{ GeV}$
 - Mofibe compared to1m, tee ≥ 80.405 GeV No bias!

W Mass Measurement

- Select W candidate events
- Observable sensitive to M_W
 - p_T leptons
 - Transverse mass: M_T

$$m_T^{\rm W} = \sqrt{2 p_T^l p_T^{\rm v} (1 - \cos \Delta \phi)}$$

Build template for these observables p_T(M_W), M_T(M_W)

W Mass Measurement

15 pb⁻¹

Method	р _т (е) [MeV]	p _T (μ) [MeV]	m _T (e) [MeV]	m _τ (μ) [MeV]
δ M _W (stat.)	120	106	61	57
$\delta \; M_W (\text{scale})$	110	110	110	110
$\delta \; M_W (\text{resol})$	5	5	5	5
$\delta \; M_W (\text{tails})$	28	<28	28	<28
$\delta \; M_W \; (\text{eff.})$	14	-	14	
$\delta \; M_W \; (\text{recoil})$		•	200	200
δM_W (bkg)	3	3	3	3
δ M _W (PDF)	25	25	25	25

p_T leptons $\delta M_W = 110 \text{ (stat)} \oplus 114 \text{ (exp.)} \oplus 25 \text{ (PDF) MeV}$

Transverse mass M_T $\delta M_W = 60$ (stat) $\oplus 230$ (exp.) $\oplus 25$ (PDF) MeV

High Statistic Measurement of Mw

- With 1fb⁻¹
 - 45 10⁶ W boson per leptonic channel
 - 4.5 10⁶ Z boson per leptonic channel
- Examples of systematic studies:
 - Experimental
 - Lepton energy scale, linearity, resolution
 - Reconstruction efficiency
 - Theory
 - W distribution, y^W , p_T^W
 - FSR
 - Environment
 - Underlying event
 - Pile-up
 - Background

W Mass: Ultimate Measurement

source	effect	δm _w (MeV)
Theoretical model	Γ_{W}	0.5
	Уw	1
	p _{tW}	3
	QED radiation	<1
Lepton measurement	linearity and scale	4
	resolution	1
	efficiency	3 (e); <1 (μ)
Backgrounds	$W\to\tau\nu$	0.4
	$Z \rightarrow I(I)$	0.2
	$Z \rightarrow \tau \tau$	0.1
	Jet events	0.5
Pile-up and UE		<1 (e); ~0 (µ)
Beam crossing angle		<0.1
total		~7

One channel (e) and one study (p_T)

From M_W to M_{Higgs}

Measurement of A_{FB} in γ^*/Z decays

Forward-Backward Asymmetry in Z decay

• At LHC: quark direction not known

C: central electron($|\eta| < 2.5$)

- take Z direction
- cut on y_Z improves the assumption

Prediction for measurement of $sin^2\theta_W$

Uncertainties	δsin ² _{eff}	Main uncertainty PDF	
Energy scale	1.5x10-5	Conversely c	an be us
Reco. Efficiency	1.9x10-5		
Energy resolution	1.1x10-6		Ave
Charge ID	1.4x10-5		
Bkg. subtraction	<10-5	A _{fb} ^{0,1}	
Theory(PDF)	2.4x10-4	A ₁ (P ₁) -	-
a and b parameters	3x10-5	A, (SLD) ⊢●-	
Statistical error	1.5x10-4	A ^{6, b}	
		A _{fb} ^{6, c}	
ATLAS preliminary :	100 fb ⁻¹	Q _{fb} ^{had}	•
		A _{fb} (D0) →	•

sed to constrain PDF

 $\begin{array}{ll} q \, \overline{q} ' \to W^{(*)} & \to W \, \gamma : \, WW \, \gamma \\ q \, \overline{q} ' \to W^{(*)} & \to WZ : \, WWZ \\ q \, \overline{q} & \to Z/\gamma^{(*)} \to WW : \, WW \, \gamma , WWZ \\ q \, \overline{q} & \to Z/\gamma^{(*)} \to Z \, \gamma : \, ZZ \, \gamma , Z \, \gamma \, \gamma \\ q \, \overline{q} & \to Z/\gamma^{(*)} \to ZZ : \, ZZ \, \gamma , ZZZ \end{array}$

- Diboson production cross-section
 - expect increase of factor 10 in xs at LHC
 - 10-100 evts in first fb⁻¹
- Anomalous charged Triple Gauge Boson Coupling
 - Self interactions among three gauge bosons
 - Deviation from SM
 - $\Delta g_1^{Z} = g_1^{Z} 1$, $\Delta \kappa_Z = \kappa_Z 1$, $\Delta \kappa_\gamma = \Delta \kappa_\gamma 1$, $\lambda_\gamma \neq 0$, $\lambda_Z \neq 0$
- Anomalous neutral Triple Gauge Boson Coupling
 - neutral TGC forbidden in SM
 - $f_4^{\gamma} \neq 0, f_5^{\gamma} \neq 0, f_4^{Z} \neq 0, f_5^{Z} \neq 0$
- New Physics control sample
 - If no Higgs boson, di-bosons are important to understand EWSB
 - Background for Higgs & New Physics

