The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2$ SO(10) models

The Pati-Salam model

The PS model landscape

Conclusions

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

September 10, 2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Summary

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ model

The Pati-Salam model

The PS model landscape

Conclusions

1 Introduction

2 The Standard Model from Strings

- 3 The Free Fermionic Formulation
- 4 Classification of $Z_2 \times Z_2$ SO(10) models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 5 The Pati-Salam model
- 6 The PS model landscape

7 Conclusions

String Theory

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

String Theory is our best candidate for a unified theory of all interactions including gravity.

The Standard Model from Strings

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

String theory, as a theory of all interactions, should reproduce the Standard Model at low energies.

However, String Theory in four dimensions contains a huge number of vacua.

Historically the Heterotic superstring models where explored first.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Heterotic models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

Gauge and gravitational interactions, as well as usual matter, correspond to closed strings that propagate in the full 10d space. Calabi-Yau, Orbifold compactification, fermionic formulation, Gepner models

Basic features:

- String scale related to Planck scale, close to the gauge coupling unification scale $M_{string}^2 \sim \alpha_g M_{Plank}^2$
- No adjoint scalars for level 1 Kac-Moody , gauge groups , $SU(5) \times U(1), SU(4) \times SU(2) \times SU(2), SU(3) \times SU(2) \times U(1)^{n}$
- Anomalous U(1) broken by the GS mechanism leads to vevs of M_s/10 for some singet fields.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Three generations, hierarchical mass spectra, light neutrinos
- But also fractional charge states (exotics)
- SUSY breaking ?

Study of string vacua

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 imes Z_2$ SO(10) models

The Pati-Salam model

The PS model landscape

Conclusions

Statistical approach (landscape) see e.g.
 M. R. Douglas, (2003)

S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi (2003)

- T. Banks, M. Dine and E. Gorbatov (2003)
- Classification Type II /orientifolds, see eg, T.P.T. Dijkstra1 , L. R. Huiszoon2 and A.N. Schellekens (2004)
 - P. Anastasopoulos, T. P. T. Dijkstra, E. Kiritsis and
 - A. N. Schellekens, (2006)
 - E. Kiritsis, M. Lennek and B. Schellekens (2008),(2009)
- Classification in the context of Heterotic string orbifolds e.g.
 - F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lust and
 - T. Weigand (2006)
 - O. Lebedev, H. P. Nilles, S. Ramos-Sanchez, M. Ratz and
 - P. K. S. Vaudrevange (2008)
 - F. Gmeiner and G. Honecker (2008)

Study of string vacua

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

 <u>Classification in the context of Heterotic Free Fermionic</u>, e.g.

A.E. Faraggi , C. Kounnas , S.E.M. Nooij , J. Rizos (2004) K. R. Dienes (2006), K. R. Dienes and M. Lennek (2007) A. E. Faraggi , C. Kounnas , J. Rizos (2007),(2008), and B. Assel, K. Christodoulides, work in progress

・ロット (雪) ・ (目) ・ (日) ・ (日) ・ (日)

The Free Fermionic Formulation of the heterotic superstring

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2$ SO(10) models The Pati-Salam model The PS model landscape Conclusions In the Free Fermionic Formulation of the heterotic superstring we can reduce the critical dimension of the superstring and construct models in D = 4 by fermionizing the left movers and introducing non-linear supersymmetry among them.

A model is defined by a set of basis vectors $B = \{v_1, v_2, \dots, v_n\}$ and a set of $2^{n(n-1)}$ phases $c \begin{bmatrix} v_i \\ v_i \end{bmatrix}, i > j$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The basis vectors give rise to a set $\Xi = \{\xi_1 = 0, \xi_2 = 1, \xi_3, \dots, \xi_M\}$ of string sectors and phases are related to the GSO projections.

The basis vectors and phases are subject to constraints due to modular invariance, string amplitude factorization.

