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Introduction
A small percent of the energy density of the Universe is 
radiation : The C.M.B. at T = 3K.

In the past, the Universe was smaller, hotter. There has 
been a Radiation Dominated Era. 

This looks like a black body :

A black body is a 3D box T 
3, of volume V = (2!R"#$)3, 

filled with a gas of massless states at temperature T.

In quantum canonical ensemble :

With strings, we have a thermal gas of all (massive) states.
Zth = Tr e−βH =⇒ F = − lnZth

β
=⇒ ρ = 3P ∝ T 4

Stefan’s law



For the Universe, the pressure pushes the walls of the 
box : Rbox → Rbox+dRbox.

We recompute everything in the torus of radius Rbox+dRbox 
⇒ Quasi-static evolution Rbox(t), P(t), %(t), T(t). 

Consistent if P, % are perturbations : We’ll work at weak 
coupling and 1-loop.

The final aim is to apply this to models compatible with 
astroparticle physics and phenomenology :

Models with spontaneous susy breaking, N = 1 → 0 in 4D 
at late times. 

They have 3 scales : The temperature T(t), the susy 
breaking scale M(t), the scale factor of the Universe a(t).

The general picture is : Intermediate Era :

The evolution is attracted to a 
Radiation Dominated Solution :

T (t) ∝M(t) ∝ 1
a(t)

Late Time Era :
•T(t) approaches the Infrared Renormalization Group 
invariant scale Qew, at which the MSSM Higgs (mass)2 
becomes negative : 
•Radiative breaking SU(2)×U(1)→U(1)em. 
•M(t) is stabilized around Qew. [In sugra : Kounnas, Pavel, Zwirner]

•The MSSM particles get masses → Matter Dominated Era.



The general picture is : Intermediate Era :

The evolution is attracted to a 
Radiation Dominated Solution :

T (t) ∝M(t) ∝ 1
a(t)

For arbitrary I.B.C. at 
the end of the Hagedorn 
era, the cosmological 
evolution is attracted to 
the RDS.

Early Era :
•T(t) approaches some 
Hagedorn temperature TH, 
where Tr e-&H  diverges.
•Implement phase transition 
or use models free of 
Hagedorn singularity.

Plan

To fix the ideas : Supersymmetric models, at finite T (no M).

Models with N = 1 or 2 → 0, at finite T :

Attraction to a Radiation Dominated Solution in 4D.

Or dynamical change of space-time dimension → 5D.



Pure thermal case

and RI ! 1
If R0 ! 1 (i.e. after Hagedorn era)

(see next talk)

Zth = Tr e−βH =
∫
Dφ e−SE [φ] 

β = 2πR0

In Euclidean S1(R0)× T 3(Rbox)

F = − lnZth

β
= − 1

β

(
Zc

1-loop + · · ·
)
" − 1

β
© =⇒ − 1

β
In S1(R0)× T 3(Rbox)× CY

Oscillators + Internal lattice

∫

F

dτ1dτ2

2τ2

βV

(2π)4τ2
2

∑
e−πτ2(Mass)2

∑

m̃0,n0

e−
πR2

0
τ2

|m̃0+n0τ |2(−)am̃0+bn0+m̃0n0

Euclidean time lattice

Finite in the UV (not in field theory) :
Zgenus-1 = βV

1
(2πR0)4

nT

∑

m̃0

1
π2(2m̃0 + 1)4

1/RI or RI  for internal KK or windings
1               for oscillators
R0             for Euclidean time windings

(
+O(e−2πR0(··· ))

)

We could compute P, % from F using statistical physics 
formulas and impose them by hand as sources in Einstein 
gravity. 

with the (quasi-static) background of S 1(R0)×T 3 (Rbox), back 
to Lorentzian signature.

S =
∫

d4x
√
−G

[
e−2φdil

(
R

2
+ 2(∂φdil)2

)
+

Zgenus-1

βV

]

In Einstein frame :
ds2 = −N(t)2dt2 + a(t)2

(
(dx1)2 + (dx2)2 + (dx3)2

)
, φdil(t)

N = 2πR0 e−φdil ≡ 1
T

and                                     is the scale factor.
where                                  is the laps function

a = 2πRbox e−φdil

Or, write the effective action of the Lorentzian model :



Variation of N, a =⇒ Tµ
ν = diag(−ρtot, P tot, P tot, P tot)µ

ν

= φdil kinetic term + 1-loop part

P = −Zgenus-1

βV

ρ = −P + T
∂P

∂T

Equations of motions :

For the dilaton

Conservation of

Friedmann 

=⇒ φ̇dil =
cdil

a3

i.e. attraction to the Radiation Dominated Solution 

=⇒ 3H2 =
crad

a4
+

c2
dil

a6
−→

t→+∞

crad

a4

Tµ
ν =⇒ T =

c

a

= −
(

∂F

∂V

)