Not permitted in SM

Associated production of Gauge Bosons W&Z

Charged di-bosons

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

- Select WW events
 - Electrons: 2 isolated el. ($|\eta| < 2.5$) with opposite charges; associate tracksclusters, isolation E_T<8GeV in a cone $\Delta R=0.45$ (discriminate WW, ttbar, DY)
 - Muons: p_T >5GeV, isolation E_T <5GeV in a cone ΔR =0.45
 - Jet veto: E_T>20GeV, |η_{jet}|<3
 - E_T^{miss} > 50 GeV
 - M_Z veto |M_{II}-M_Z|>15 GeV
 - $\Delta \phi(p_{T(II)}, E_T^{miss}) > 175^0$

Diboson rates for 1 fb⁻¹

Diboson mode	Signal	Background	Signal eff.	σ^{signal}_{stat}	<i>p</i> -value	Sig.
$W^+W^- ightarrow e^\pm u \mu^\mp u$	347±3	64±5	12.6% (BDT)	5.4%	$3.6 imes10^{-166}$	27.4
$W^+W^- ightarrow \mu^+ u \mu^- u$	70 ± 1	17 ± 2	5.2% (BDT)	12.0%	$8.8 imes 10^{-30}$	11.3
$W^+W^- \rightarrow e^+ v e^- v$	52±1	11 ± 2	4.9% (BDT)	13.9%	$1.9 imes 10^{-24}$	10.1
$W^+W^- ightarrow \ell^+ u \ell^- u$	103 ± 3	17 ± 2	2.0% (cuts)	9.9%	$1.4 imes 10^{-54}$	15.5
$W^{\pm}Z \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$	128 ± 2	16 ± 3	15.2% (BDT)	8.8%	$3.0 imes10^{-76}$	18.4
	53 ± 2	8 ± 1	6.3% (cuts)	13.7%	$3.1 imes 10^{-30}$	11.4
$ZZ \to 4\ell$	17 ± 0.5	2 ± 0.2	7.7% (cuts)	24.6%	$6.0 imes10^{-12}$	6.8
$ZZ \to \ell^+ \ell^- \nu \bar{\nu}$	10 ± 0.2	5 ± 2	2.6% (cuts)	31.3%	$7.7 imes 10^{-4}$	3.2
$W\gamma ightarrow e v \gamma$	1604 ± 65	1180 ± 120	5.7% (BDT)	2.5%	significance	> 30
$W\gamma ightarrow \mu u \gamma$	2166 ± 88	1340 ± 130	7.6% (BDT)	2.1%	significance	> 30
$Z\gamma ightarrow e^+e^-\gamma$	367 ± 12	187 ± 19	5.4% (BDT)	5.2%	$1.2 imes 10^{-91}$	20.3
$Z\gamma ightarrow \mu^+\mu^-\gamma$	751 ± 23	429 ± 43	11% (BDT)	3.6%	5.9×10^{-171}	27.8

Anomalous couplings

95% CL limit on AC (Λ =2 TeV) 10 fb⁻¹ (~ 10 x better than present CDF 2 fb⁻¹)

Diboson,	λ_Z	$\Delta \kappa_Z$	Δg_1^Z	$\Delta \kappa_{\gamma}$	λ_{γ}
WZ, (M_T)	[-0.015, 0.013]		[-0.011, 0.034]		
$W\gamma, (p_T^{\gamma})$					[-0.05, 0.02]
WW, (M_T)		[-0.035, 0.073]		[-0.088, 0.089]	
WW, (LEP)			[-0.051,0.034]	[-0.105,0.069]	[-0.059,0.026]

95% CL limit	on AC (A=2 TeV	/) 10 fb ⁻¹		
$ZZ \to \ell\ell\ell\ell$	f_4^Z	f_5^Z	f_4^{γ}	f_5^{γ}
$ZZ \rightarrow \ell\ell\nu\nu$	[-0.009, 0.009]	[-0.009, 0.009]	[-0.010, 0.010]	[-0.011, 0.010]
LEP Limit	[-0.30, 0.30]	[-0.34, 0.38]	[-0.17, 0.19]	[-0.32, 0.36]

Conclusions

- Known processes from SM will be measured at LHC
 - Understand detector & machine performance
 - Make first comparison with theoretical predictions
- Even with a small integrated luminosity, ATLAS & CMS will be able to make physics measurements
 - Minimum Bias cross-section
 - W & Z cross sections, W mass
 - Inclusive jet cross sections
 - **Top**
- The ultimate goals w.r.t. to SM measurements require to control the detector with high precision
 - W mass wiyh 0.01% precision
 - Triple gauge coupling
 - Top properties
- Looking forward analyzing data from the LHC & making measurements and discovery(ies ?)

Jet reconstruction

• New developments on jet algorithms

LHC parton kinematics

Jet Energy Scale