$Z_2 \times Z_2$ models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2$ SO(10) models The Pati-Salam model The PS model landscape

Conclusions

The partition function can be written as

$$Z = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^3} \frac{1}{\eta^2 \bar{\eta}^2} \sum_{\alpha, \beta \epsilon \Xi} c \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \tilde{\zeta} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

where

$$\tilde{\zeta} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{2^n} \prod_{i=1}^{n_L} \left(\frac{\theta \begin{bmatrix} \alpha_i \\ \beta_i \end{bmatrix}}{\eta} \right)^{\frac{r_i}{2}} \prod_{i=n_L+1}^{n_R} \left(\frac{\bar{\theta} \begin{bmatrix} \alpha_i \\ \beta_i \end{bmatrix}}{\bar{\eta}} \right)^{\frac{r_i}{2}}$$

where $r_i = 1, 2$ if the *i* fermion is real or complex respectively and n_L/n_R the number of left/right moving fermions.

Some (semi)realistic models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models The Pati-Salam model The PS model landscape Conclusions Using variations of a specific basis set (NAHE set) several N = 1 models have been constructed

Flipped SU(5) model $SU(5) \times U(1) \times$ Hidden Pati-Salam model $SU(4) \times SU(2)_L \times SU(2)_R \times$ Hidden Standard-like models $SU(3) \times SU(2) \times U(1)^n \times$ Hidden

In simple constructions the gauge group rank r can be reduced by 6 so $r \ge 44/2 - 6 = 16$ Model construction: Gauge group, full massless spectrum, superpotential, flat directions, massless doublets, non-renormalizable interactions, fermions masses, exotic states Some of the steps have been computerized

Classification strategy

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2$ SO(10) models

The Pati-Salam model

The PS model landscape

Conclusions

- Choose a basis set that contains the realistic models
- Fix basis vectors and vary GSO coefficients
- Choose chiral observable gauge group: SO(10) gauge group
- Identify models by few characteristic properties: # of spinorials, # of antispinorials, # of vectorials
- Derive analytic formulas for the above characteristics
- Use a fast computer program to evaluate formulas for all models

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The class of $Z_2 \times Z_2$ *SO*(10) heterotic models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

The free fermions in the light-cone gauge in the traditional notation are:

$$\bar{\eta}^{1,2,3}, \bar{\psi}^{1,...,5}, \bar{\phi}^{1,...,8}\}$$

 $v_{2} = S = \{\psi^{\mu}, \chi^{1,...,6}\}$ shifts: $v_{2+i} = e_{i} = \{y^{i}, \omega^{i} | \bar{y}^{i}, \bar{\omega}^{i} \}, i = 1, ..., 6$ $Z_{2} \text{ twist} : v_{9} = b_{1} = \{\chi^{34}, \chi^{56}, y^{34}, y^{56} | \bar{y}^{34}, \bar{y}^{56}, \bar{\eta}^{1}, \bar{\psi}^{1,...,5} \}$ $Z_{2} \text{ twist} : v_{10} = b_{2} = \{\chi^{12}, \chi^{56}, y^{12}, y^{56} | \bar{y}^{12}, \bar{y}^{56}, \bar{\eta}^{2}, \bar{\psi}^{1,...,5} \}$ $v_{11} = z_{1} = \{\bar{\phi}^{1,...,4} \}$ $v_{12} = z_{2} = \{\bar{\phi}^{5,...,8} \}$

and a set of $2^{12(12-1)/2}$ phases $c[v_i, v_j] = \pm 1, j < j = 1, \dots, 12$

Massless spectrum

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

<u>Untwisted sector</u> matter spectrum (universal) Gauge symmetry (rank 16) $SO(10) \times U(1)^3 \times SO(8)^2$ 6 pairs of SO(10) vectorials and a number of SO(10) singlets. <u>The twisted sectors</u> are generated by $b_1, b_2, b_1 + b_2$ (three $Z_2 \times Z_2$ orbifold planes), they contain

Spinorial SO(10) representations :

$$B_{pqrs}^{(1)} = S + b_1 + p^1 e_3 + q^1 e_4 + r^1 e_5 + s^1 e_6$$

$$B_{pqrs}^{(2)} = S + b_2 + p^2 e_1 + q^2 e_2 + r^2 e_5 + s^2 e_6$$

$$B_{pqrs}^{(3)} = S + b_3 + p^3 e_1 + q^3 e_2 + r^3 e_3 + s^3 e_4$$

where $b_3 = b_1 + b_2 + x$, $p^i, q^i, r^i, s^i = \{0, 1\}$.