β

e4φdil

=
1
V

(
∂(βF )

∂β

)

V

e4φdil

In the present case : ρ = 3P = T 4 nT
π2
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Susy breaking & Temperature

Boundary conditions : 

(−)(a+Q)m̃0 =⇒ m4

R4
+

a + Q

2R4
: Mass shift M

(−)am̃0 =⇒ m0

R0
+

a

2R0
: Mass shift T

S1(R0)× T 3(Rbox)×
S1(R4)× T 3

Z2
× T 2

(or                 for N = 1)S1(R4)× T 5

Z2 × Z2

S1(R0)× T 3(Rbox)× S1(R4)× S1 × T 4

Z2

 N = 2 or 1 → 0 at finite T : 



The nT KK towers of S1(R0) and S1(R4) contribute.
Corrections                         are negligible, except           .e−2π

R0
R4e−2π

R0
RI , e−2π

R4
RI

Zgenus-1 = βV
1

(2πR0)4
p(z) where ez =

R0

R4
 

p(z) = nT fT (z) + nV fV (z) + nt
T

π2
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fT (z) =
∑

m̃0,m̃4

e4z Γ(5/2)
π5/2

(
e2z(2m̃0 + 1)2 + (2m̃4)2

)5/2
, fV (z) = e3z fT (−z)

nV =
nT∑

s=1

(−)Qs Twisted sector KK towers of S1(R0)  

Hypothesis :  {
R0, R4 ! 1 i.e. T , M " TH

RI !=4 # 1

In Einstein frame : 

linear combinations of φdil and lnR4

S =
∫

d4x
√
−g

[
R

2
− 1

2
(∂ϕ)2 − 1

2
(∂Φ)2 +

e4φdilZgenus-1

βV

]

The fields are : T (t), a(t), ϕ(t), M(t) ≡ e
√

3
2Φ(t)

2π

The energy-momentum tensor gives :

P = T 4 p(z) , ρ = T 4
(
3p(z)− pz(z)

)

ez =
R0

R4
=

M

T



ez =
M

T
≡ ezc , ϕ = cstIf  

=⇒ T ∝M ∝ 1
a

with H2 ∝ 1
a4

: Radiation Era

T =
A(z)

a

H2 =
C1

a4

Conservation of        :

Friedmann : 

Scalars : 





C2

◦◦
z + C3

◦
z2 + C4

◦
z +

dV

dz
(z) = 0

C5
◦◦
ϕ + C6

◦
ϕ = 0

−p(z)− pz(z)

Tµ
ν

Equations of motion :

dz

d ln a

Ci(z; ◦z,
◦
ϕ)

The evolution is always attracted to a contracting phase.

Perturbations around the Radiation Era :   

Also true for large oscillations (numerically).
z = zc + ε(z) , ϕ = cst + ε(ϕ) =⇒ ε(z), ε(ϕ) −→

t→+∞
0

V

z z

V

zc

V

z

V

zz

V

zc

c

V

z

z

− 1
15

<
nV

nT
< 0 0 <

nV

nT

nV

nT
< − 1

15

non-orbifold

orbifold

p = nT fT + nV fV

+nt
T

π2
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zzz

zzz



ez =
R0

R4
! 1

S =
∫

d5x
√
−G′

[
e−2φ′

dil

(
R′

2
+ 2(∂φ′dil)

2

)
+

Zgenus-1

βV (2πR4)

]Redo analysis in 5D,

ds′2 = −N ′(t)2dt2 + a′(t)2
(
(dx1)2 + (dx2)2 + (dx3)2

)
+ b(t)2(dx4)2 , φ′

dil(t)

with Einstein frame background :

N ′ = 2πR0 e−
2
3 φ′

dil ≡ 1
T ′ , a′ = 2πRbox e−

2
3 φ′

dil , b = 2πR4 e−
2
3 φ′

dil

Use the fields eξ =
R4

Rbox
=

b

a′ , ez =
R0

R4
=

1
b T ′

, R4z slides so that                    i.e. Rbox ! R0 ! 1

H2 ∝ 1
a′5

Using  Zgenus-1

βV (2πR4)
=

1
(2πR0)5

nT ( c + e4z c′ +O(e−2π
R4
R0 ))

one shows                                  i.e. Attraction to  

with                 i.e. Radiation Era in 5DT ′ ∝ 1
a′ ∝

1
b

ξ , z , φ′dil −→t→+∞
cst

We focussed on eras of the Universe which are thermalized.
Start from a flat classical susy background. 

Switch on finite temperature i.e. a thermal gas of all  
string states.
This breaks spontaneously susy        vacuum energy at 
genus 1 (the genus 0 cannot wrap the Euclidean time)        cosmology.
Also true for flat classical backgrounds where susy is 
spontaneously broken.

Attractions to Radiation Eras.
The space-time dimension for a given model is dynamically 
determined.

Summary

=⇒
=⇒