Vectorial SO(10) representations

$$V^{(I)}_{
hogars}=B^{(I)}_{
hogars}+x$$
 where $x=1+S+\sum_{i=1}^{6}e_i+\sum_{i=1}^{2}z_i$

Analytic formulae for # of spinorials/vectorials

The "landscape" of Pati-Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

$$\#(S^{(l)}) = \begin{cases} 2^{4-\operatorname{rank}(\Delta^{(l)})} & \operatorname{rank}(\Delta^{(l)}) = \operatorname{rank}\left[\Delta^{(l)}, Y_{16}^{(l)}\right] \\ 0 & \operatorname{rank}(\Delta^{(l)}) < \operatorname{rank}\left[\Delta^{(l)}, Y_{16}^{(l)}\right] \\ \#(V^{(l)}) = \begin{cases} 2^{4-\operatorname{rank}(\Delta^{(l)})} & \operatorname{rank}(\Delta^{(l)}) = \operatorname{rank}\left[\Delta^{(l)}, Y_{10}^{(l)}\right] \\ 0 & \operatorname{rank}(\Delta^{(l)}) < \operatorname{rank}\left[\Delta^{(l)}, Y_{10}^{(l)}\right] \end{cases}$$

 $\Delta^{(\textit{I})}\text{,}$ are 4x4 and $Y^{(\textit{I})}$ I=1,2,3 are 4x1 GSO coefficient matrices

Analytic formulae for spinorial chiralities

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

The chirality of the surviving spinorials is given by

$$X_{pqrs}^{(1)} = c \begin{bmatrix} b_2 + (1-r)e_5 + (1-s)e_6 \\ B_{pqrs}^{(1)} \end{bmatrix}$$
$$X_{pqrs}^{(2)} = c \begin{bmatrix} b_1 + (1-r)e_5 + (1-s)e_6 \\ B_{pqrs}^{(2)} \end{bmatrix}$$
$$X_{pqrs}^{(3)} = c \begin{bmatrix} b_1 + (1-r)e_3 + (1-s)e_4 \\ B_{pqrs}^{(3)} \end{bmatrix}$$

where $X_{pqrs}^{i} = +1$ corresponds to a **16** of $SO(10)(X_{pqrs}^{i} = -1$ corresponds to a **16**). The net number of families is given by

$$N_F = \sum_{i=1}^{3} \sum_{p,q,r,s=0}^{1} X_{pqrs}^{(i)} P_{pqrs}^{(i)}$$

Computer Analysis

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

Model characteristics are expressed in term of GSO phase matrices and sums. They can be evaluated for the using a computer program.

1 The program should be fast (at least 10⁵ models per second)

2 The program must face the memory and storage problem

We have constructed such a computer program FORTRAN95. Run on Dual Xeon \Rightarrow full results in 60 days (200.000 models per second).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results of computer analysis

Spinorial-Vectorial analysis

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

Spinorial-Vectorial analysis

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Spinor-Vector Duality

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

Models in this class appear in pairs related with spinor-vector duality. The map has been derived analytically and holds to each orbifold plane separately.

Self-dual models under this symmetry appear to be anomaly free (no anomalous U(1))

This symmetry appears in each orbifold plane separately.

Towards the Standard Model

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

The next step in our analysis is to break SO(10) and obtain the Standard Model. The simplest way to realize this is through the Pati-Salam GUT model.

 $SO(10) \rightarrow SU(4) \times SU(2)_L \times SU(2)_R \rightarrow SU(3) \times SU(2) \times U(1)$

Motivation for Pati-Salam models

- **1** Technically easier , can be realized with a single additional vector of real spin structures
- Models constructed up to now contain additional fractional charge matter (exotics)
- 3 According to recent results, (see e.g. Lust (2009)) this model has very low statistics in Intersecting D-brane models

The Pati-Salam model

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

J. Pati and A. Salam, *Lepton number as the fourth color* (1974) I. Antoniadis and G. Leontaris (1988) (SUSY version)

I. Antoniadis, G. Leontaris and J. Rizos (1990) (heterotic superstring version)

$$egin{aligned} & SO(10) \supset SU(4) imes SU(2)_L imes SU(2)_R \ & \mathbf{16} = (\mathbf{4},\mathbf{2},\mathbf{1}) + (\mathbf{ar{4}},\mathbf{1},\mathbf{2}) \ & \mathbf{10} = (\mathbf{6},\mathbf{1},\mathbf{1}) + (\mathbf{1},\mathbf{2},\mathbf{2}) \end{aligned}$$

The Pati-Salam model

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

J. Pati and A. Salam, *Lepton number as the fourth color* (1974)
I. Antoniadis and G. Leontaris (1988) (SUSY version)
I. Antoniadis, G. Leontaris and J. Rizos (1990) (heterotic superstring version)

$$SO(10) \supset SU(4) \times SU(2)_L \times SU(2)_R$$

16 = (4, 2, 1) + ($\bar{4}$, 1, 2)
10 = (6, 1, 1) + (1, 2, 2)

$$\begin{split} SU(4) \times SU(2)_{L} \times SU(2)_{R} \supset SU(3) \times SU(2) \times U(1) \\ F_{L}(4,2,1) &\to Q(3,2,-\frac{1}{6}) + \ell(1,2,\frac{1}{2}) \\ \bar{F}_{R}(\bar{4},1,2) \to u^{c}(\bar{3},1,\frac{2}{3}) + d^{c}(\bar{3},1,-\frac{1}{3}) + e^{c}(1,1,-1) + \nu^{c}(1,1,0) \\ D(6,1,1) \to D_{3}(3,1,\frac{1}{3}) + \bar{D}_{3}(\bar{3},1,-\frac{1}{3}) \\ h(1,2,2) \to h^{d}(1,2,\frac{1}{2}) + h^{u}(1,2,-\frac{1}{2}) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Pati-Salam model

The "landscape" of Pati-Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

 $\frac{\text{Symmetry breaking}}{\text{Model by } \left< \nu_H^c \right>, \left< \nu_H \right>}$

$$\begin{split} \bar{H}(\bar{\textbf{4}},\textbf{1},\textbf{2}) &\rightarrow u_{H}^{c}(\bar{\textbf{3}},\textbf{1},\frac{2}{3}) + d_{H}^{c}(\bar{\textbf{3}},\textbf{1},-\frac{1}{3}) + \nu_{H}^{c}(\textbf{1},\textbf{1},0) + e_{H}^{c}(\textbf{1},\textbf{1},-1) \\ H(\textbf{4},\textbf{1},\textbf{2}) &\rightarrow u_{H}(\textbf{3},\textbf{1},-\frac{2}{3}) + d_{H}(\textbf{3},\textbf{1},\frac{1}{3}) + \nu_{H}(\textbf{1},\textbf{1},0) + e_{H}(\textbf{1},\textbf{1},1) \end{split}$$

Triplet mass

$$H^2 D + \bar{H}^2 D \rightarrow d_H \bar{D}_3 \langle \nu_H \rangle + d_H^c D_3 \langle \nu_H^c \rangle$$

We need at least one $(\mathbf{6}, \mathbf{1}, 1)$ to realize this mechanism. <u>Fermion masses</u>

$$F_{L}(4,2,1)\overline{F}_{R}(\overline{4},1,2)\langle h(1,2,2)\rangle$$
(1)

Neutrinos mix with additional heavy singlets

I

$$\mathcal{M}_{\nu,\nu^{c},\varphi} = \begin{pmatrix} 0 & \nu & 0 \\ \nu & 0 & M_{GUT} \\ 0 & M_{GUT} & M \end{pmatrix} \to \frac{\nu^{2} M}{M_{GUT}^{2}}$$
(2)

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

$$v_{13} = \alpha = \{ \bar{\psi}^{45} \bar{\phi}^{1,2} \}$$

that introduces 12 new GSO projection phases $c[\alpha, v_j], j = 1, ..., 12$.

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

$$v_{13} = \alpha = \{ \bar{\psi}^{45} \bar{\phi}^{1,2} \}$$

that introduces 12 new GSO projection phases $c[\alpha, v_j], j = 1, \dots, 12$.

Gauge Group: $SU(4) \times SU(2)_L \times SU(2)_R \times U(1)^3 \times SU(2)^4 \times SO(8)$

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

Add and extra vector to SO(10) basis \bigcirc

$$v_{13} = \alpha = \{ \bar{\psi}^{45} \bar{\phi}^{1,2} \}$$

that introduces 12 new GSO projection phases $c[\alpha, v_j], j = 1, \dots, 12$.

Gauge Group: $SU(4) \times SU(2)_L \times SU(2)_R \times U(1)^3 \times SU(2)^4 \times SO(8)$

The α -projection truncates SO(10) multiplets

$$egin{aligned} & SO(10) \supset SU(4) imes SU(2)_L imes SU(2)_R \ & \mathbf{16} = (\mathbf{4},\mathbf{2},\mathbf{1}) + (\mathbf{\bar{4}},\mathbf{1},\mathbf{2}) \ & \overline{\mathbf{16}} = (\mathbf{\bar{4}},\mathbf{2},\mathbf{1}) + (\mathbf{4},\mathbf{1},\mathbf{2}) \ & \mathbf{10} = (\mathbf{6},\mathbf{1},\mathbf{1}) + (\mathbf{1},\mathbf{2},\mathbf{2}) \end{aligned}$$

So we need 2 \times 16 for each family and one pair of $16{+}\overline{16}$ for the PS breaking Higgs

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

```
The Free Fermionic 
Formulation
```

```
Classification of Z_2 \times Z_2 SO(10) models
```

The Pati-Salam model

The PS model landscape

Conclusions

<u>Exotics</u> The presence of fractional charge exotics is generic in these models.

A. N. Schellekens, Electric charge quantization in string theory (1989)

k = 1 Kac Moody Algebra $\sin^2 \theta_W = \frac{3}{8}$ at M_s fractional charge \Rightarrow states in the string spectrum

In all models constructed up to now a lot of these states appear in the massless string spectrum.

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

```
The Free Fermionic 
Formulation
```

```
Classification of Z_2 \times Z_2 SO(10) model
```

The Pati-Salam model

The PS model landscape

Conclusions

<u>Exotics</u> The presence of fractional charge exotics is generic in these models.

A. N. Schellekens, Electric charge quantization in string theory (1989)

k = 1 Kac Moody Algebra $\sin^2 \theta_W = \frac{3}{8}$ at M_s fractional charge \Rightarrow states in the string spectrum

In all models constructed up to now a lot of these states appear in the massless string spectrum.

Some solutions to this problem discussed up to now are:

1 Construct models with higher k (higher SU(3), SU(2) reps)

- 2 Assume the exotics transform under hidden sector (eg. Flipped SU(5) string model , SU(4) hidden, is this enough ?)
- **3** Find appropriate flat directions to make them massive at the effective field theory level (usually restricts seriously the vacuum selection)
- 4 Search for models where these states are vector-like and assume they will get mass to some level (see e.g. Schellekens 2009)

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

Possible exotics in the PS model

$$Q_{em} = \frac{1}{\sqrt{6}} T_{15} + \frac{1}{2} I_{3L} + \frac{1}{2} I_{3R}$$

$${f (4,1,1)+(ar{4},1,1):\pmrac{1}{6}}$$
 exotic colored particles
 ${f (1,2,1):\pmrac{1}{2}}$ leptons
 ${f (1,1,2):\pmrac{1}{2}}$ SM singlets

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

A model is characterized by 9 integers $(n_g, k_L, k_R, n_6, n_h, n_4, n_{\bar{4}}, n_{2L}, n_{2R})$

 $n_{4L} - n_{\bar{4}R} = n_{\bar{4}L} - n_{4R} = n_g = \#$ of generations $n_{\bar{4}L} = k_L = \#$ of non chiral left pairs $n_{4R} = k_R = \#$ of non chiral right pairs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

A model is characterized by 9 integers $(n_g, k_L, k_R, n_6, n_h, n_4, n_{\bar{4}}, n_{2L}, n_{2R})$

 $n_{4L} - n_{\bar{4}R} = n_{\bar{4}L} - n_{4R} = n_g = \# \text{ of generations}$ $n_{\bar{4}L} = k_L = \# \text{ of non chiral left pairs}$ $n_{4R} = k_R = \# \text{ of non chiral right pairs}$ $n_6 = \# \text{ of } (\mathbf{6}, \mathbf{1}, \mathbf{1})$ $n_h = \# \text{ of } (\mathbf{1}, \mathbf{2}, \mathbf{2})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

A model is characterized by 9 integers $(n_g, k_L, k_R, n_6, n_h, n_4, n_{\bar{4}}, n_{2L}, n_{2R})$

 $n_{4L} - n_{\bar{4}R} = n_{\bar{4}L} - n_{4R} = n_g = \# \text{ of generations}$ $n_{\bar{4}L} = k_L = \# \text{ of non chiral left pairs}$ $n_{4R} = k_R = \# \text{ of non chiral right pairs}$ $n_6 = \# \text{ of } (6, 1, 1)$ $n_h = \# \text{ of } (1, 2, 2)$ $n_4 = \# \text{ of } (1, 2, 2)$ $n_{\bar{4}} = \# \text{ of } (\bar{4}, 1, 1) \text{ (exotic)}$ $n_{\bar{4}} = \# \text{ of } (\bar{4}, 1, 1) \text{ (exotic)}$ $n_{2L} = \# \text{ of } (1, 2, 1) \text{ (exotic)}$ $n_{2R} = \# \text{ of } (1, 1, 2) \text{ (exotic)}$

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ model

The Pati-Salam model

The PS model landscape

Conclusions

A model is characterized by 9 integers $(n_g, k_L, k_R, n_6, n_h, n_4, n_{\overline{4}}, n_{2L}, n_{2R})$

 $n_{4L} - n_{\bar{4}R} = n_{\bar{4}L} - n_{4R} = n_g = \# \text{ of generations}$ $n_{\bar{4}L} = k_L = \# \text{ of non chiral left pairs}$ $n_{4R} = k_R = \# \text{ of non chiral right pairs}$ $n_6 = \# \text{ of } (\mathbf{6}, \mathbf{1}, \mathbf{1})$ $n_h = \# \text{ of } (\mathbf{1}, \mathbf{2}, \mathbf{2})$ $n_4 = \# \text{ of } (\mathbf{4}, \mathbf{1}, \mathbf{1}) \text{ (exotic)}$ $n_{\bar{4}} = \# \text{ of } (\mathbf{4}, \mathbf{1}, \mathbf{1}) \text{ (exotic)}$ $n_{2L} = \# \text{ of } (\mathbf{1}, \mathbf{2}, \mathbf{1}) \text{ (exotic)}$ $n_{2R} = \# \text{ of } (\mathbf{1}, \mathbf{1}, \mathbf{2}) \text{ (exotic)}$

We have derived analytic formulae for all these quantities, similar to the SO(10) case 1. It turns out that the depend on 51 GSO phases , that leads to a class of $2^{51}\sim 2\times 10^{15}$ models.

Generation structure of PS models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ model

The Pati-Salam model

The PS model landscape

Conclusions

Results of a preliminary random search over 5×10^9 out of $2^{51}\sim 2\times 10^{15}~\text{PS}$ models

Generation structure of PS models

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Exotic particle structure of PS models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ model

The Pati-Salam model

The PS model landscape

Conclusions

Results of a preliminary random search over 5×10^9 out of $2^{51}\sim 2\times 10^{15}~\text{PS}$ models

э

Exotic particle structure of PS models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ model

The Pati-Salam model

The PS model landscape

Conclusions

э

Minimal PS models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Mode from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ mode

The Pati-Salam model

The PS model landscape

Conclusions

Results of a preliminary random search over 5×10^9 out of $2^{51}\sim 2\times 10^{15}~\text{PS}$ models

Minimal PS models

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ mode

The Pati-Salam model

The PS model landscape

Conclusions

Results of a preliminary random search over 5×10^9 out of $2^{51}\sim 2\times 10^{15}~\text{PS}$ models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ●のへで

Minimal PS models

The "landscape" of Pati-Salam heterotic superstring vacua 1500 1000 The PS model landscape 500

Summary of the Pati-Salam model landscape

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ model

=

The Pati-Salam model

The PS model landscape

Conclusions

Summary of results of a preliminary random search over 5×10^9 out of $2^{51}\sim 2\times 10^{15}$ PS models

	Constraint	probability	# of models
	No gauge group enhancements	$2 imes 10^{-1}$	$2 imes 10^{14}$
+	3 generation models	$3 imes 10^{-3}$	$7 imes10^{12}$
+	PS breaking Higgs	$4 imes 10^{-4}$	$9 imes10^{11}$
+	SM breaking Higgs doublets	$3 imes 10^{-4}$	$7 imes10^{11}$
+	No exotics	$1 imes 10^{-6}$	$2 imes 10^9$

Summary of the Pati-Salam model landscape

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ model

The Pati-Salam model

The PS model landscape

Conclusions

Summary of results of a preliminary random search over 5×10^9 out of $2^{51}\sim 2\times 10^{15}$ PS models

	Constraint	probability	# of models
	No gauge group enhancements	$2 imes 10^{-1}$	$2 imes 10^{14}$
+	3 generation models	$3 imes 10^{-3}$	$7 imes10^{12}$
+	PS breaking Higgs	$4 imes 10^{-4}$	$9 imes10^{11}$
+	SM breaking Higgs doublets	$3 imes 10^{-4}$	$7 imes10^{11}$
+	No exotics	$1 imes 10^{-6}$	$2 imes 10^9$
+	Minimal spectrum	$2 imes 10^{-7}$	$4 imes 10^8$

Conclusions

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

The Free Fermionic Formulation

Classification of $Z_2 \times Z_2 SO(10)$ models

The Pati-Salam model

The PS model landscape

Conclusions

- We have developed tools that allow the exploration of $2^{51} \sim 10^{15}$ Pati-Salam heterotic $Z_2 \times Z_2$ N = 1 vacua
- The heterotic PS vacua seem to be very rich, realistic models (3 generations, PS breaking Higgs, SM breaking Higgs) correspond to 3×10^{-4} of this class
- We have identified an interesting subclass of realistic models, $(1 \times 10^{-6} \text{ of the vacua})$ where the massless string spectrum is free of fractionally charged states.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusions

The "landscape" of Pati–Salam heterotic superstring vacua

J. Rizos University of Ioannina CORFU2009

Introduction

The Standard Model from Strings

- The Free Fermionic Formulation
- Classification of $Z_2 \times Z_2 SO(10)$ models
- The Pati-Salam model
- The PS model landscape

Conclusions

- We have developed tools that allow the exploration of $2^{51} \sim 10^{15}$ Pati-Salam heterotic $Z_2 \times Z_2$ N = 1 vacua
- The heterotic PS vacua seem to be very rich, realistic models (3 generations, PS breaking Higgs, SM breaking Higgs) correspond to 3×10^{-4} of this class
- We have identified an interesting subclass of realistic models, $(1 \times 10^{-6} \text{ of the vacua})$ where the massless string spectrum is free of fractionally charged states.
- Explore the phenomenology of this class of models (Fermion mass matrices).
- Abelian anomaly free models ? (Z')
- Try to explore other models including the SM in this framework.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・